
Lection 7

Learning Objectives

- Revision of Retails Star Schema
- Inventory Models
- Semi-additive facts
- Data Warehouse Bus Architecture
- Conformed dimensions

Star for Retail

Time

time_k	day	month	quarter	year	season
T01	1	Jan.	1Q	1999	New Years
T02	2	Jan.	1Q	1999	New Years
T03	3	Jan.	1Q	1999	
T04	4	Jan.	1Q	1999	
T05	5	Jan.	1Q	1999	Normal

Customer

043101						
customer_k	name	age	gender	education	income	address
9901	David	-30	Male	Graduate		34 Greystone, Austin TX 78730
9902	Nathan	-55	Male	Graduate	100,000	23 Wood #21, Houston TX 71010
9903	Jane	55	Female	College	95,000	12 Central, New York NY 10200
9904	Mary			High_School		9 King, Buffalo NY 11200
9905	Steve	25	Male	High_School	55,000	11 Main, San Antonio TX 70340

Sale

	time_k	product_k	store_k	customer_k	amount	cost
es	T01	Q33	A01	9901	50	25
	T01	K21	B01	9902	60	40
	T01	Q33	A03	9903	10	5
	T02	K21	A02	9903	50	20
	T02	Q33	A01	9902	100	50
	T02	K21	A03	9901	5	3
	T02	K21	B02	9904	20	15
	T04	K21	A02	9901	3	1
	T05	P67	A01	9905	4	3
	T05	K21	A02	9905	10	3

product	t_k	name	brand	subcategory	category
K21		Power_Clean	Cleaners	detergent	house_goods
Q33		Coke_Classic	Cola	carbonated	soft_drink
Q34		Coke_Diet	Cola	carbonated	soft_drink
P67		Sprite	Coolers	carbonated	soft_drink

store_k	name	zip	region	state	manager	phone
A01	Farwest	78700	Travis	TX	Brown	512-345-6678
A02	Anderson	78700	Travis	TX	Molly	512-342-3356
A03	Koneig	79220	Austin	TX	Jones	512-399-1245
B01	South	10020	Soho	NY	Jane	212-245-4563
B02	Central	10032	Midtown	NY	Marvin	212-362-2278

Product

Store

4

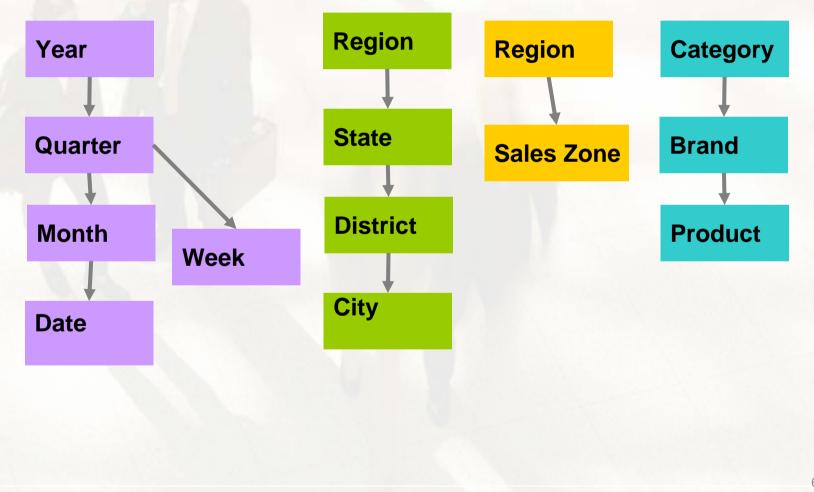
Star for Retail

ETL: Avoid normalization

Customer_Desc

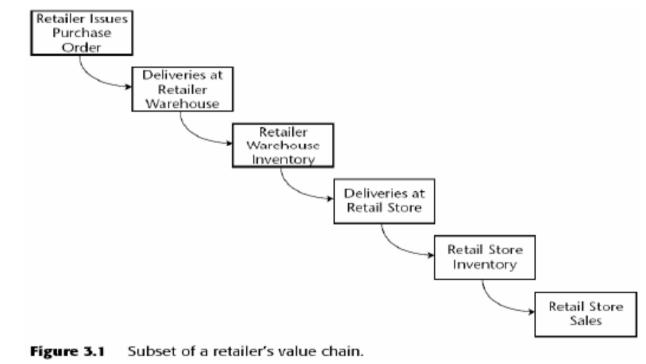
address	income	education	sex	age	name	cid
34 Greystone, Austin TX 78730	80,000	1	1	30	David	9901
23 Wood #21, Houston TX 71010	100,000	1	1	55	Nathan	9902
12 Central, New York NY 10200	95,000	2	2	55	Jane	9903
9 King, Buffalo NY 11200	60,000	3	2	23	Mary	9904
11 Main, San Antonio TX 70340	55,000	3	1	25	Steve	9905

