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Bayesian Networks

Outline of the Course

section key concepts

I. Probabilistic Independence
and Separation in Graphs

Prob. independence,
separation in graphs,
Markov and Bayesian
Network

II. Inference Exact inference, Approx.
inference

III. Learning Parameter Learning,
Parameter Learning with
missing values, Learning
structure by
Constrained-based
Learning, Learning
Structure by Local Search
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Bayesian Networks / 1. Basic Probability Calculus

Joint probability distributions

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113

Figure 1: Joint probability distribution p(P, W, V,A) of four random variables P (pain), W (weight-
loss), V (vomiting) and A (adeno).
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Bayesian Networks / 1. Basic Probability Calculus

Joint probability distributions

Discrete JPDs are described by

• nested tables,

• multi-dimensional arrays,

• data cubes, or

• tensors

having entries in [0, 1] and summing to 1.
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Bayesian Networks / 1. Basic Probability Calculus

Marginal probability distributions

Definition 1. Let p be a the joint probability of the random vari-
ables X := {X1, . . . , Xn} and Y ⊆ X a subset thereof. Then

p(Y = y) := p↓Y(y) :=
∑

x∈domX\Y
p(X \ Y = x,Y = y)

is a probability distribution of Y called marginal probability dis-
tribution.

Example 1. Marginal p(V, A):

Vomiting Y N
Adeno Y 0.350 0.350

N 0.090 0.210

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113
Figure 2: Joint probability distribution p(P, W, V,A) of four random variables P (pain), W (weight-
loss), V (vomiting) and A (adeno).
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Bayesian Networks / 1. Basic Probability Calculus

Marginal probability distributions / example
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Figure 3: Joint probability distribution and all of its marginals [?, p. 75].
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Bayesian Networks / 1. Basic Probability Calculus

Extreme and non-extreme probability distributions

Definition 2. By p > 0 we mean

p(x) > 0, for all x ∈
∏

dom(p)

Then p is called non-extreme.

Example 2. (
0.4 0.0
0.3 0.3

) (
0.4 0.1
0.2 0.3

)
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Bayesian Networks / 1. Basic Probability Calculus

Conditional probability distributions

Definition 3. For a JPD p and a subset Y ⊆ dom(p) of its
variables with p↓Y > 0 we define

p|Y :=
p

p↓Y

as conditional probability distribution of p w.r.t. Y.

A conditional probability distribution w.r.t. Y sums to 1 for
all fixed values of Y, i.e.,

(p|Y)↓Y ≡ 1
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Bayesian Networks / 1. Basic Probability Calculus

Conditional probability distributions / example

Example 3. Let p be the JPD

p :=

(
0.4 0.1
0.2 0.3

)
on two variables R (rows) and C (columns) with the do-
mains dom(R) = dom(C) = {1, 2}.

The conditional probability distribution w.r.t. C is

p|C :=

(
2/3 1/4
1/3 3/4

)
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Bayesian Networks / 1. Basic Probability Calculus

Chain rule

Lemma 1 (Chain rule). Let p be a JPD on variables X1, X2, . . . , Xn

with p(X1, . . . , Xn−1) > 0. Then

p(X1, X2, . . . , Xn) = p(Xn|X1, . . . , Xn−1) · · · p(X2|X1) · p(X1)

The chain rule provides a factorization of the JPD in some of its
conditional marginals.

The factorizations stemming from the chain rule are trivial
as they have as many parameters as the original JPD:

#parameters = 2n−1 + 2n−2 + · · · + 21 + 20 = 2n − 1

(example computation for all binary variables)
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Bayesian Networks / 1. Basic Probability Calculus

Bayes formula

Lemma 2 (Bayes Formula). Let p be a JPD and X ,Y be two dis-
joint sets of its variables. Let p(Y) > 0. Then

p(X |Y) =
p(Y |X ) · p(X )

p(Y)

Thomas Bayes (1701/2–1761)
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Bayesian Networks / 1. Basic Probability Calculus

Independent variables

Definition 4. Two sets X ,Y of variables are called inde-
pendent, when

p(X = x,Y = y) = p(X = x) · p(Y = y)

for all x and y or equivalently

p(X = x|Y = y) = p(X = x)

for y with p(Y = y) > 0.
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Bayesian Networks / 1. Basic Probability Calculus

Independent variables / example

Example 4. Let Ω be the cards in an ordinary deck and

• R = true, if a card is royal,

• T = true, if a card is a ten or a jack,

• S = true, if a card is spade.

Cards for a single color:
2 4 5 6 7 8 9 J Q AK3 10

ROYALS

S R T p(R, T |S)

Y Y Y 1/13
N 2/13

N Y 1/13
N 9/13

N Y Y 3/39 = 1/13
N 6/39 = 2/13

N Y 3/39 = 1/13
N 27/39 = 9/13

R T p(R, T )

Y Y 4/52 = 1/13
N 8/52 = 2/13

N Y 4/52 = 1/13
N 36/52 = 9/13
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Bayesian Networks / 1. Basic Probability Calculus

Conditionally independent variables

Definition 5. Let X ,Y, and Z be sets of variables.

