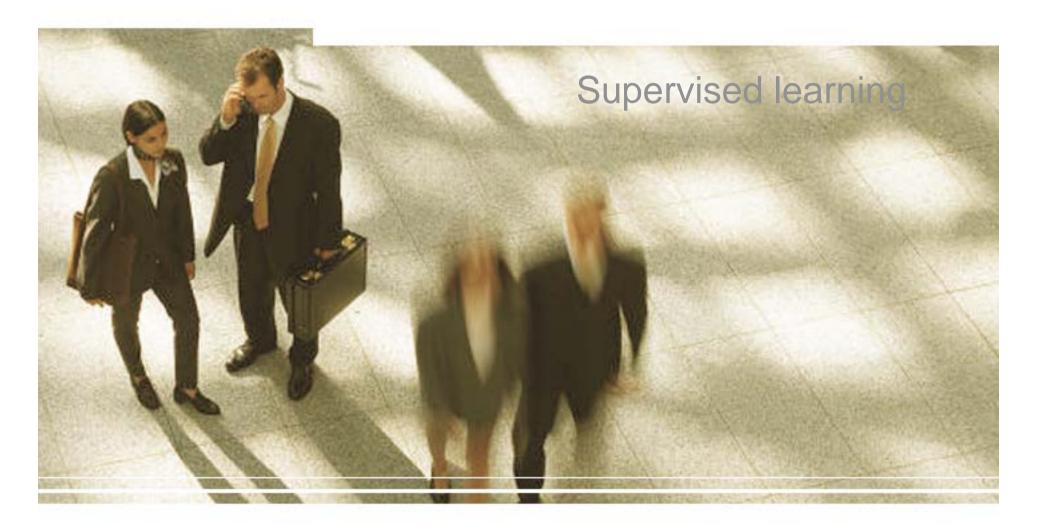
Lection11



Learning Objectives

- Algorithms
 - Decision trees
 - Naïve Bayesian
 - Artificial Neural Networks
- Evaluation methods
 - Precision

Goals and Requirements

- Goals:
 - To produce an accurate classifier/regression function
 - To understand the structure of the problem
- Requirements on the model:
 - High accuracy
 - Understandable by humans, interpretable
 - Fast construction for very large training databases

Example of a Decision Tree

		agorical cated	orical	nuous clas	
		cateo	conti	nuous clas	5
Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

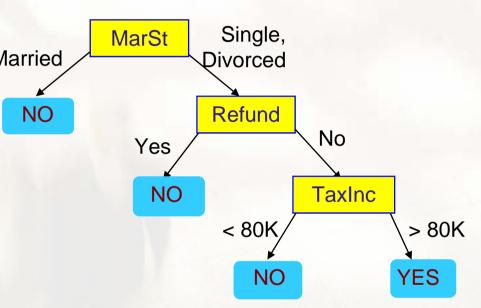
Training Data

Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO > 80K < 80K YES NO

Model: Decision Tree

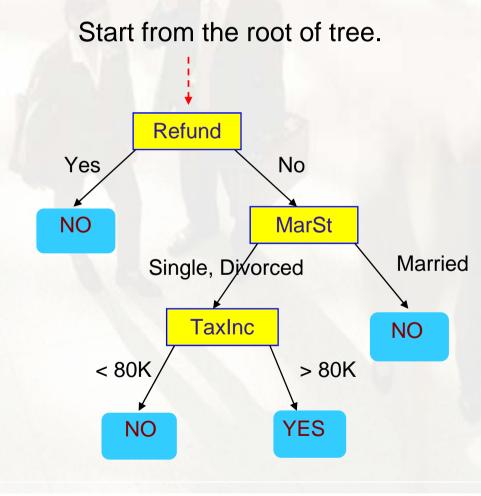
4

					ample of
D	ec	isical catego	on '	Tro	ee
		gorical	orical	nuous	چې
				cla.	Married MarSt
Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	NO
2	No	Married	100K	No	Yes
3	No	Single	70K	No	NO
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	There could be m
10	No	Single	90K	Yes	fits the same data



There could be more than one tree that fits the same data!