Education_CodeGender_Code


ode	Literal	Code	Literal
1	Graduate	1	Male
2	College	2	Female
3	High School		
4	Others		
		.	

Customer

customer_k	name	age	gender	education	income	address
9901	David	-30	Male	Graduate		34 Greystone, Austin TX 78730
9902	Nathan	-55	Male	Graduate	100,000	23 Wood #21, Houston TX 71010
9903	Jane	-55	Female	College	95,000	12 Central, New York NY 10200
9904				High_School		9 King, Buffalo NY 11200
9905	Steve	25	Male	High_School	55,000	11 Main, San Antonio TX 70340


Star for Retail

Hierarchies

Case study: Inventory

- Value chain
 - Consisting of organization's key business processes
 - The flow of an organization's primary activities
 - Provides high-level insight into the overall enterprise DW
- Movement of products

Inventory

- Inventory Periodic Snapshot
- Inventory Transactions

Design Decisions

- Choosing the process.
 - Selecting the subjects from the information packages for the first set of logical structures to be designed.
- Choosing the grain.
 - Determining the level of detail for the data structures.
- Identifying and conforming the dimensions.
 Choosing the business dimensions (such as product, market, time, etc.) to be included in the first set of structures.
- Choosing the facts.
 - Selecting the metrics or units of measurements (such as product sale units, dollar sales, dollar revenue, etc.) included in set of structures.
- Choosing the duration of the database.
 - Determining how far back in time you should go for historical data.

- Optimized inventory levels
 - Minimize out-of-stocks
 - Reduces overall inventory carrying costs
- Dimensional model
 - Dimensions
 - Date, product, store
- Simple dimensional design

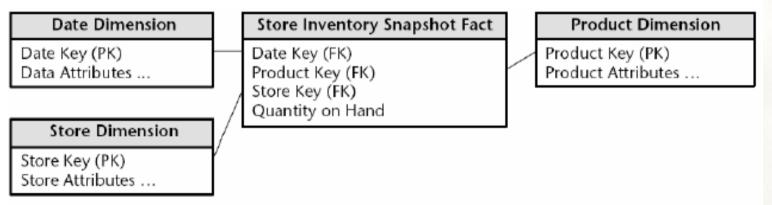


Figure 3.2 Store inventory periodic snapshot schema.

Additional attributes

- Product dimension
 - Minimum reorder quantity
 - Descriptors of each product stock keeping unit (SKU)
- Store dimension
 - Selling square-footage
 - Frozen and refrigerated storage square footages

- Semiadditive Facts
 - Numeric fact that can be added along some dimensions but not others
 - Example
 - Inventory levels
 - Additive across products or stores
 - But cannot be additive across date
 - Complexity of inventory calculation
 - Cannot use the SQL AVG function
 - No standard functionality that would compute the average over just the date dimension
 - Solutions
 - With an embedded SQL
 - By querying the date dimension separately and storing the resulting value

	Mon	Tue	Wed	Thu	Fri
Prod A	1	1	2	2	1
Prod B	2	1	2	2	1
SumDate	3	2	4	4	2
TotalSum					15

AVG = TotalSum / 10 = 15 / 10 = 1.5 AVG_DATE = TotalSum / 5 = 15 / 5 = 3

- Dense snapshot tables
 - Inventory levels are measured frequently
 - To avoid out-of-stock situation
 - Example
 - 60,000 products * 100 store * 14 row width = 84MB
 - A year's worth of daily snapshots >= 30GB
 - To reduce the snapshot frequencies
 - 1,095 snapshots during a 3-year period
 > 208 snapshots(60 daily + 148 weekly snapshots in two separate fact tables)

