# Data Warehouse: The Choice of Inmon versus Kimball

lan Abramson IAS Inc.

## Agenda

### The 2 Approaches

- □ Bill Inmon Enterprise Warehouse (CIF)
- Ralph Kimball Dimensional Design

### Similarities

Differences

### Choices

# **DW** History

**1**990



- Inmon publishes "Building the Data Warehouse"
- 1996
  - Kimball publishes "The Data Warehouse Toolkit"
- **2002** 
  - Inmon updates book and defines architecture for collection of disparate sources into detailed, time variant data store.
    - The top down approach
  - Kimball updates book and defines multiple databases called data marts that are organized by business processes, but use enterprise standard data bus
    - The bottom-up approach



# The Data Warehouse Is:

- Bill Inmon, an early and influential practitioner, has formally defined a data warehouse in the following terms;
  - □ Subject-oriented
    - The data in the database is organized so that all the data elements relating to the same real-world event or object are linked together;
  - Time-variant
    - The changes to the data in the database are tracked and recorded so that reports can be produced showing changes over time;
  - Non-volatile
    - Data in the database is never over-written or deleted once committed, the data is static, read-only, but retained for future reporting; and
  - □ Integrated
    - The database contains data from most or all of an organization's operational applications, and that this data is made consistent
- Ralph Kimball, a leading proponent of the dimensional approach to building data warehouses, provides a succinct definition for a data warehouse:
  - □ "A copy of transaction data specifically structured for query and analysis."

Ref: wikipedia



# What are they saying?

- These two influential data warehousing experts represent the current prevailing views on data warehousing.
- Kimball, in 1997, stated that
  - "...the data warehouse is nothing more than the union of all the data marts",
  - Kimball indicates a bottom-up data warehousing methodology in which individual data marts providing thin views into the organizational data could be created and later combined into a larger all-encompassing data warehouse.
- Inmon responded in 1998 by saying,
  - "You can catch all the minnows in the ocean and stack them together and they still do not make a whale,"
  - This indicates the opposing view that the data warehouse should be designed from the top-down to include all corporate data. In this methodology, data marts are created only after the complete data warehouse has been created.

### What is a Data Warehouse:

- The single organizational repository of enterprise wide data across many or all lines of business and subject areas.
  - Contains massive and integrated data
  - Represents the complete organizational view of information needed to run and understand the business



### What is a Data Mart?

- The specific, subject oriented, or departmental view of information from the organization. Generally these are built to satisfy user requirements for information
  - Multiple data marts for one organization
  - □ A data mart is built using dimensional modeling
  - More focused
  - □ Generally smaller, selected facts and dimensions
  - □ Integrated

# Data Warehouses vs. Data Marts

#### Data Warehouses:

□Scope

- Application independent
- Centralized or Enterprise
- Planned

□Data

- Historical, detailed, summary
- Some denormalization
- □Subjects

Multiple subjects

□Source

Many internal and external sources

□Other

Flexible

- Data oriented
- Long life
- Single complex structure

#### Data Marts:

□Scope

- Specific application
- Decentralized by group
- Organic but may be planned
- □Data
  - Some history, detailed, summary
  - High denormalization
- Subjects
  - Single central subject area
- □Source
  - •Few internal and external sources

#### □Other

- Restrictive
- Project oriented
- Short life
- Multiple simple structures that may form a complex structure

## The Inmon Model



- Consists of all databases and information systems in an organization.....
  - □ The CIF (Corporate Information Factory)
- Defines overall database environment as:
  - Operational
  - Atomic data warehouse
  - Departmental
  - Individual

The Warehouse is part of the bigger whole (CIF)



### The Data Warehouse

Operational (Day-to-Day Operations) Customer Credit Rating \* Transactions \* **Atomic Data Warehouse Customer Credit History** (Data manipulated & moved) \* Transactions \* Departmental Customer by Postal Code (Focused) \* Source is ADW \* Individual **Delinguent Customers** (Ad hoc) \* Source is ADW \*

# Inmon Modeling

#### Three levels of data modeling

- ERD (Entity Relationship Diagram)
  - Refines entities, attributes and relationships
- □ Mid-Level model (\*DIS\*)
  - Data Item Sets
  - Data sets by department
  - Four constructs:
    - Primary data groupings
    - □ Secondary data groupings
    - Connectors
    - □ "Type of" data
- Physical data model
  - Optimize for performance (de-normalize)

# Relationship between Levels One and Two of Inmon's Data model (Inmon,2002)



### The Warehouse Architecture



### The Inmon Warehouse



## The Kimball Approach

- The Dimensional Data Model
  - □ Starts with tables
    - Facts
    - Dimensions
  - Facts contain metrics
  - Dimensions contain attributes
    - May contain repeating groups
  - Does not adhere to normalization theory
  - □ User accessible



### IAS Inc

#### **IAS Inc** The Kimball Data Lifecycle Data Sources Staging The Data Warehouse Data Access Source DB 1 Workstation Group End Users Landing Source Staging DB 2 Area File or External Data Cubes

### The Dimensional Model



### The Kimball Data Bus

- Data is moved to staging area
  Data is scrubbed and made consistent
- From Staging Data Marts are created
- Data Marts are based on a single process
- Sum of the data marts can constitute an Enterprise Data Warehouse
- Conformed dimensions are the key to success

# The Kimball Design Approach

- Select business process
- Declare the grain
- Choose dimensions
- Identify facts (metrics)



### Kimball's Philosophy

- Make data easily accessible
- Present the organization's information consistently
- Be adaptive and resilient to change
- Protect information
- Service as the foundation for improved decision making.

