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 Algorithms

— Decision trees

— Naive Bayesian

— Artificial Neural Networks
« Evaluation methods

— Precision
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e Goals:

— To produce an accurate classifier/regression
function

— To understand the structure of the problem

 Requirements on the model:
— High accuracy
— Understandable by humans, interpretable

— Fast construction for very large training
databases



Splitting Attributes

Tid Refund Marital Taxable

Status  Income Cheat /,’/ |||
1 |Yes |Single |125k  [No o ‘.|
2 |No Married |100K  |No Refund ‘ll
3 |No Single | 70K No Y‘es’/ WAO '
4 |Yes Married |120K No NO MarSt
5 [No Divorced |95K Yes ‘ Single, Divorced N/I‘arried
6 No Married |60K No
7 |ves |Divorced |220k  |No Taxinc NO
8 |No Single | 85K Yes < 80|§/ > 80K
9 No Married |75K No NO YES
10 |No Single 90K Yes

Training Data Model: Decision Tree



Tid Refund Marital
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Yes
No
No
Yes
No
No
Yes
No
No
No
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@ @ P N
Taxable
Status  Income Cheat
Single 125K No
Married |100K No
Single 70K No
Married |120K No
Divorced |95K Yes
Married |60K No
Divorced |220K No
Single 85K Yes
Married |75K No
Single 90K Yes

MarSt Single,

Marri‘ed/ \%i)rced

NO Refund
Ye?/ \Nf)
NO TaxInc
< SOV \> 80K
NO YES

There could be more than one tree that
fits the same data!



Test Data
Start from the root of tree.

! Status  Income Cheat

v

Refund Marital Taxable

No Married |[80K ?
Refund
Yy NIAO
NO MarSt
Single,yd)rced \hil‘larried
TaxInc NO

< 80’K/ \> 80K
NO

YES



Tid Refund Marital Taxable

e Let D, be the set of training records Status  Income Cheat
that reach a node t

Yes Divorced |220K No

— If D, is an empty set, then tis a

1 Yes Single 125K No
e General Procedure: 2 Ino Ivaried ook Ine
— If D, contains records that 3 |No(Single 70K N
belong the same class y,, then t @ ves MG 120 MG
is a leaf node labeled as y, ° |No |Divorced josk - |Yes
6 No Married |60K No

7

8

9

leaf node labeled by the default No  |Single |85K |Yes
y
CIaSS, Yq No Married | 75K No
— If D, contains records that 10 [No  [Single 90K [¥es
belong to more than one class, D,

use an attribute test to split the
data into smaller subsets.
Recursively apply the
procedure to each subset.
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Tid Refund Marital
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Married
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Married
Divorced
Single
Married
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Income
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e Stop expanding a node when all the records
belong to the same class

e Stop expanding a node when all the records have
similar attribute values

e Early termination (to be discussed later)



e Multi-way split: Use as many partitions as distinct

values.
Family @ Luxury
Sports

e Binary split: Divides values into two subsets.
Need to find optimal partitioning.

{Sports, @ : {Family, @
Luxury} {Family} Luxury) {Sports}



Taxable
Income
> 80K?

Yes No

(i) Binary split

Taxable
Income?

[10K,25K) [25K,50K) [50K,80K)

(ii) Multi-way split
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Before Splitting: 10 records of class 0,
10 records of class 1

~Student .
. ID?

Which test condition is the best?
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e Greedy approach:

— Nodes with homogeneous class distribution
are preferred

e Need a measure of node impurity:

CO: 5 CO0: 9
C1:5 C1: 1
Non-homogeneous, Homogeneous,

High degree of impurity Low degree of impurity



e Entropy at a given node t:
Entropy(t) =—-> p(J[t)log p(]|t)

(NOTE: p(J | t) is the relative frequency of class | at node t).

— Measures homogeneity of a node.

