Learning Objectives

 Clustering

» Anomaly detection

« Algorithms

* Practical considerations




Unsupervised Learning:

Clustering

« Given:
— Data Set D (training set)

— Similarity/distance
metric/information

* Find:
— Partitioning of data

— Groups of similar/close
items
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Not a well-defined problem

What is a natural grouping among these objects?

Simpson's Family ~ School Employees




» Groups of similar customers
— Similar demographics
— Similar buying behavior
— Similar health
« Similar products
— Similar cost
— Similar function
— Similar store

 Similarity usually is domain/problem specific

» d~dim vector space representation and distance
metric

r:  57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
r:  78M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

Nt 18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Distance (ry,r,) = 7?7

» Pairwise distances between points (no ¢~dim space)
o Similarity/dissimilarity matrix

n - 12345678910
(upper or lower diagonal) 1 -ddddddddd
2 -dddddddd
i Yd4ddda
¢ Distance: 0 =near, oo =far 5 -ddddd
. 6 -dddd
o Similarity: 0 = far, oo = near : - ddd
o -d




» A metric space is a set S with a global
distance function d. For every two points
x, yin S, the distance d(x,y) is a
nonnegative real number.

» A metric space must also satisfy
—d(x,y) =0 iff x=y
—d(x,y) = d(y,x) (symmetry)

—d(x,y) + d(y,z) >= d(x,z) (triangle inequality)

+ Consider two records x=(X1,...,Xg), Y=(Y1,---Yq):
- P SR Y
d(x,y)—\/lx1 pallisn =0 B ..+ ooy |

Special cases:
 p=1: Manhattan distance

d(x,y)=x—y l+x,—y, |+ .+x,—y,|

* p=2: Euclidean distance

d(x,y)=,(x, =) +(x,~y,) +..+(x, —y )




2x2 Table: 0 |1 |Sum

a+b
1 GCigaid c+d
Sum |a+c|b+d|a+b+c+d

 Simple matching coefficient: (] X, = Dstic
(symmettric) ( y) a+b+c+d

o Jaccard coefficient: i b+c
(asymmettric) d ()C, y) B b -t L

« Weigh each variable differently

» Can take “importance” of variable into
account (although usually hard to quantify
in practice)




Input:
» A data set of N records each given as a ¢-
dimensional data feature vector.

Output:

» Determine a natural, useful “partitioning” of the
data set into a number of (k) clusters and noise
such that we have:

— High similarity of records within each cluster (intra-
cluster similarity)

— Low similarity of records between clusters (inter-
cluster similarity)

» Hard Clustering:
— Each object is in one and only one cluster
 Soft Clustering:

— Each object has a probability of being in
each cluster

c2 Ci1




+ Partitioning-based clustering

— K-means clustering

— K-medoids clustering

— EM (expectation maximization) clustering
 Hierarchical clustering

— Divisive clustering (top down)

— Agglomerative clustering (bottom up)
* Density-Based Methods

— Regions of dense points separated by sparser
regions of relatively low density

1. Decide on a value for k.

2. Initialize the k cluster centers (randomly, if
necessary).

3. Decide the class memberships of the N objects
by assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming
the memberships found above are correct.

5. If none of the N objects changed membership in
the last iteration, exit. Otherwise goto 3.
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(B): Ideal clusters




i A) Two natural clusters (B 1 A-means clusters

Despite its weaknesses, k-means is still the most

popular algorithm due to its simplicity and

efficiency

Other clustering algorithms have also their own

weaknesses

— No clear evidence that any other clustering algorithm
performs better than k-means in general

Some clustering algorithms may be more suitable

for some specific types of dataset, or for some

specific application problems, than the others

— Comparing the performance of different clustering
algorithms is a difficult task

No one knows the correct clusters!




