Data Warehouse: The Choice of Inmon versus Kimball

Ian Abramson
IAS Inc.
Agenda

- The 2 Approaches
 - Bill Inmon – Enterprise Warehouse (CIF)
 - Ralph Kimball – Dimensional Design
- Similarities
- Differences
- Choices
DW History

- **1990**
 - Inmon publishes “Building the Data Warehouse”

- **1996**
 - Kimball publishes “The Data Warehouse Toolkit”

- **2002**
 - Inmon updates book and defines architecture for collection of disparate sources into detailed, time variant data store.
 - The top down approach
 - Kimball updates book and defines multiple databases called data marts that are organized by business processes, but use enterprise standard data bus.
 - The bottom-up approach
The Data Warehouse Is:

- **Bill Inmon**, an early and influential practitioner, has formally defined a data warehouse in the following terms:
 - Subject-oriented
 - The data in the database is organized so that all the data elements relating to the same real-world event or object are linked together;
 - Time-variant
 - The changes to the data in the database are tracked and recorded so that reports can be produced showing changes over time;
 - Non-volatile
 - Data in the database is never over-written or deleted - once committed, the data is static, read-only, but retained for future reporting; and
 - Integrated
 - The database contains data from most or all of an organization’s operational applications, and that this data is made consistent

- **Ralph Kimball**, a leading proponent of the dimensional approach to building data warehouses, provides a succinct definition for a data warehouse:
 - “A copy of transaction data specifically structured for query and analysis.”

Ref: wikipedia
What are they saying?

- These two influential data warehousing experts represent the current prevailing views on data warehousing.

- Kimball, in 1997, stated that
 - "...the data warehouse is nothing more than the union of all the data marts",
 - Kimball indicates a bottom-up data warehousing methodology in which individual data marts providing thin views into the organizational data could be created and later combined into a larger all-encompassing data warehouse.

- Inmon responded in 1998 by saying,
 - "You can catch all the minnows in the ocean and stack them together and they still do not make a whale,"
 - This indicates the opposing view that the data warehouse should be designed from the top-down to include all corporate data. In this methodology, data marts are created only after the complete data warehouse has been created.
What is a Data Warehouse:

- The single organizational repository of enterprise wide data across many or all lines of business and subject areas.
 - Contains massive and integrated data
 - Represents the complete organizational view of information needed to run and understand the business
What is a Data Mart?

- The specific, subject oriented, or departmental view of information from the organization. Generally these are built to satisfy user requirements for information
 - Multiple data marts for one organization
 - A data mart is built using dimensional modeling
 - More focused
 - Generally smaller, selected facts and dimensions
 - Integrated
Data Warehouses vs. Data Marts

- **Data Warehouses:**
 - **Scope**
 - Application independent
 - Centralized or Enterprise
 - Planned
 - **Data**
 - Historical, detailed, summary
 - Some denormalization
 - **Subjects**
 - Multiple subjects
 - **Source**
 - Many internal and external sources
 - **Other**
 - Flexible
 - Data oriented
 - Long life
 - Single complex structure

- **Data Marts:**
 - **Scope**
 - Specific application
 - Decentralized by group
 - Organic but may be planned
 - **Data**
 - Some history, detailed, summary
 - High denormalization
 - **Subjects**
 - Single central subject area
 - **Source**
 - Few internal and external sources
 - **Other**
 - Restrictive
 - Project oriented
 - Short life
 - Multiple simple structures that may form a complex structure
The Inmon Model

- Consists of all databases and information systems in an organization.....
 - The CIF (Corporate Information Factory)
- Defines overall database environment as:
 - Operational
 - Atomic data warehouse
 - Departmental
 - Individual
- The Warehouse is part of the bigger whole (CIF)
The Data Warehouse

<table>
<thead>
<tr>
<th>Operational (Day-to-Day Operations) * Transactions *</th>
<th>Customer Credit Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Data Warehouse (Data manipulated & moved) * Transactions *</td>
<td>Customer Credit History</td>
</tr>
<tr>
<td>Departmental (Focused) * Source is ADW *</td>
<td>Customer by Postal Code</td>
</tr>
<tr>
<td>Individual (Ad hoc) * Source is ADW *</td>
<td>Delinquent Customers</td>
</tr>
</tbody>
</table>
Inmon Modeling

- Three levels of data modeling
 - ERD (Entity Relationship Diagram)
 - Refines entities, attributes and relationships
 - Mid-Level model (*DIS*)
 - Data Item Sets
 - Data sets by department
 - Four constructs:
 - Primary data groupings
 - Secondary data groupings
 - Connectors
 - “Type of” data
 - Physical data model
 - Optimize for performance (de-normalize)
Relationship between Levels One and Two of Inmon's Data model (Inmon, 2002)
The Warehouse Architecture
The Inmon Warehouse

Data Sources

Staging

The Data Warehouse

Data Access

Source DB 1

Source DB 2

Landing Staging Area

Data Marts

Cubes

File or External Data
The Kimball Approach

The Dimensional Data Model

- Starts with tables
 - Facts
 - Dimensions
- Facts contain metrics
- Dimensions contain attributes
 - May contain repeating groups
- Does not adhere to normalization theory
- User accessible
The Kimball Data Lifecycle