Apply Model to Test Data



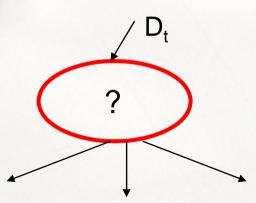
Test Data

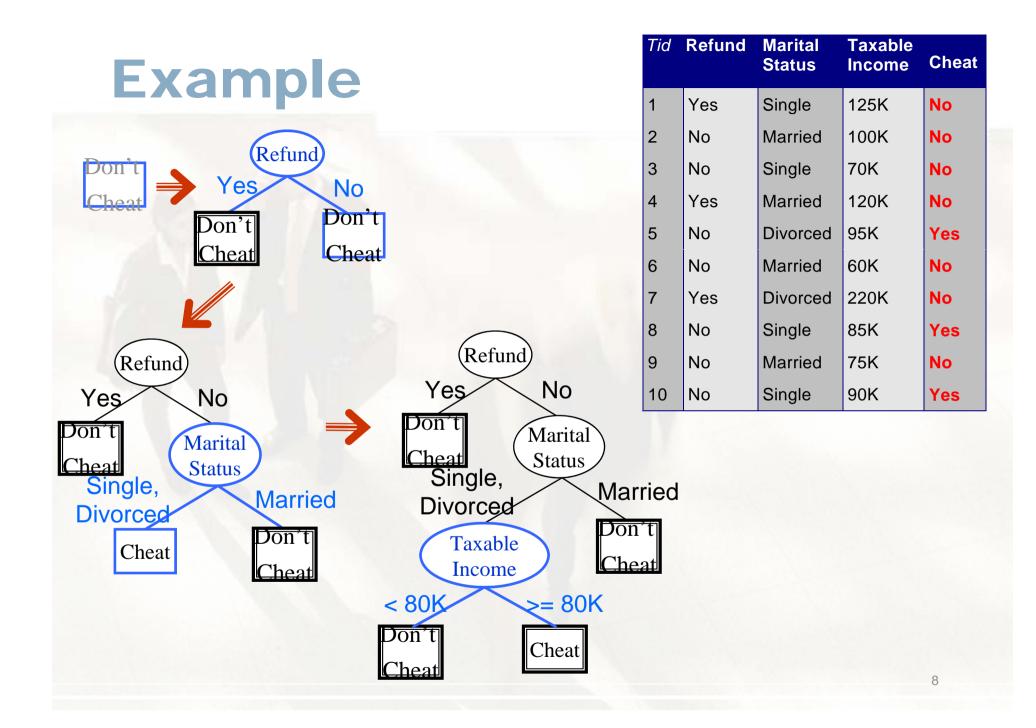
Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

General algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 Recursively apply the procedure to each subset.

Tid			Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	No Single		Yes
9	No	Married	75K	No
10	No	Single	90K	Yes





Stopping Criteria for Tree Induction

• Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

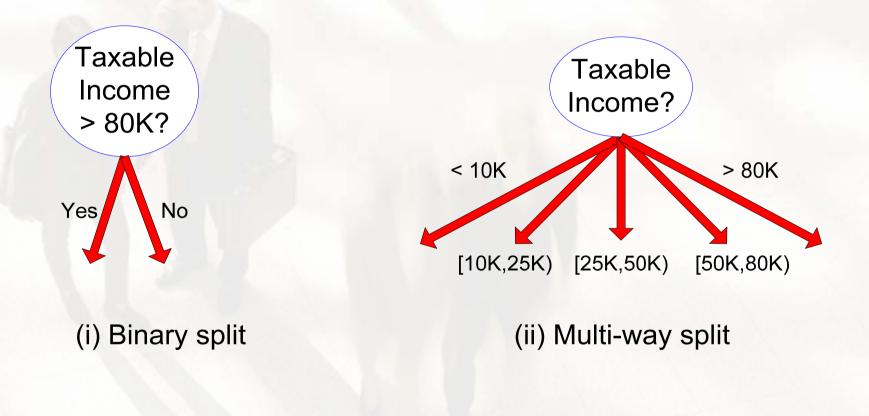
• Early termination (to be discussed later)

