

- · Given:
 - Data Set D (training set)
 - Similarity/distance metric/information
- Find:
 - Partitioning of data
 - Groups of similar/close items

Similarity?

- Groups of similar customers
 - Similar demographics
 - Similar buying behavior
 - Similar health
- Similar products
 - Similar cost
 - Similar function
 - Similar store

- ...

· Similarity usually is domain/problem specific

Clustering: Informal Problem Definition

Input:

• A data set of *N* records each given as a *d*-dimensional data feature vector.

Output:

- Determine a natural, useful "partitioning" of the data set into a number of (k) clusters and noise such that we have:
 - High similarity of records within each cluster (intracluster similarity)
 - Low similarity of records between clusters (intercluster similarity)

Clustering: practical issues

- · What is a cluster?
- Which features and normalization scheme?
- How to define pair-wise similarity?
- How many clusters?
- Which clustering method?
- Does the data have any clustering tendency?
- · Are the discovered clusters & partition valid?