Inventory Transactions

- Inventory transactions at the warehouse
 - Receive product
 - Place product into inspection hold
 - Release product from inspection hold
 - Return product to vendor due to inspection failure
 - Place product in bin
 - Authorize product for sale
 - Pick product from bin
 - Package product for shipment
 - Ship product to customer
 - Receive product from customer
 - Return product to inventory from customer return
 - Remove product from inventory

Inventory Transactions

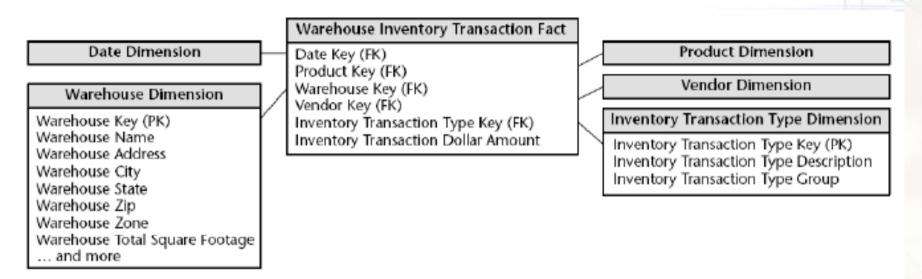
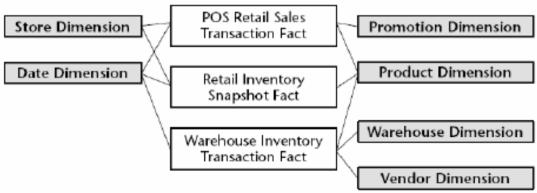


Figure 3.4 Warehouse inventory transaction model.

Characteristics

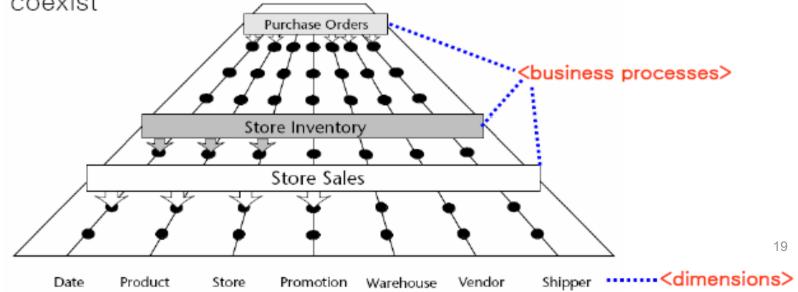

- The most detailed information available about inventory
 - It mirrors fine scale inventory manipulations
- Useful for measuring the frequency and timing of specific transaction types

Inventory Transactions

- Question example
 - How many times have we placed a product into an inventory bin on the same day we picked the product from the same bin at a different time?
 - How many separate shipments did we receive from a given vendor, and when did we get them?
 - On which products have we had more than one round of inspection failures that caused return of the product to the vendor?
- Disadvantage
 - It is impractical to use this table as the sole basis
 - It is too cumbersome and impractical
 - For broad data warehouse questions that span dates or products

Value Chain Integration

- ✤ Needs
 - To better evaluate performance
 - To better leverage scarce resource and gain efficiencies
- Common dimensions
 - At each process, the models share several common dimensions
 - Date, product, and store
 - It is critical to designing data marts that can be integrated
- Drill across
 - The linkage that use multipass SQL to query each data mart separately, and outer join the query results based on a common dimension attribute