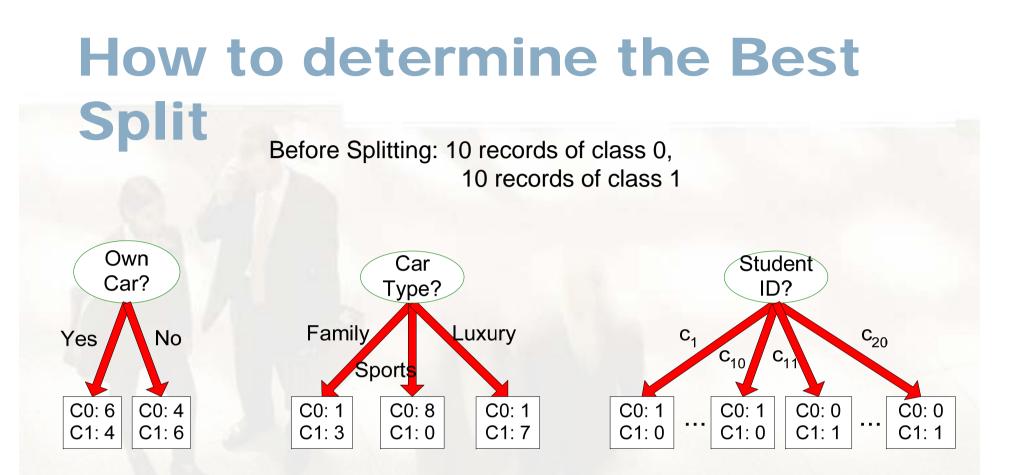
Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

• Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Continuous Attributes





Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0:	5
C1:	5

Non-homogeneous, High degree of impurity C0: 9 C1: 1

Homogeneous, Low degree of impurity

Measure of Node Impurity

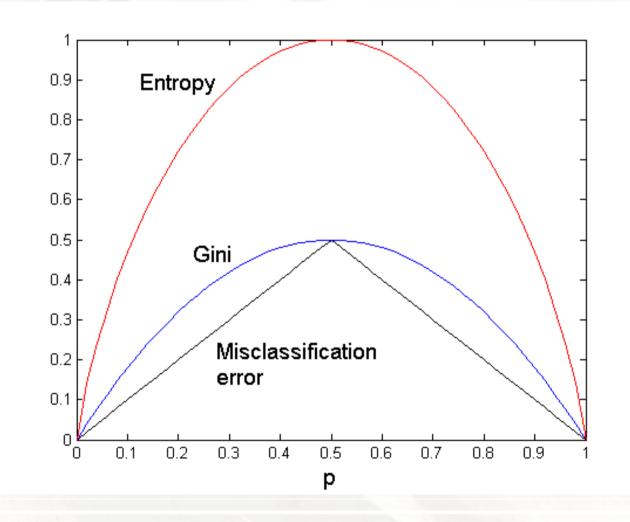
• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information

Entropy function



Example

$$|Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

C1	1
C2	5

P(C1) = 1/6 P(C2) = 5/6 Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6 Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Information Gain

Information Gain:

