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Supervised learningSupervised learning



Learning ObjectivesLearning Objectives

Al ith• Algorithms
– Decision trees
– Naïve Bayesian
– Artificial Neural Networks– Artificial Neural Networks

• Evaluation methods
– Precision
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Goals and RequirementsGoals and Requirements

G l• Goals:
– To produce an accurate classifier/regression 

function
– To understand the structure of the problemo u de sta d t e st uctu e o t e p ob e

• Requirements on the model:
Hi h– High accuracy

– Understandable by humans, interpretable
– Fast construction for very large training 

databases
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Example of a Decision TreeExample of a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

Splitting Attributes

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

Refund
Yes No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

MarStNO
MarriedSingle, Divorced

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

TaxInc

YESNO

NO
< 80K > 80K

9 No Married 75K No

10 No Single 90K Yes
10

YESNO

Training Data Model: Decision Tree
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Training Data Model:  Decision Tree



Another Example of 
Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

MarSt

R f dNO

Married
Single, 

Divorced

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

Refund

TaxInc

NO

NO

Yes No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 N M i d 60K N

TaxInc

YESNO

NO
< 80K > 80K

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

Th ld b th t th t9 No Married 75K No

10 No Single 90K Yes
10

There could be more than one tree that 
fits the same data!

5



Apply Model to Test DataApply Model to Test Data

Refund Marital 
Status 

Taxable 
Income Cheat

Test Data
Start from the root of tree.

Refund
Yes No

No Married 80K ? 
10 

 

MarStNO

Yes No

M i d

TaxInc NO

MarriedSingle, Divorced

YESNO

< 80K > 80K

6



General algorithmGeneral algorithm
Let Dt be the set of training records 
that reach a node t

Tid Refund Marital 
Status 

Taxable 
Income Cheat

1 Yes Single 125K No

General Procedure:
– If Dt contains records that 

belong the same class y then t

1 Yes Single 125K No

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No belong the same class yt, then t 
is a leaf node labeled as yt

– If Dt is an empty set, then t is a 
l f d l b l d b th d f lt

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

leaf node labeled by the default 
class, yd

– If Dt contains records that 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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belong to more than one class, 
use an attribute test to split the 
data into smaller subsets. 
R i l l th

Dt

?Recursively apply the 
procedure to each subset.

?
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Example
Tid Refund Marital

Status
Taxable
Income Cheat

1 Y Si l 125K N
p

Don’t Refund
Yes No

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

Cheat
Don’t 
Cheat

Don’t 
Cheat

Yes No 4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

RefundRefund

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Ch t

Yes No

Marital
S

10 No Single 90K Yes
10

Cheat Status

Don’t 

Single,
Divorced Married

Taxable

Cheat Status

Don’t 
Cheat

Single,
Divorced Married

CheatIncome

Don’t
< 80K >= 80K

Cheat
Cheat
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Cheat
Don t 
Cheat



Stopping Criteria for Tree 
Induction

Stop expanding a node when all the recordsStop expanding a node when all the records 
belong to the same class

Stop expanding a node when all the records have 
similar attribute values

Early termination (to be discussed later)
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Splitting Based on Nominal 
Attributes

Multi-way split: Use as many partitions as distinct 
values. 

CarType
Family

Sports
Luxury

Bi lit Di id l i t t b tBinary split: Divides values into two subsets. 
Need to find optimal partitioning.

CarType{Family, 
Luxury} {Sports}

CarType{Sports, 
Luxury} {Family} OR

10
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Splitting Based on 
Continuous Attributes
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How to determine the Best 
Split

Before Splitting: 10 records of class 0,
10 records of class 110 records of class 1

Which test condition is the best?
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How to determine the Best 
Split

Greedy approach:Greedy approach: 
– Nodes with homogeneous class distribution 

f dare preferred
Need a measure of node impurity:

N h HNon-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity
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Measure of Node ImpurityMeasure of Node Impurity
Entropy at a given node t:

∑−=
j

tjptjptEntropy )|(log)|()(

(NOTE: p( j | t) is the relative frequency of class j at node t).