Data Warehouse Bus

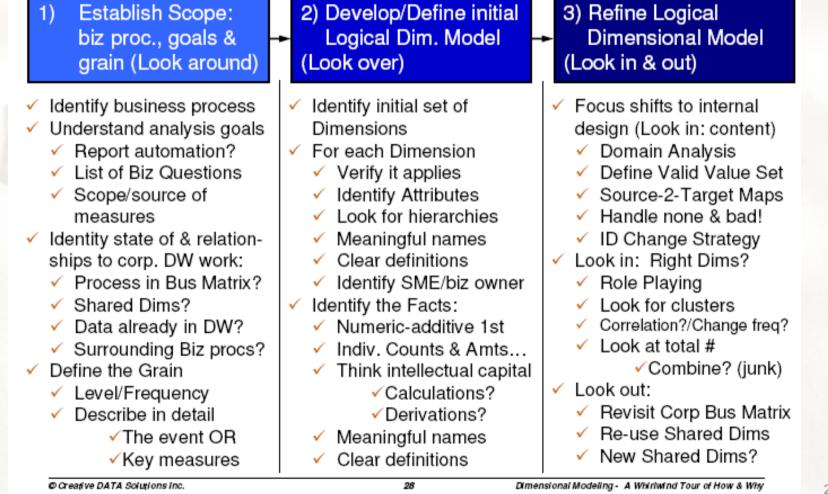
Architecture

For long-term data warehouse success

- Need to use architected, incremental approach to build the enterprise's warehouse
- ♦ Bus
 - Common structure to which everything connects and from which everything derives power
- A standard data warehouse bus architecture
 - The separate data marts can be plugged together and usefully coexist

Characteristics

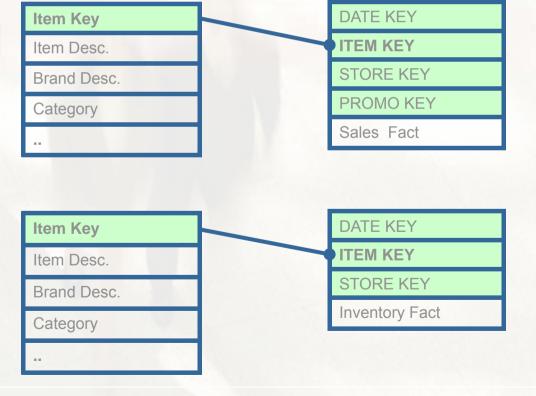
- A rational approach to decomposing the enterprise data warehouse planning task
 - Design a master suite of standardized dimensions and facts
 - Implementation of separate data marts
 - Separate data marts come on line, they fit together
- Is independent of technology and the database platform



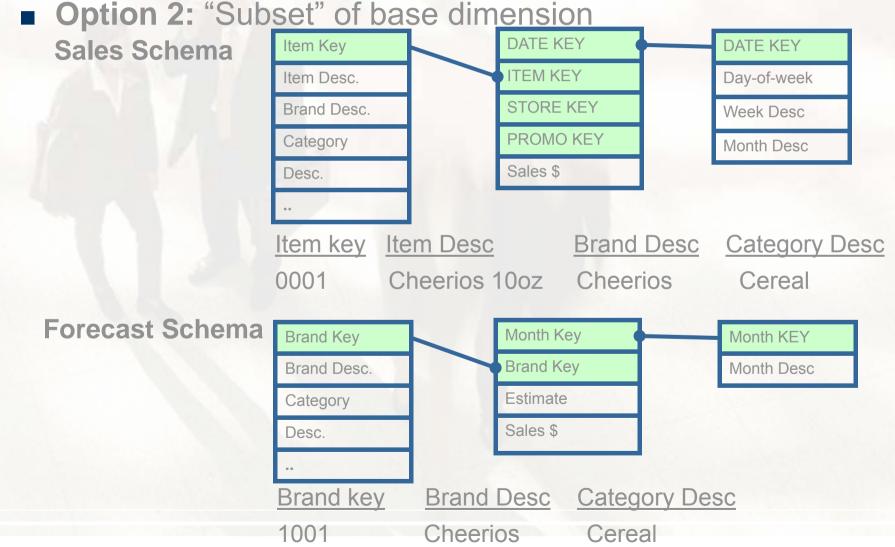
- Data Warehouse Bus Matrix
 - The tool we use to create, document, and communicate the bus architecture

COMMON DIMENSIONS

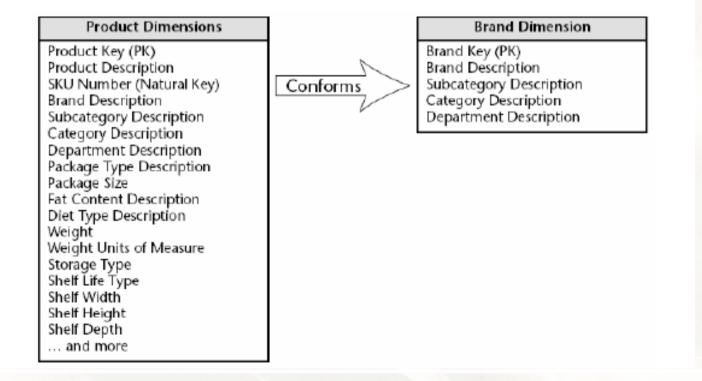
- First-level data marts
 - Derived from a single primary source system
 - The rows of the matrix
- Consolidated data marts
 - Derived from more complex multisource marts
 - More difficult to implement
 - ETL effort grows alarmingly with each additional major source
- Advantage
 - Very powerful device
 - Planning
 - Defining the overall data architecture for the warehouse
 - Prioritize which dimensions should be tackled first
 - Communication
 - Visually conveys the entire plan at once