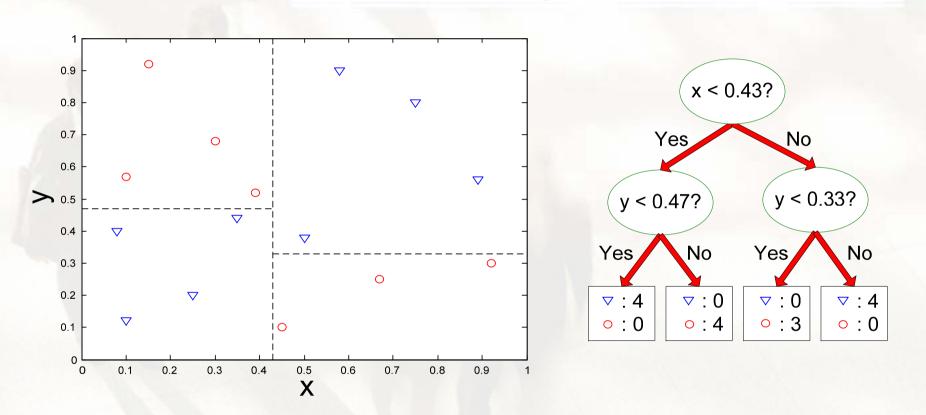
$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions;

n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Decision Boundary



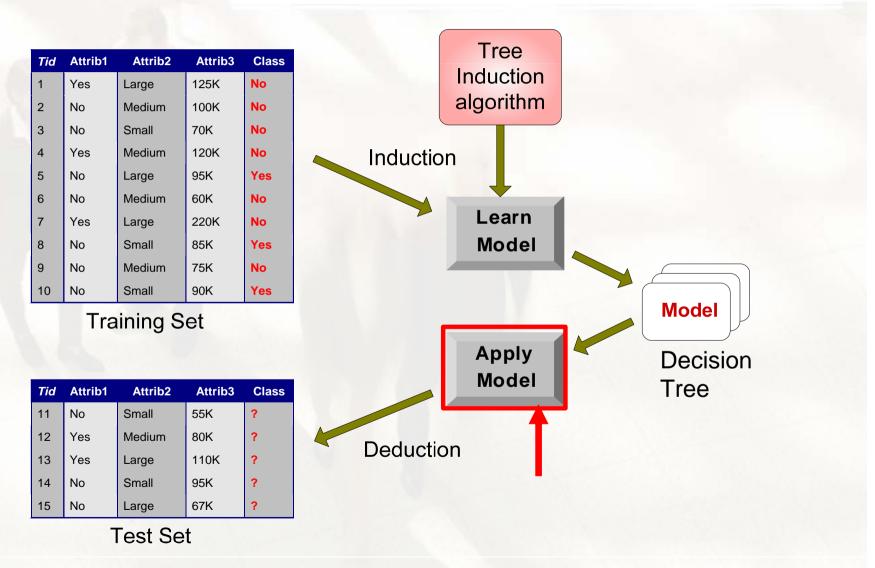
• Border line between two neighboring regions of different classes is known as decision boundary

 Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Evaluation



Cross-Validation

-Break up data into subsets of the same size

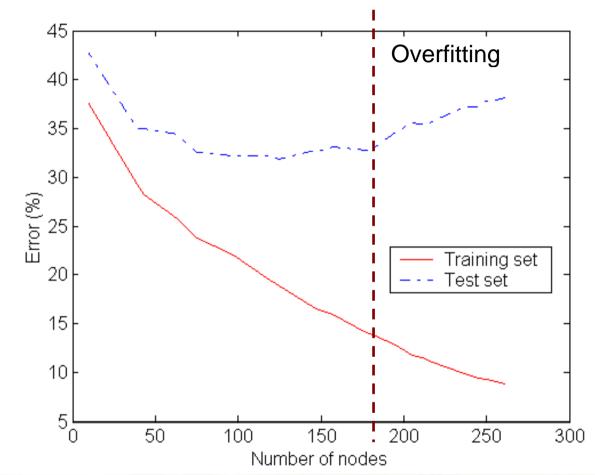
-Hold aside one subsets for testing and use the rest for training



-Repeat

21

Underfitting and Overfitting



Underfitting: when model is too simple, both training and test errors are large

How to Address Overfitting...