## Getting Started with Choices

### Kimball

- □ Will start with data marts
- Focused on quick delivery to users

### Inmon

- □ Will focus on the enterprise
- Organizational focus

### Kimball vs. Inmon

#### Inmon:

- □ Subject-Oriented
- □ Integrated
- Non-Volatile
- □ Time-Variant
- □ Top-Down
- □ Integration Achieved via an Assumed Enterprise Data Model
- Characterizes Data marts as Aggregates
- Kimball
  - Business-Process-Oriented
  - Bottom-Up and Evolutionary
  - □ Stresses Dimensional Model, Not E-R
  - Integration Achieved via Conformed Dimensions
  - Star Schemas Enforce Query Semantics



### The Comparison (Methodology and Architecture)

|                         | Inmon                                        | Kimball                                                                                  |
|-------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|
| Overall approach        | Top-down                                     | Bottom-up                                                                                |
| Architectural structure | Enterprise-wide DW<br>feeds departmental DBs | Data marts model a<br>business process;<br>enterprise is achieved<br>with conformed dims |
| Complexity of method    | Quite complex                                | Fairly simple                                                                            |



### The Comparison (Data Modeling)

|                        | Inmon                      | Kimball                                                                  |
|------------------------|----------------------------|--------------------------------------------------------------------------|
| Data orientation       | Subject or data driven     | Process oriented                                                         |
| Tools                  | Traditional (ERDs and DIS) | Dimensional modeling;<br>departs from traditional<br>relational modeling |
| End user accessibility | Low                        | High                                                                     |



# The Comparison (Dimensions)

|           | Inmon                 | Kimball         |
|-----------|-----------------------|-----------------|
| Timeframe | Continuous & Discrete | Slowly Changing |
| Methods   | Timestamps            | Dimension keys  |
|           |                       |                 |

### Inmon Continuous & Discrete Dimension Management

- Define data management via dates in your data
  - Continuous time
    - When is a record active
    - Start and end dates
  - □ Discrete time
    - A point in time
    - Snapshot

### Kimball Slowly Changing Dimension Management

- Define data management via versioning
  - 🗆 Type I
    - Change record as required
    - No History
  - Type II
    - Manage all changes
    - History is recorded
  - Type III
    - Some history is parallel
    - Limit to defined history

### The Comparison (Philosophy)

|                              | Inmon                                                            | Kimball                                                                                                                        |
|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Primary Audience             | IT                                                               | End Users                                                                                                                      |
| Place in the<br>Organization | Integral part of the<br>Corporate Information<br>Factory (CIF)   | Transformer and retainer of operational data                                                                                   |
| Objective                    | Deliver a sound technical<br>solution based on proven<br>methods | Deliver a solution that<br>makes it easy for end<br>users to directly query<br>data and still have<br>reasonable response rate |

### How to Choose?

| Characteristic                                                      | Favors Kimball                                                      | Favors Inmon                                                                                          |
|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Nature of the<br>organization's<br>decision support<br>requirements | Tactical                                                            | Strategic                                                                                             |
| Data integration requirements                                       | Individual business<br>areas                                        | Enterprise-wide integration                                                                           |
| Structure of data                                                   | Business metrics,<br>performance<br>measures, and<br>scorecards     | Non-metric data and for data that<br>will be applied to meet multiple<br>and varied information needs |
| Scalability                                                         | Need to adapt to<br>highly volatile needs<br>within a limited scope | Growing scope and changing requirements are critical                                                  |

### How to Choose?

| Characteristic                   | Favors Kimball                                                                        | Favors Inmon                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Persistency of data              | Source systems are relatively stable                                                  | High rate of change from source systems                                      |
| Staffing and skills requirements | Small teams of generalists                                                            | Larger team(s) of specialists                                                |
| Time to delivery                 | Need for the first<br>data warehouse<br>application is urgent                         | Organization's requirements allow for longer start-up time                   |
| Cost to deploy                   | Lower start-up costs,<br>with each<br>subsequent project<br>costing about the<br>same | Higher start-up costs, with lower<br>subsequent project development<br>costs |

### References

- Data Warehousing Battle of the Giants: Comparing the Basics of the Kimball and Inmon Models: by Mary Breslin <u>http://www.bi-</u> <u>bestpractices.com/view-articles/4768</u>
- Inmon CIF glossary: <u>http://www.inmoncif.com/library/glossary/#D</u>
- The Data Warehouse Toolkit, Kimball, 2002
- Inmon, W.H. Building the Data Warehouse (Third Edition), New York: John Wiley & Sons, (2002).
- Kimball, R. and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition), New York: John Wiley & Sons, 2000.



### Thanks and Questions?

Ian Abramson
 IAS Inc
 416-407-2448
 ian@abramson.ca