– Measures homogeneity of a node. 
Maximum (log nc) when records are equally distributed 
among all classes implying least information
Minimum (0.0) when all records belong to one class, 
implying most information
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Entropy functionEntropy function
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ExampleExample
∑−=

j
tjptjptEntropy )|(log)|()(

2

C1 0 P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

j

C1 0 
C2 6 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

C1 1 
C2 5

P(C1) = 1/6          P(C2) = 5/6

C2 5 
 

 

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

C1 2 
C2 4 

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92
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Information GainInformation Gain
Information Gain: 

⎟
⎠
⎞

⎜
⎝
⎛−= ∑

=

k

i

i

split
iEntropy

n
npEntropyGAIN

1
)()(

Parent Node, p is split into k partitions;
n is number of records in partition i

⎠⎝

ni is number of records in partition i

– Measures Reduction in Entropy achieved because of 
the split. Choose the split that achieves most reductionthe split. Choose the split that achieves most reduction 
(maximizes GAIN)

– Used in ID3 and C4.5
– Disadvantage: Tends to prefer splits that result in large 

number of partitions, each being small but pure.
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Decision BoundaryDecision Boundary

• Border line between two neighboring regions of different classes is known 
as decision boundary

• Decision boundary is parallel to axes because test condition involves a
18

• Decision boundary is parallel to axes because test condition involves a 
single attribute at-a-time



ExpressivenessExpressiveness
Decision tree provides expressive representation for 
l i di l d f ilearning discrete-valued function
– But they do not generalize well to certain types of 

Boolean functionsBoolean functions
Example: parity function: 

– Class = 1 if there is an even number of Boolean attributes with truth 
value = True

– Class = 0 if there is an odd number of Boolean attributes with truth 
value = True

For accurate modeling, must have a complete tree

Not expressive enough for modeling continuous variablesNot expressive enough for modeling continuous variables
– Particularly when test condition involves only a single 

attribute at-a-time
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EvaluationEvaluation
Tid Attrib1 Attrib2 Attrib3 ClassTid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No

Learn 
Model

4 Yes Medium 120K No

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes Model8 No Small 85K Yes

9 No Medium 75K No 

10 No Small 90K Yes 
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Apply 
Model

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

Decision 
Tree

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 

20
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Cross-ValidationCross-Validation
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Underfitting and OverfittingUnderfitting and Overfitting
OverfittingOverfitting

U d fitti h d l i t i l b th t i i d t t lUnderfitting: when model is too simple, both training and test errors are large 
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How to Address 
Overfitting…

Post pruningPost-pruning
– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a 

bottom-up fashion
– If generalization error improves after trimming, 

replace sub-tree by a leaf node.p y
– Class label of leaf node is determined from 

majority class of instances in the sub-treemajority class of instances in the sub tree
– Can use MDL for post-pruning
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Decision Trees: SummaryDecision Trees: Summary
• Many application of decision trees• Many application of decision trees
• There are many algorithms available for:

S lit l ti– Split selection
– Pruning

Handling Missing Values– Handling Missing Values
– Data Access

• Decision tree construction still active research• Decision tree construction still active research 
area (after 20+ years!)

• Challenges: Performance scalability evolving• Challenges: Performance, scalability, evolving 
datasets, new applications
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Bayes ClassifierBayes Classifier
A probabilistic framework for solving classification 

blproblems
Conditional Probability: ),()|( CAPACP

)(
)(

),()|(

CAP
AP
CAPACP =

)(
),()|(

CP
CAPCAP =

Bayes theorem:

)()|( CPCAP
)(

)()|()|(
AP

CPCAPACP =
)(AP
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Example of Bayes TheoremExample of Bayes Theorem
• Given: 

– A doctor knows that meningitis causes stiff neck 50% of the 
time
P i b bilit f ti t h i i iti i 1/50 000– Prior probability of any patient having meningitis is 1/50,000

– Prior probability of any patient having stiff neck is 1/20

• If a patient has stiff neck, what’s the 
probability he/she has meningitis?

0002050000/15.0)()|()|( ×MPMSPSMP 0002.0
20/1)(

)()|()|( ===
SP

SMP
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Bayesian ClassifiersBayesian Classifiers
• Consider each attribute and class label as 

d i blrandom variables

• Given a record with attributes (A1, A2,…,An) 
Goal is to predict class C– Goal is to predict class C

– Specifically, we want to find the value of C that 
maximizes P(C| A1, A2,…,An )

• Can we estimate P(C| A1, A2,…,An ) directly 
from data?from data?
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Bayesian ClassifiersBayesian Classifiers
• Approach:

compute the posterior probability P(C | A A A ) for– compute the posterior probability P(C | A1, A2, …, An) for 
all values of C using the Bayes theorem

)()|( CPCAAAP
)(

)()|()|(
21

21

21

n

n

n AAAP
CPCAAAPAAACP

K

K
K =

– Choose value of C that maximizes 
P(C | A1, A2, …, An)

– Equivalent to choosing value of C that maximizes
P(A1 A2 A |C) P(C)P(A1, A2, …, An|C) P(C)

• How to estimate P(A1, A2, …, An | C )?( 1, 2, , n | )
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Naïve Bayes ClassifierNaïve Bayes Classifier
Assume independence among attributes A when class• Assume independence among attributes Ai when class 
is given:    

P(A A A |C) = P(A | C ) P(A | C ) P(A | C )– P(A1, A2, …, An |C) = P(A1| Cj) P(A2| Cj)… P(An| Cj)

Can estimate P(A | C ) for all A and C– Can estimate P(Ai| Cj) for all Ai and Cj.