- Post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree
 - Can use MDL for post-pruning

Decision Trees: Summary

- Many application of decision trees
- There are many algorithms available for:
 - Split selection
 - Pruning
 - Handling Missing Values
 - Data Access
- Decision tree construction still active research area (after 20+ years!)
- Challenges: Performance, scalability, evolving datasets, new applications

Bayes Classifier

 A probabilistic framework for solving classification problems

Conditional Probability:

 $P(C \mid A) = \frac{P(A, C)}{P(A)}$ $P(A \mid C) = \frac{P(A, C)}{P(C)}$

Bayes theorem:

 $P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20

• If a patient has stiff neck, what's the probability he/she has meningitis? $P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes P(C | $A_1, A_2, ..., A_n$)
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n | C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
 - Can estimate $P(A_i | C_i)$ for all A_i and C_i .
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

A: attributes M: mammals N: non-mammals $P(A | M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$ $P(A | N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$ $P(A | M)P(M) = 0.06 \times \frac{7}{20} = 0.021$ $P(A | N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Naïve Bayes Classifier

 If one of the conditional probability is zero, then the entire expression becomes zero

• Probability estimation:

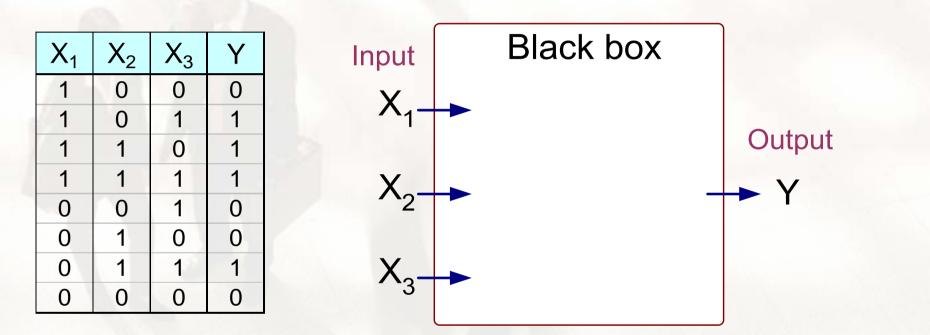
Original : $P(A_i | C) = \frac{N_{ic}}{N_c}$ Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$ m - estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classesp: prior probabilitym: parameter

Naïve Bayes (Summary)

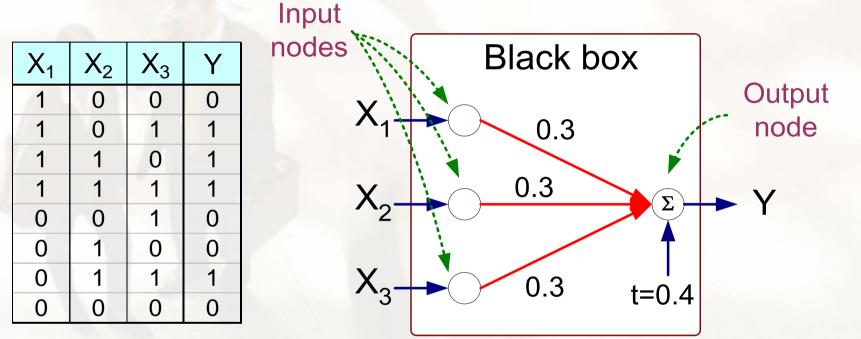
- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Artificial Neural Networks (ANN)



Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

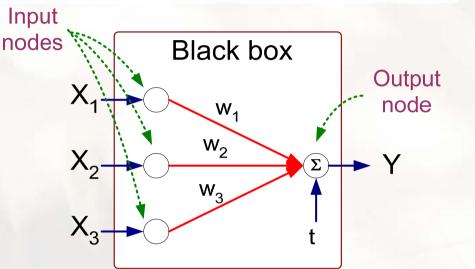


 $Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$ where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

