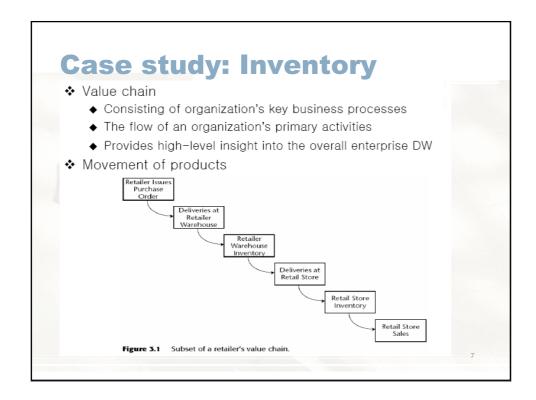

Learning Objectives


- Revision of Retails Star Schema
- Inventory Models
- Semi-additive facts
- Data Warehouse Bus Architecture
- Conformed dimensions

Inventory

- Inventory Periodic Snapshot
- Inventory Transactions

Design Decisions

- Choosing the process.
 - Selecting the subjects from the information packages for the first set of logical structures to be designed.
- Choosing the grain.
 - Determining the level of detail for the data structures.
- · Identifying and conforming the dimensions.
 - Choosing the business dimensions (such as product, market, time, etc.) to be included in the first set of structures .
- Choosing the facts.
 - Selecting the metrics or units of measurements (such as product sale units, dollar sales, dollar revenue, etc.) included in set of structures.
- Choosing the duration of the database.
 - Determining how far back in time you should go for historical data.

Inventory Periodic Snapshot

- ❖ Optimized inventory levels
 - ♦ Minimize out-of-stocks
 - ◆ Reduces overall inventory carrying costs
- Dimensional model
 - ◆ Dimensions
 - Date, product, store
- Simple dimensional design

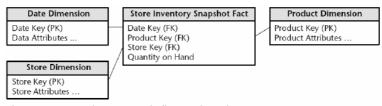


Figure 3.2 Store inventory periodic snapshot schema.

Inventory Periodic Snapshot

- Additional attributes
 - ◆ Product dimension
 - Minimum reorder quantity
 - Descriptors of each product stock keeping unit (SKU)
 - Store dimension
 - Selling square-footage
 - Frozen and refrigerated storage square footages

11

Inventory Periodic Snapshot

- ❖ Semiadditive Facts
 - Numeric fact that can be added along some dimensions but not others
 - ◆ Example
 - Inventory levels
 - · Additive across products or stores
 - But cannot be additive across date
 - ◆ Complexity of inventory calculation
 - Cannot use the SQL AVG function
 - No standard functionality that would compute the average over just the date dimension
 - Solutions
 - With an embedded SQL
 - · By querying the date dimension separately and storing the resulting value

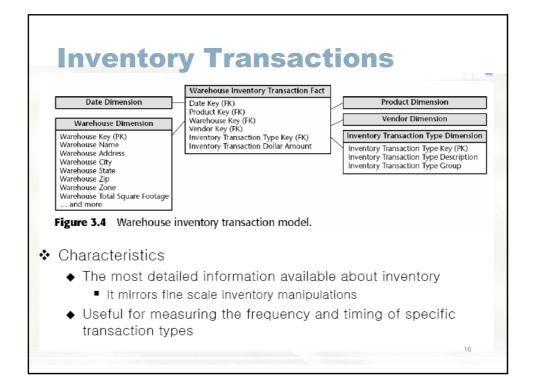
Inventory Periodic Snapshot

	Mon	Tue	Wed	Thu	Fri
Prod A	1	1	2	2	1
Prod B	2	1	2	2	1
SumDate	3	2	4	4	2
TotalSum					15

AVG = TotalSum / 10 =
$$15 / 10 = 1.5$$

AVG DATE = TotalSum / 5 = $15 / 5 = 3$

13


Inventory Periodic Snapshot

- Dense snapshot tables
 - ◆ Inventory levels are measured frequently
 - To avoid out-of-stock situation
 - Example
 - 60,000 products * 100 store * 14 row width = 84MB
 - A year's worth of daily snapshots >= 30GB
 - ◆ To reduce the snapshot frequencies
 - 1,095 snapshots during a 3-year period
 208 snapshots(60 daily + 148 weekly snapshots in two separate fact tables)