New point is classified to C if P(C ) Π P(A | C ) is– New point is classified to Cj if  P(Cj) Π P(Ai| Cj)  is 
maximal.
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Example of Naïve Bayes 
Classifier

Name Give Birth Can Fly Live in Water Have Legs Class
human yes no no yes mammals

A: attributes
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes yes non-mammals
komodo no no no yes non mammals 0602266)|( MAP

M: mammals

N: non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark yes no yes no non-mammals 0042.0

13
4

13
3

13
10

13
1)|(

06.0
7
2

7
2

7
6

7
6)|(

=×××=

=×××=

NAP

MAP

turtle no no sometimes yes non-mammals
penguin no no sometimes yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes yes non-mammals

021.0
20
706.0)()|(

13131313
)|(

=×=MPMAP
gila monster no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

0027.0
20
13004.0)()|( =×=NPNAP

g y y

Give Birth Can Fly Live in Water Have Legs Class
yes no yes no ?

P(A|M)P(M) > 
P(A|N)P(N)

=> Mammals
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Naïve Bayes ClassifierNaïve Bayes Classifier
If one of the conditional probability is zero, then 
th ti i bthe entire expression becomes zero
Probability estimation:

NCAP ic
i =)|( :Original

NCAP

N
C

ic

c
i

+
=

1)|(:Laplace

)|(:O g a
c: number of classes

p: prior probability

mpNCAP

cN
CAP

ic

c
i

+
=

+
=

)|(:estimatem

)|(:Laplace p: prior probability

m: parameter

mN
CAP

c
i +

=)|(:estimate-m
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Naïve Bayes (Summary)Naïve Bayes (Summary)
• Robust to isolated noise points• Robust to isolated noise points

• Handle missing values by ignoring theHandle missing values by ignoring the 
instance during probability estimate 
calculations

• Robust to irrelevant attributes

• Independence assumption may not hold for 
some attributessome attributes
– Use other techniques such as Bayesian Belief 

Networks (BBN)
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Artificial Neural Networks 
(ANN)
X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

Output Y is 1 if at least two of the three inputs are equal to 1.
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Artificial Neural Networks 
(ANN)
X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 00 0 1 0
0 1 0 0
0 1 1 1
0 0 0 00 0 0 0

>++ )040303030( XXXIY

⎩
⎨
⎧

=

>−++=

h i0
 trueis  if1

)(where

)04.03.03.03.0( 321

z
zI

XXXIY

⎩
⎨ otherwise0

)(
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Artificial Neural Networks 
(ANN)(ANN)
• Model is an assembly of 

inter connected nodesinter-connected nodes 
and weighted links

• Output node sums up 
each of its input valueeach of its input value 
according to the weights 
of its links

Perceptron Model

• Compare output node )( tXwIY ii −= ∑
Perceptron Model

or

against some threshold t i

)( tXwsignY
i

ii −= ∑
i



Example of perceptron



Example of perceptron



Example of perceptron



General Structure of ANNGeneral Structure of ANN

Training ANN means learning 
the weights of the neurons
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Example of multi-layered 
ANN
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Nonlinear decision boundaryNonlinear decision boundary

Li N li• Linear • Nonlinear
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Algorithm for learning ANNAlgorithm for learning ANN
Initialize the weights (w0, w1, …, wk)

Adjust the weights in such a way that the outputAdjust the weights in such a way that the output 
of ANN is consistent with class labels of training 
examplese a p es
– Objective function: [ ]2),(∑ −=

i
iii XwfYE

– Find the weights wi’s that minimize the above 

i

objective function
e.g., backpropagation algorithm
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Neural Networks: SummaryNeural Networks: Summary

P• Pros
– Accurate
– Wide range of applications

• Cons• Cons
– Difficult interpretation
– Tends to ‘overfit’ the data
– Extensive amount of training timeg
– A lot of data preparation

43



Collective comparisonCollective comparison
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