34

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links



Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t) \text{ or }$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

• Compare output node against some threshold t

Example of perceptron

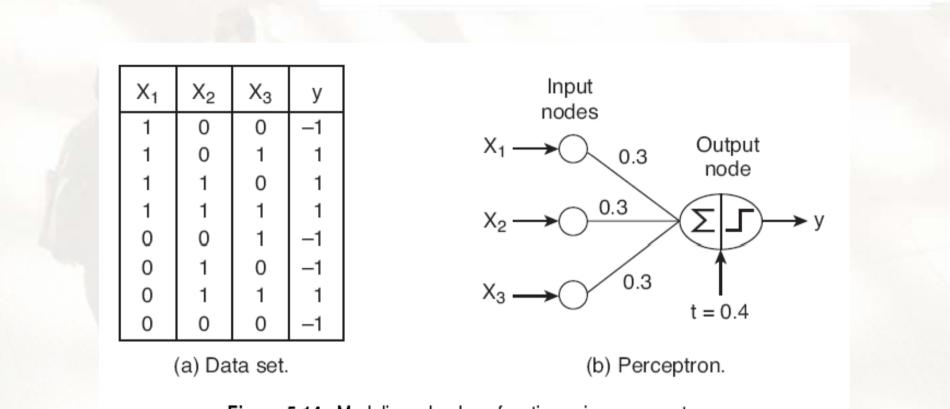


Figure 5.14. Modeling a boolean function using a perceptron.

Example of perceptron

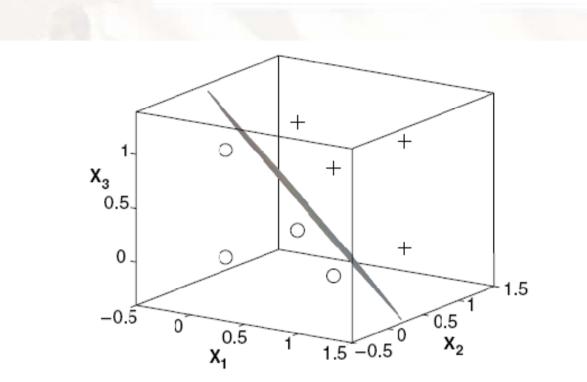


Figure 5.15. Perceptron decision boundary for the data given in Figure 5.14.