1/

Inventory Transactions

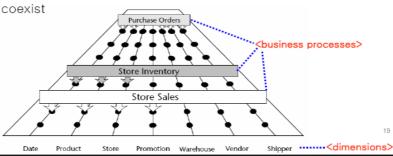
- Inventory transactions at the warehouse
 - ◆ Receive product
 - ◆ Place product into inspection hold
 - Release product from inspection hold
 - Return product to vendor due to inspection failure
 - ◆ Place product in bin
 - Authorize product for sale
 - ◆ Pick product from bin
 - Package product for shipment
 - Ship product to customer
 - ◆ Receive product from customer
 - Return product to inventory from customer return
 - ◆ Remove product from inventory

Inventory Transactions

- Question example
 - ♦ How many times have we placed a product into an inventory bin on the same day we picked the product from the same bin at a different time?
 - ◆ How many separate shipments did we receive from a given vendor, and when did we get them?
 - On which products have we had more than one round of inspection failures that caused return of the product to the vendor?
- Disadvantage
 - ◆ It is impractical to use this table as the sole basis
 - It is too cumbersome and impractical
 - For broad data warehouse questions that span dates or products

17

Value Chain Integration


- Needs
 - ◆ To better evaluate performance
 - ◆ To better leverage scarce resource and gain efficiencies
- Common dimensions
 - ullet At each process, the models share several common dimensions
 - Date, product, and store
 - ◆ It is critical to designing data marts that can be integrated
- Drill across
 - The linkage that use multipass SQL to query each data mart separately, and outer join the query results based on a common dimension attribute

...

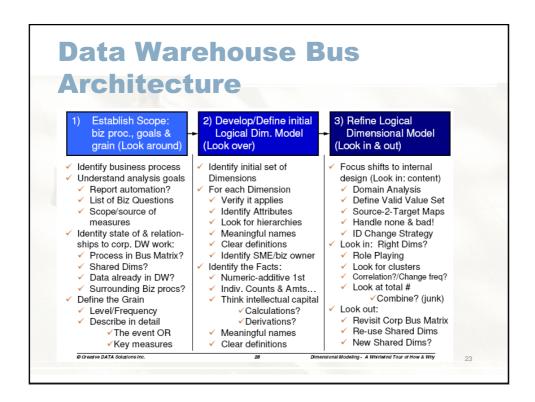
Data Warehouse Bus Architecture

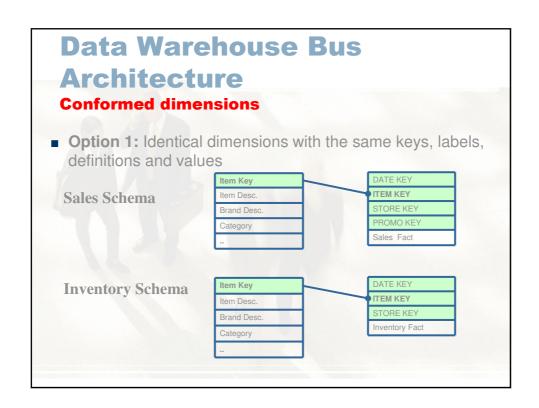
- For long-term data warehouse success
 - Need to use architected, incremental approach to build the enterprise's warehouse
 - ◆ Bus
 - Common structure to which everything connects and from which everything derives power
- ❖ A standard data warehouse bus architecture
 - The separate data marts can be plugged together and usefully