+Maximum (log n.) when records are equally distributed
among all classes implying least information

¢ Minimum (0.0) when all records belong to one class,
Implying most information



Misclassification
error




Entropy(t) = - p(J[t)log, p(J[t)

Cl 0]
C2 6
C1l 1
C2 S
C1l 2
C2 4

P(C1l)=0/6=0 P(C2)=6/6=1
Entropy=—0log0-1log1=-0-0=0

P(C1) =1/6 P(C2) =5/6
Entropy = — (1/6) log, (1/6) — (5/6) log, (1/6) = 0.65

P(C1) = 2/6 P(C2) =4/6
Entropy = — (2/6) log, (2/6) — (4/6) log, (4/6) = 0.92



e Information Gain:

GAIN = Entropy(p) —(zr; Entropy(i)j

Parent Node, p is split into k partitions;
n, IS number of records in partition i
— Measures Reduction in Entropy achieved because of
the split. Choose the split that achieves most reduction
(maximizes GAIN)

— Used in ID3 and C4.5

— Disadvantage: Tends to prefer splits that result in large
number of partitions, each being small but pure.
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» Border line between two neighboring regions of different classes is known
as decision boundary

» Decision boundary is parallel to axes because test condition involves a
single attribute at-a-time



e Decision tree provides expressive representation for
learning discrete-valued function

— But they do not generalize well to certain types of
Boolean functions

¢ Example: parity function:

— Class = 1 if there is an even number of Boolean attributes with truth
value = True

— Class = 0 if there is an odd number of Boolean attributes with truth
value = True

¢ For accurate modeling, must have a complete tree

e Not expressive enough for modeling continuous variables

— Particularly when test condition involves only a single
attribute at-a-time



Tree

Tid Attrib1 Attrib2 Attrib3  Class

1 |ves |Large 125K | No Induction
2 [No Medium | 100K [ No algorithm
3 No Small 70K No
4 Yes Medium 120K No IndUCtion
5 No Large 95K Yes
6 No Medium 60K No
7 | vYes Large 220K | No Learn
8 |No Small 85K Yes Model
9 |No Medium | 75K No \
10 | No Small 90K Yes

Training Set

ARl Decision

Tid Attribl  Attrib2  Attrib3  Class Model Tree
11 | No Small 55K ?
12 | Yes Medium 80K ? .
13 | Yes Large 110K ? Ded UCtlon
14 | No Small 95K ?
15 | No Large 67K ?

Test Set
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—Break up data into subsets of the same size

—Hold aside one subsets for testing and use the rest for training
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Underfitting: when model is too simple, both training and test errors are large



e Post-pruning
— Grow decision tree to its entirety

— Trim the nodes of the decision tree in a
bottom-up fashion

— If generalization error improves after trimming,
replace sub-tree by a leaf node.

— Class label of leaf node Is determined from
majority class of instances in the sub-tree

— Can use MDL for post-pruning



Many application of decision trees

There are many algorithms available for:
— Split selection

— Pruning

— Handling Missing Values

— Data Access

Decision tree construction still active research
area (after 20+ years!)

Challenges: Performance, scalabllity, evolving
datasets, new applications



e A probabillistic framework for solving classification
problems

e Conditional Probability:
p(C|A) = AC)
P(A)

P(A,C)
P(C)

P(A|C) =

e Bayes theorem:

P(A|C)P(C)
P(A)

P(C|A)=



e GGlven:

— A doctor knows that meningitis causes stiff neck 50% of the
time

— Prior probability of any patient having meningitis is 1/50,000

— Prior probability of any patient having stiff neck is 1/20

« |If a patient has stiff neck, what’s the

probabllity he/she has meningitis?

P(S|M)P(M) 0.5x1/50000
P(S) B 1/20

P(M |S) = — 0.0002



e Consider each attribute and class label as
random variables

* Given a record with attributes (A, A,,...,A.)
— Goal Is to predict class C

— Specifically, we want to find the value of C that
maximizes P(C| A, A,,...,A)

 Can we estimate P(C| A,, A,,...,A,,) directly
from data?