Example of perceptron

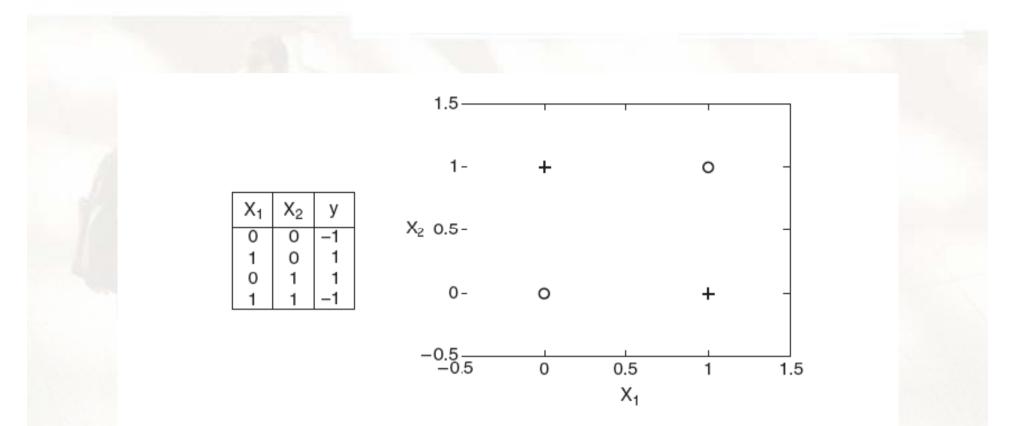
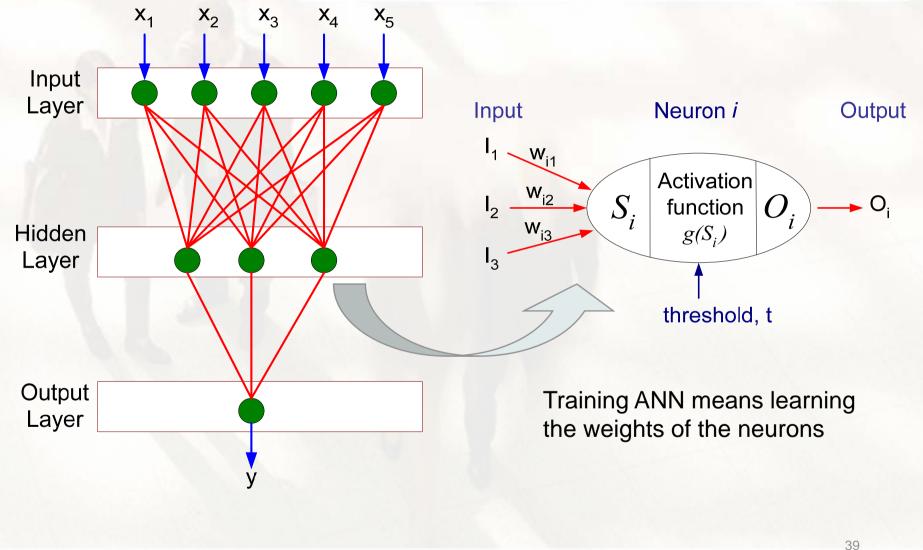
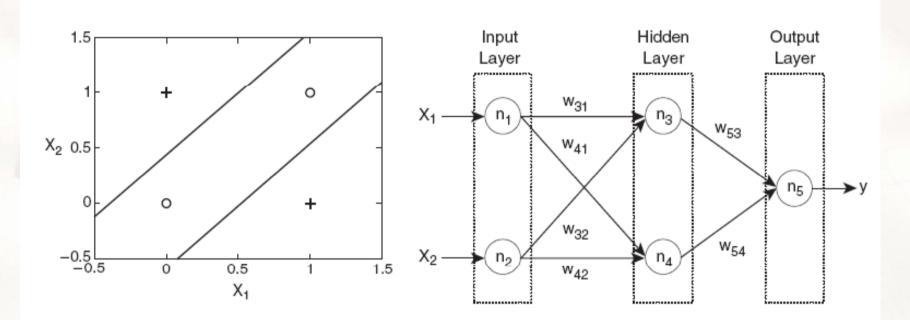


Figure 5.16. XOR classification problem. No linear hyperplane can separate the two classes.

General Structure of ANN



Example of multi-layered ANN



(a) Decision boundary.

(b) Neural network topology.

Figure 5.19. A two-layer, feed-forward neural network for the XOR problem.

Nonlinear decision boundary

• Linear

Nonlinear

Algorithm for learning ANN

• Initialize the weights $(w_0, w_1, ..., w_k)$

 Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples

- Objective function:
$$E = \sum_{i} [Y_i - f(w_i, X_i)]^2$$

- Find the weights w_i's that minimize the above objective function
 - e.g., backpropagation algorithm

Neural Networks: Summary

- Pros
 - Accurate
 - Wide range of applications
- Cons
 - Difficult interpretation
 - Tends to 'overfit' the data
 - Extensive amount of training time
 - A lot of data preparation

Collective comparison

	Train	Run	Noise	Can Use	Accuracy	Under-
	time	Time	Toler	Prior	on Customer	standable
			ance	Know-	Modelling	
				ledge		
Decision	fast	fast	poor	no	medium	medium
Trees						
Bayesian	slow	fast	good	yes	good	good
Neural	slow	fast	good	no	good	poor
Networks						