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e GGjven:

— Data Set D (training set) 1

— Similarity/distance ”'B‘
metric/information .

e Find:
— Partitioning of data of

— Groups of similar/close "8z @z i @6 a8
items



What 1s a natural grouping among these objects?

School Emplovyees

Simpson's Famualy

Males

Females



* Groups of similar customers
— Similar demographics
— Similar buying behavior
— Similar health
« Similar products
— Similar cost
— Similar function
— Similar store

» Similarity usually is domain/problem specific



o d~dim vector space representation and distance
metric

ry: 57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
ry: /8,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

ry: 18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Distance (ry,r,) = ?7?

o Pairwise distances between points (no ¢~dim space)
e Similarity/dissimilarity matrix

d --12345678910
(upper or lower diagonal) 1 -ddddddddd
2 -dddddddd
3 -ddddddd
. 4 -dddddd
 Distance: 0 =near, oo =far 5 -ddddd
T, 6 -dddd
e Similarity: 0 = far, 00 = near ! - ddd
9 -d



* A metric space is a set S with a global
distance function d. For every two points
X,y in S, the distance d(x,y) is a
nonnegative real number.

* A metric space must also satisfy
—d(x,y)=0 iffx=y
—d(x,y) = d(y,x) (symmetry)
—d(x,y) + d(y,z) >= d(x,z) (triangle inequality)



» Consider two records X=(X4,...,Xq), Y=(Y1;---,Yq):

d(x,Y) =81, ~y, 1P +1%, =y, P+t %, ~, |

Special cases:
* p=1: Manhattan distance

AOCY) =X =Y+ =Yl X =Yy |

« p=2: Euclidean distance

d (X, Y) =4 (x, = Y,)2 (X, = Y,)? +..t (X, Y, )’



a b a+b
1 C d c+d
Sum |a+c|b+d|a+b+c+d

» Simple matching coefficient: (] X, = b+c
(symmetric) ( y) a+b+c+d

o Jaccard coefficient: G b+cC
(asymmetric) d (X’ y) i b e L d



* Weigh each variable differently

« Can take “importance” of variable into

account (although usually hard to quantify
in practice)



Input:

« A data set of N records each given as a d-
dimensional data feature vector.

Output:

* Determine a natural, useful “partitioning” of the
data set into a number of (k) clusters and noise
such that we have:

— High similarity of records within each cluster (intra-
cluster similarity)

— Low similarity of records between clusters (inter-
cluster similarity)




» Hard Clustering:
— Each object is in one and only one cluster

« Soft Clustering:

— Each object has a probability of being in
each cluster




 Partitioning-based clustering
— K-means clustering
— K-medoids clustering
— EM (expectation maximization) clustering

* Hierarchical clustering

— Divisive clustering (top down)

— Agglomerative clustering (bottom up)
* Density-Based Methods

— Regions of dense points separated by sparser
regions of relatively low density



. Decide on a value for k.

. Initialize the k cluster centers (randomly, if
necessary).

. Decide the class memberships of the N objects
by assigning them to the nearest cluster center.

. Re-estimate the k cluster centers, by assuming
the memberships found above are correct.

. If none of the N objects changed membership In
the last iteration, exit. Otherwise goto 3.
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i A) Two natural clusters

| B 1 A-means clusters



Despite its weaknesses, k-means is still the most
popular algorithm due to its simplicity and
efficiency

Other clustering algorithms have also their own
weaknesses

— No clear evidence that any other clustering algorithm
performs better than k-means in general

Some clustering algorithms may be more suitable

for some specific types of dataset, or for some

specific application problems, than the others

— Comparing the performance of different clustering
algorithms is a difficult task

No one knows the correct clusters!



» Hierarchical agglomerative (bottom-up)
clustering builds the dendrogram from the

bottom level

* The algorithm
— At the beginning, each instance forms a cluster
(also called a node)
— Merge the most similar (nearest) pair of clusters

* i.e., The pair of clusters that have the least distance
among all the possible pairs

— Continue the merging process

— Stop when all the instances are merged into a
single cluster (i.e., the root cluster)
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2 highly separated subtrees => 2 clusters
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No need to specify the number of clusters in
advance.

Hierarchal nature maps nicely onto human
intuition for some domains

They do not scale well: time complexity of at
least O(n?), where n is the number of total
objects.

Like any heuristic search algorithms, local
optima are a problem.

Interpretation of results is (very) subjective



Retail — each customer purchases different set of
products, different quantities, different times

MBA uses this information to:

— ldentify who customers are (not by name)

— Understand why they make certain purchases

— Gain insight about its merchandise (products):
« Fast and slow movers

* Products which are purchased together
* Products which might benefit from promotion
— Take action:
» Store layouts
* Which products to put on specials, promote, coupons...