Data Sources
Source DB 1
Source DB 2

File or External Data

Staging
Landing Staging Area

The Data Warehouse

Data Access
Workstation Group
End Users
Cubes

End Users
The Dimensional Model
The Kimball Data Bus

- Data is moved to staging area
 - Data is scrubbed and made consistent
- From Staging Data Marts are created
- Data Marts are based on a single process
- Sum of the data marts can constitute an Enterprise Data Warehouse
- Conformed dimensions are the key to success
The Kimball Design Approach

- Select business process
- Declare the grain
- Choose dimensions
- Identify facts (metrics)
Kimball’s Philosophy

- Make data easily accessible
- Present the organization’s information consistently
- Be adaptive and resilient to change
- Protect information
- Service as the foundation for improved decision making.
Getting Started with Choices

- Kimball
 - Will start with data marts
 - Focused on quick delivery to users

- Inmon
 - Will focus on the enterprise
 - Organizational focus
Kimball vs. Inmon

- Inmon:
 - Subject-Oriented
 - Integrated
 - Non-Volatile
 - Time-Variant
 - Top-Down
 - Integration Achieved via an Assumed Enterprise Data Model
 - Characterizes Data marts as Aggregates

- Kimball
 - Business-Process-Oriented
 - Bottom-Up and Evolutionary
 - Stresses Dimensional Model, Not E-R
 - Integration Achieved via Conformed Dimensions
 - Star Schemas Enforce Query Semantics
The Comparison (Methodology and Architecture)

<table>
<thead>
<tr>
<th></th>
<th>Inmon</th>
<th>Kimball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall approach</td>
<td>Top-down</td>
<td>Bottom-up</td>
</tr>
<tr>
<td>Architectural structure</td>
<td>Enterprise-wide DW</td>
<td>Data marts model a business process; enterprise is achieved with conformed dims</td>
</tr>
<tr>
<td></td>
<td>feeds departmental DBs</td>
<td></td>
</tr>
<tr>
<td>Complexity of method</td>
<td>Quite complex</td>
<td>Fairly simple</td>
</tr>
</tbody>
</table>

The Comparison (Data Modeling)

<table>
<thead>
<tr>
<th></th>
<th>Inmon</th>
<th>Kimball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data orientation</td>
<td>Subject or data driven</td>
<td>Process oriented</td>
</tr>
<tr>
<td>Tools</td>
<td>Traditional (ERDs and DIS)</td>
<td>Dimensional modeling; departs from traditional relational modeling</td>
</tr>
<tr>
<td>End user accessibility</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

The Comparison (Dimensions)

<table>
<thead>
<tr>
<th></th>
<th>Inmon</th>
<th>Kimball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeframe</td>
<td>Continuous & Discrete</td>
<td>Slowly Changing</td>
</tr>
<tr>
<td>Methods</td>
<td>Timestamps</td>
<td>Dimension keys</td>
</tr>
</tbody>
</table>

Inmon Continuous & Discrete Dimension Management

- Define data management via dates in your data
 - Continuous time
 - When is a record active
 - Start and end dates
 - Discrete time
 - A point in time
 - Snapshot
Kimball Slowly Changing Dimension Management

- Define data management via versioning
 - Type I
 - Change record as required
 - No History
 - Type II
 - Manage all changes
 - History is recorded
 - Type III
 - Some history is parallel
 - Limit to defined history
The Comparison (Philosophy)

<table>
<thead>
<tr>
<th></th>
<th>Inmon</th>
<th>Kimball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Audience</td>
<td>IT</td>
<td>End Users</td>
</tr>
<tr>
<td>Place in the Organization</td>
<td>Integral part of the Corporate Information Factory (CIF)</td>
<td>Transformer and retainer of operational data</td>
</tr>
<tr>
<td>Objective</td>
<td>Deliver a sound technical solution based on proven methods</td>
<td>Deliver a solution that makes it easy for end users to directly query data and still have reasonable response rate</td>
</tr>
</tbody>
</table>

How to Choose?

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Favors Kimball</th>
<th>Favors Inmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of the organization's decision support</td>
<td>Tactical</td>
<td>Strategic</td>
</tr>
<tr>
<td>requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data integration requirements</td>
<td>Individual business areas</td>
<td>Enterprise-wide integration</td>
</tr>
<tr>
<td>Structure of data</td>
<td>Business metrics, performance measures, and scorecards</td>
<td>Non-metric data and for data that will be applied to meet multiple and varied information needs</td>
</tr>
<tr>
<td>Scalability</td>
<td>Need to adapt to highly volatile needs within a limited scope</td>
<td>Growing scope and changing requirements are critical</td>
</tr>
</tbody>
</table>
How to Choose?

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Favors Kimball</th>
<th>Favors Inmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistency of data</td>
<td>Source systems are relatively stable</td>
<td>High rate of change from source systems</td>
</tr>
<tr>
<td>Staffing and skills requirements</td>
<td>Small teams of generalists</td>
<td>Larger team(s) of specialists</td>
</tr>
<tr>
<td>Time to delivery</td>
<td>Need for the first data warehouse application is urgent</td>
<td>Organization's requirements allow for longer start-up time</td>
</tr>
<tr>
<td>Cost to deploy</td>
<td>Lower start-up costs, with each subsequent project costing about the same</td>
<td>Higher start-up costs, with lower subsequent project development costs</td>
</tr>
</tbody>
</table>
References

- The Data Warehouse Toolkit, Kimball, 2002
Thanks and Questions?

- Ian Abramson
 IAS Inc
 416-407-2448
 ian@abramson.ca