Approach:

— compute the posterior probability P(C | A, A,, ..., A,) for
all values of C using the Bayes theorem

— Choose value of C that maximizes
P(C | A, Ay, ..., A

— Equivalent to choosing value of C that maximizes
P(A;, Ay, ..., A|C) P(C)

How to estimate P(A, A,, ..., A,| C)?



« Assume independence among attributes A; when class
IS given:
— P(Ap, Ay .o ALIC) = P(A{ C) P(A,] C))... P(A,| C)

— Can estimate P(A| Cj) for all A; and C;

maximal.



Name Give Birth Can Fly |Livein Water| Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes |yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark [yes no yes no non-mammals
turtle no no sometimes |yes non-mammals
penguin no no sometimes |yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes |yes non-mammals
gila monster [no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly |Livein Water| Have Legs Class

yes no yes no

A: attributes
M: mammals

N: non-mammals

P(A||\/|):6><6><2><2:O.O6
7 7 77

1. .10 3 4

= X X—X—
13713 13 13
P(A|M)P(M):O.06><27O:O.021

P(A|N) = 0.0042

P(A|N)P(N)= o.oomii ~0.0027

P(AIM)P(M) >
P(AIN)P(N)

=> Mammals



e If one of the conditional probabillity is zero, then
the entire expression becomes zero

e Probabillity estimation:

. N.
Original : P(A |C) = NIC
| ’ ] ¢: number of classes
-+
Laplace: P(A |C) =—*- p: prior probability
N_+cC
m: parameter
Nic 1 mp

m -estimate: P(A |C) =

N +m

C



Robust to isolated noise points

Handle missing values _b%/ ignoring the
Instance during probability estimate
calculations

Robust to irrelevant attributes

Independence assumption may not hold for
some attributes

— Use other techniques such as Bayesian Belief
Networks (BBN)



Xl X2 X3 Y Input BIaCk bOX
10010
X, —»
1o 1|1 1
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11|11
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Output Y is 1 if at least two of the three inputs are equal to 1.
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Y = 1(0.3X, +0.3X,+0.3X,-0.4 > 0)

where 1(z) = {

1 if zis true
0 otherwise



» Model is an assembly of ~ I"ov'
inter-connected nodes W, Dlack box
and weighted links

Output
A node

> Y
e Qutput node sums up

each of its input value
according to the weights
of its links

« Compare output node i
against some threshold t Vi |
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(a) Data set.

Figure 5.14

(b) Perceptron.

. Modeling a boolean function using a perceptron.



Example of perceptron

Figure 5.15. Percepfron decision boundary for the data given in Figure 5.14.



Example of perceptron
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Figure 5.16. XOR classification problem. No linear hyperplane can separate the two classes.



X, X, | X, X
Input
Layer Input Neuron i Output
Activation
function — O,
Hidden g(S;)
Layer
U threshold, t
Output ‘ Training ANN means learning
Layer the weights of the neurons
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Example of multi-layered
ANN

Hidden Output
Layer Layer
=g
Ws3
Wy
)
§/J_
Wag .
O
NS
W42

>y

(a) Decision boundary. (b) Neural network topology.

Figure 5.19. A two-layer, feed-forward neural network for the XOR problem.
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e Nonlinear

Linear
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e Initialize the weights (wg, Wy, ..., W)

e Adjust the weights in such a way that the output
of ANN Is consistent with class labels of training
examples

— Objective function: E = Z[Yi — f(w, Xi)]2

— Find the weights w;'s that minimize the above
objective function

¢ e.g., backpropagation algorithm



 Pros
— Accurate
— Wide range of applications

e« Cons
— Difficult interpretation
— Tends to ‘overfit’ the data
— Extensive amount of training time
— A lot of data preparation



Train |Run |Noise |Can Use |Accuracy Under-
time |Time |Toler |Prior  |on Customer |standable
ance |Know- |Modelling
ledge

Decision |fast |fast |poor |no medium medium
Trees
Bayesian [slow |fast |good |yes good good
Neural |[slow |fast |good |no good poor

Networks