Combining all of this with a customer loyalty card it
becomes even more valuable




http://www.daedalus.es/en/data-mining/nappies-and-beer/
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Customer

Iltems Purchased

1

OJ, soda

«—— POS Transactions

2 Milk, OJ, window cleaner

3 OJ, detergent

4 OJ, detergent, soda Co-occurrence of

5 Window cleaner, soda / Products

oJ Window Milk Soda Detergent
cledlicel

(ON 4 1 1 2 2
Window cleaner 1 2 1 1 0
Milk 1 1 1 0 0
Soda 2 1 0 3 1
Detergent 2 0 0 1 2




oJ Window Milk Soda Detergent
cleaner

oJ 4 1 1 2 2
Window cleaner 1 2 1 1 0
Milk 1 1 1 0 0
Soda 2 1 0 3 1
Detergent 2 0 0 1 2

Simple patterns:

1. OJ and soda are more likely purchased together than
other two items

2. Detergent is never purchased with milk or window cleaner
3. Milk is never purchased with soda or detergent

But, what about 3 (or more) items combinations?



e Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items Iin the transaction

Market-Basket transactions

TID

Iltems
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Ol | W N[ -

Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} — {Beer},
{Milk, Bread} — {Eggs,Coke},
{Beer, Bread} — {Milk},

Implication means co-occurrence,
not causality!



ltemset
— A collection of one or more items
¢ Example: {Milk, Bread, Diaper}
— k-itemset
¢ An itemset that contains k items
Support count (o)
— Frequency of occurrence of an itemset
— E.g. o({Milk, Bread,Diaper}) = 2
Support

— Fraction of transactions that contain an
itemset

— E.g. s({Milk, Bread, Diaper}) = 2/5
Frequent ltemset

— An itemset whose support is greater
than or equal to a minsup threshold

TID

Items
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

gl | W N

Bread, Milk, Diaper, Coke




e Association Rule

TID Items
— An implication expression of the form :
X =Y, where Xand Y are itemsets L Bread, M_”k
o 2 Bread, Diaper, Beer, Eggs
— EX : . .
{Milk, Diaper} — {Beer} 3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
_ ; 5 Bread, Milk, Diaper, Coke
e Rule Evaluation Metrics
— Support (s)
+ Fraction of transactions that contain Example: : _
both X and Y {Milk, Diaper} = Beer

— Confidence (c)

+ Measures how often items in Y 4 o (Milk, Diaper, Beer) : 2 s
appear in transactions that | T | 5 h
contain X

- a(MlIk,_Dlap_er,Beer) A Z 067
o (Milk, Diaper) 3




e Given a set of transactions T, the goal of
association rule mining is to find all rules having

— support =2 minsup threshold
— confidence = minconf threshold

e Brute-force approach:
— List all possible association rules
— Compute the support and confidence for each rule

— Prune rules that fail the minsup and minconf
thresholds

= Computationally prohibitive!



. Example of Rules:

TID  Items
1 Bread, Milk {Milk,Diaper} — {Beer} (s=0.4, c=0.67)
2 Bread, Diaper, Beer, Eggs ?E)/l.”k’Begr} —}> {Di{iﬁ?g ES=8.3, C=(1).g)7)
' iaper,Beer} — {Milk} (s=0.4, c=0.
j !:;Zfﬁﬁekr’;:re’f;:; {Beer} — {Milk,Diaper} (s=0.4, c=0.67)
S {Diaper} — {Milk,Beer} (s=0.4, c=0.5)
> |Bread Milk Diaper, Coke | {Milk} - {Diaper,Beer} (s=0.4, c=0.5)

Observations:

« All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

* Rules originating from the same itemset have identical support but
can have different confidence

* Thus, we may decouple the support and confidence requirements



e Two-step approach:

1. Frequent Itemset Generation
- Generate all itemsets whose support > minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

e Frequent itemset generation is still
computationally expensive



Given d items, there
are 29 possible

candidate itemsets



e Apriori principle:

— If an itemset is frequent, then all of its subsets must also
be frequent

e Apriori principle holds due to the following property
of the support measure:

vX,Y 1 (X cY) = s(X)>s(Y)

— Support of an itemset never exceeds the support of its
subsets

— This is known as the anti-monotone property of support
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e Method:

— Let k=1
— Generate frequent itemsets of length 1

— Repeat until no new frequent itemsets are identified

¢ Generate length (k+1) candidate itemsets from length k
frequent itemsets

+ Prune candidate itemsets containing subsets of length k that
are infrequent

¢ Count the support of each candidate by scanning the DB

+ Eliminate candidates that are infrequent, leaving only those
that are frequent



e Choice of minimum support threshold
— lowering support threshold results in more frequent itemsets

— this may increase number of candidates and max length of
frequent itemsets

e Dimensionality (number of items) of the data set
— more space is needed to store support count of each item

— if number of frequent items also increases, both computation and
|/O costs may also increase

e Size of database

— since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

e Average transaction width
— transaction width increases with denser data sets

— This may increase max length of frequent itemsets and traversals
of hash tree (number of subsets in a transaction increases with its
width)



e Many real data sets have skewed support

distribution

Support
distribution of a
retail data set

1500

1000 |

Support count

500

10 10 10° j03 10
Sorted items



e How to set the appropriate minsup threshold?

— If minsup is set too high, we could miss itemsets
iInvolving interesting rare items (e.g., expensive
products)

— If minsup is set too low, it is computationally
expensive and the number of itemsets is very large

e Using a single minimum support threshold may
not be effective