 Hierarchical agglomerative (bottom-up)
clustering builds the dendrogram from the
bottom level

» The algorithm

— At the beginning, each instance forms a cluster
(also called a node)

— Merge the most similar (nearest) pair of clusters

* i.e., The pair of clusters that have the least distance
among all the possible pairs

— Continue the merging process

— Stop when all the instances are merged into a
single cluster (i.e., the root cluster)
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(A). Nested clusters (B) Dendrogram

(Venn diagram)




2 highly separated subtrees => 2 clusters
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No need to specify the number of clusters in
advance.

Hierarchal nature maps nicely onto human
intuition for some domains

They do not scale well: time complexity of at
least O(n?), where n is the number of total
objects.

Like any heuristic search algorithms, local
optima are a problem.

Interpretation of results is (very) subjective




What is a cluster?

Which features and normalization scheme?
How to define pair-wise similarity?

How many clusters?

Which clustering method?

Does the data have any clustering
tendency?

Are the discovered clusters & partition valid?

» What are anomalies/outliers?
— The set of data points that are considerably different than the
remainder of the data
» Variants of Anomaly/Outlier Detection Problems

— Given a database D, find all the data points x € D with anomaly
scores greater than some threshold t

— Given a database D, find all the data points x € D having the
top-n largest anomaly scores f(x)

— Given a database D, containing mostly normal (but unlabeled)
data points, and a test point x, compute the anomaly score of x
with respect to D

» Applications:

— Credit card fraud detection, telecommunication fraud detection,
network intrusion detection, fault detection




Ozone Depletion History

1 In 1985 three researchers (Farman, Antarctic Ozone Hole
Gardinar and Shanklin) were Average Area
puzzled by data gathered by the -
British Antarctic Survey showing that e A
ozone levels for Antarctica had .
dropped 10% below normal levels -0

Antarctica —

1 Why did the Nimbus 7 satellite, - 10
which had instruments aboard for
recording ozone levels, not record
similarly low ozone concentrations?

j=)
(=]

Million Square Kilometers

0
1979 90 2001

Hole defined as area = 220 Dobson Units

1 The ozone concentrations recorded Source: NASA Goddard Space Flight Center

by the satellite were so low they
were being treated as outliers by a
computer program and discarded!

Sources:
http://exploringdata.cqu.edu.au/ozone.html
http://www.epa.gov/ozone/science/hole/size.html

« Challenges
— How many outliers are there in the data?

— Method is unsupervised

» Validation can be quite challenging (just like for
clustering)

— Finding needle in a haystack

» Working assumption:

— There are considerably more “normal”
observations than “abnormal” observations
(outliers/anomalies) in the data




1 General Steps
— Build a profile of the “normal” behavior
u Profile can be patterns or summary statistics for the overall population

— Use the “normal” profile to detect anomalies
u Anomalies are observations whose characteristics

differ significantly from the normal profile
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1 Types of anomaly detection

schemes
— Graphical & Statistical-based

— Distance-based
— Model-based

1 Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)

1 Limitations
— Time consuming

— Subjective
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1 Assume a parametric model describing the
distribution of the data (e.g., normal distribution)

1 Apply a statistical test that depends on
— Data distribution
— Parameter of distribution (e.g., mean, variance)
— Number of expected outliers (confidence limit)

Probability

Data Values

» Most of the tests are for a single attribute

* In many cases, data distribution may not
be known

» For high dimensional data, it may be
difficult to estimate the true distribution




» Data is represented as a vector of
features

« Two major approaches
— Nearest-neighbor based
— Clustering based

* Approach:

— Compute the distance between every pair of
data points

— There are various ways to define outliers:

* Data Eoints for which there are fewer than p
neighboring points within a distance D

* The top n data points whose distance to the kth
nearest neighbor is greatest

» The top n data points whose average distance to the k
nearest neighbors is greatest




1 Basic idea:

— Cluster the data into
groups of different density

— Choose points in small
cluster as candidate
outliers

— Compute the distance
between candidate points
and non-candidate
clusters.

u If candidate points are far

from all other non-candidate
points, they are outliers