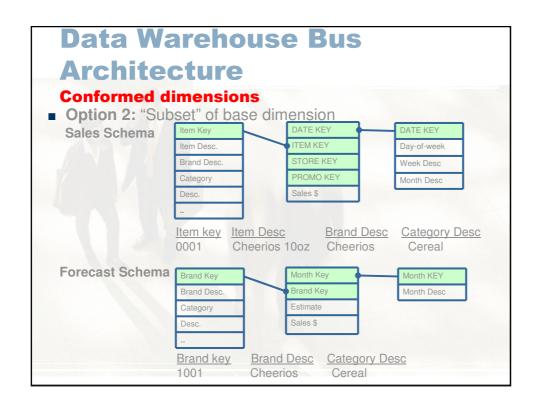
Data Warehouse Bus Architecture

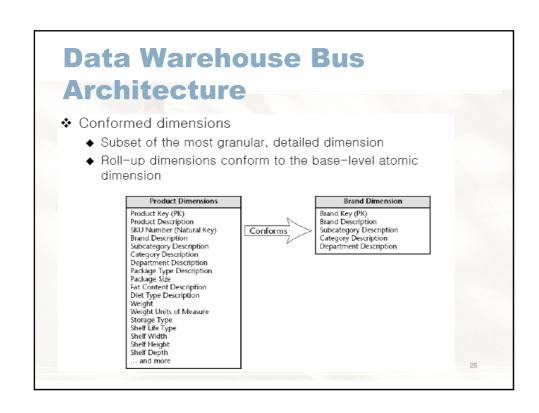
- Characteristics
 - A rational approach to decomposing the enterprise data warehouse planning task
 - Design a master suite of standardized dimensions and facts
 - Implementation of separate data marts
 - Separate data marts come on line, they fit together
 - Is independent of technology and the database platform

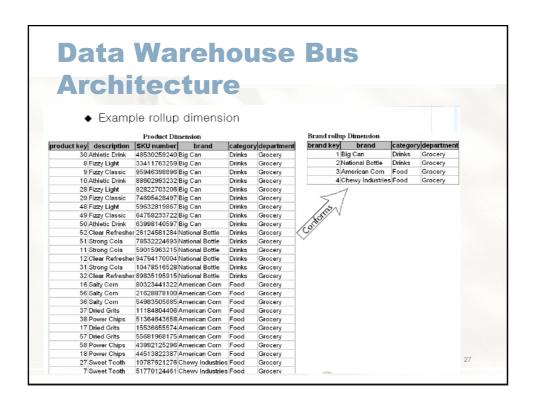
Data Warehouse Bus Architecture

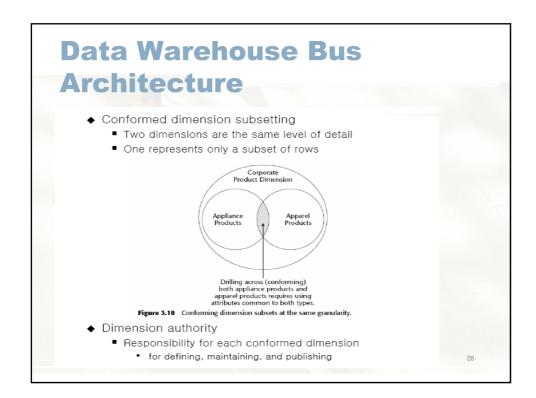

- ❖ Data Warehouse Bus Matrix
 - The tool we use to create, document, and communicate the bus architecture


	COMMON DIMEN					ENSI	SIONS		
BUSINESS PROCESSES	$D_{at_{lo}}$	Produ	Store	Promo	Wareh	Vena	Cont	Ship	Moer
Retail Sales	X	X	Х	X					[
Retail Inventory	Х	Х	Х						1
Retail Deliveries	Х	Х	Х]
Warehouse Inventory	Х	Х			Х	Х			
Warehouse Deliveries	Х	Х			Х	Х			
Purchase Orders	Х	Х			X	Х	Х	Х	


01


Data Warehouse Bus Architecture


- ◆ First-level data marts
 - Derived from a single primary source system
 - The rows of the matrix
- Consolidated data marts
 - Derived from more complex multisource marts
 - More difficult to implement
 - ETL effort grows alarmingly with each additional major source
- ♦ Advantage
 - Very powerful device
 - Planning
 - Defining the overall data architecture for the warehouse
 - Prioritize which dimensions should be tackled first
 - · Communication
 - Visually conveys the entire plan at once



Data Warehouse Bus Architecture

- Conformed Facts
 - ◆ If facts exist in more than one place
 - then they must have the same name, units, and definition
 - ◆ If two facts are different
 - then give them different names

29

Summary

- Dimensional models for the three complementary view of inventory
 - ◆ Inventory Periodic Snapshot
 - ◆ Inventory Transactions
 - ◆ Inventory Accumulating Snapshot
- introduced key concepts
 - ◆ The data warehouse bus architecture and matrix
 - ◆ Conformed dimensions, the bus and the matrix