23

Data Warehouse Bus Architecture Conformed dimensions


Option 1: Identical dimensions with the same keys, labels, definitions and values

Sales Schema


Inventory Schema

Conformed dimensions

- Conformed dimensions
 - Subset of the most granular, detailed dimension
 - Roll-up dimensions conform to the base-level atomic dimension

٠	Example	rollup	dimens	ion
---	---------	--------	--------	-----

		Product Di	mension	Brand rollup Dimension					
product key	description	SKU number	brand	category	department	brand key	/ brand	category	department
30		48530259240	Big Can	Drinks	Grocery	-	Big Can	Drinks	Grocery
8	Fizzy Light	33411763259	Big Can	Drinks	Grocery	1	2 National Bottle	Drinks	Grocery
9	Fizzy Classic	95946398896	Big Can	Drinks	Grocery	:	American Corn	Food	Grocery
10	Athletic Drink	88602993232	Big Can	Drinks	Grocery	4	Chewy Industries	Food	Grocery
28	Fizzy Light	92822703206	Big Can	Drinks	Grocery		1		
29	Fizzy Classic	74695428497	Big Can	Drinks	Grocery	5	/		
48	Fizzy Light	59632819867	Big Can	Drinks	Grocery	120	1		
49	Fizzy Classic	64758233722	Big Can	Drinks	Grocery	1.5	A.		
50	Athletic Drink	63998140597	Big Can	Drinks	Grocery				
52	Clear Refresher	26124581284	National Bottle	Drinks	Grocery	(0)			
51	Strong Cola	78532224693	National Bottle	Drinks	Grocery	\sim			
11	Strong Cola	59015963215	National Bottle	Drinks	Grocery				
12	Clear Refresher	94794170004	National Bottle	Drinks	Grocery				
31	Strong Cola	10478516528	National Bottle	Drinks	Grocery				
32	Clear Refresher	89835195915	National Bottle	Drinks	Grocery				
16	Salty Corn	80323441322	American Corn	Food	Grocery				
56	Salty Corn	21628878100	American Corn	Food	Grocery				
36	Salty Corn	54983505685	American Corn	Food	Grocery				
37	Dried Grits	11184804406	American Corn	Food	Grocery				
38	Power Chips	51364643658	American Corn	Food	Grocery				
17	Dried Grits	15536655574	American Corn	Food	Grocery				
57	Dried Grits	55681968175	American Corn	Food	Grocery				
58	Power Chips	43992125296	American Corn	Food	Grocery				
18	Power Chips	44513822387	American Corn	Food	Grocery				
27	Sweet Tooth	10787621276	Chewy Industries	Food	Grocery				
7	Sweet Tooth	51770124461	Chewy Industries	Food	Grocerv	100			

- Conformed dimension subsetting
 - Two dimensions are the same level of detail
 - One represents only a subset of rows

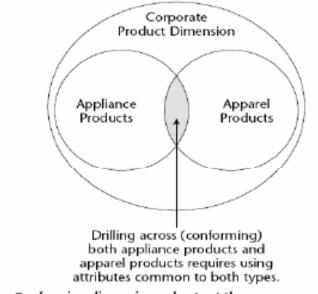


Figure 3.10 Conforming dimension subsets at the same granularity.

- Dimension authority
 - Responsibility for each conformed dimension
 - · for defining, maintaining, and publishing

Conformed Facts

- If facts exist in more than one place
 - then they must have the same name, units, and definition
- If two facts are different
 - then give them different names

Summary

- Dimensional models for the three complementary view of inventory
 - Inventory Periodic Snapshot
 - Inventory Transactions
 - Inventory Accumulating Snapshot
- introduced key concepts
 - The data warehouse bus architecture and matrix
 - Conformed dimensions, the bus and the matrix