X ,Y are called conditionally independent given Z,
when for all events Z = z with p(Z = z) > 0 all pairs
of events X = x and Y = y are conditionally independend
given Z = z, i.e.

p(X = x,Y = y,Z = z) =
p(X = x,Z = z) · p(Y = y,Z = z)

p(Z = z)

for all x, y and z (with p(Z = z) > 0), or equivalently

p(X = x|Y = y,Z = z) = p(X = x|Z = z)

We write Ip(X ,Y|Z) for the statement, that X and Y are
conditionally independent given Z.
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Bayesian Networks / 1. Basic Probability Calculus

Conditionally independent variables

Example 5. Assume S (shape), C (color), and L (label) be three random variables
that are distributed as shown in figure 4.

We show Ip({L}, {S}|{C}), i.e., that label and shape are conditionally independent
given the color.

C S L p(L|C, S)

black square 1 2/6 = 1/3
2 4/6 = 2/3

round 1 1/3
2 2/3

white square 1 1/2
2 1/2

round 1 1/2
2 1/2

C L p(L|C)

black 1 3/9 = 1/3
2 6/9 = 2/3

white 1 2/4 = 1/2
2 2/4 = 1/2

aaQQ
.........

Figure 4: 13 objects with different shape, color, and label [?, p. 8].
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Bayesian Networks

1. Basic Probability Calculus

2. Separation in undirected graphs
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Bayesian Networks / 2. Separation in undirected graphs

Graphs

Definition 6. Let V be any set and

E ⊆ P2(V ) := {{x, y} |x, y ∈ V }
be a subset of sets of unordered pairs of
V . Then G := (V, E) is called an undi-
rected graph. The elements of V are
called vertices or nodes, the elements
of E edges.

Let e = {x, y} ∈ E be an edge, then
we call the vertices x, y incident to the
edge e.
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Figure 5: Example graph.
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Bayesian Networks / 2. Separation in undirected graphs

Graphs Representation

The most useful methods of representing graphs are:

• Symbolically as (V, E)

• Pictorially

• Numerically, using certain types of matrices
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Bayesian Networks / 2. Separation in undirected graphs

Characteristics of Undirected Graphs

Definition 7. We call two vertices x, y ∈
V adjacent, or neighbors if there is an
edge {x, y} ∈ E.

The set of all vertices adjacent with a
given vertex x ∈ V is called its fan or
boundary:

fan(x) := {y ∈ V | {x, y} ∈ E}
Figure 6: Neighbors of node E [?, p. 120].

Figure 7: Boundary of the set {D, E}[?, p. 120].
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Bayesian Networks / 2. Separation in undirected graphs

Characteristics of Undirected Graphs

Definition 8. Let G = (V, E) be an
undirected graph. An undirected graph
GX = (X, EX) is called a subgraph of G
iff X ⊆ V and EX = (X ×X) ∩ E

An undirected graph is said to be com-
plete iff its set of edges is complete, i.e.
iff all possible edges are present, or for-
mally iff E = V × V − {(A, A)|A ∈ V }

A complete subgraph is called a clique.
A clique is called maximal iff it is not a
subgraph of a larger clique.

Figure 8: Example of complete graph [?, p. 118].

Figure 9: Example of cliques[?, p. 119].
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Bayesian Networks / 2. Separation in undirected graphs

Paths on graphs

Definition 9. Let V be a set. We call
V ∗ :=

⋃
i∈N V i the set of finite se-

quences in V . The length of a se-
quence s ∈ V ∗ is denoted by |s|.

Let G = (V, E) be a graph. We call

G∗ := V ∗|G := {p ∈ V ∗ | {pi, pi+1} ∈ E,

i = 1, . . . , |p| − 1}
the set of paths on G.

Any contiguous subsequence of a path
p ∈ G∗ is called a subpath of p, i.e. any
path (pi, pi+1, . . . , pj) with 1 ≤ i ≤ j ≤ n.
The subpath (p2, p3, . . . , pn−1) is called
the interior of p. A path of length |p| ≥ 2
is called proper.
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Figure 10: Example graph.
The sequences

(A, D, G, H)

(C, E,B,D)

(F )

are paths on G, but the sequences
(A, D, E, C)

(A, H,C, F )

are not.
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Bayesian Networks / 2. Separation in undirected graphs

Types of Undirected Graphs

Definition 10. Let G = (V, E) be an
undirected graph. Two distinct nodes
A, B ∈ V are called connected in G iff
there exists at least one path between
every two nodes.

A connected undirected graph is said to
be a tree if for every pair of nodes there
exists a unique path.

A connected undirected graph is called
multiply-connected if it contains at
least one pair of nodes that are joined
by more than one path.

Figure 11: Disconnected graph [?, p. 121].

Figure 12: Examples of a tree and a multiply-
connected graph [?, p. 122].
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Bayesian Networks / 2. Separation in undirected graphs

Separation in graphs (u-separation)

Definition 11. Let G := (V, E) be a
graph. Let Z ⊆ V be a subset of ver-
tices. We say, two vertices x, y ∈ V are
u-separated by Z in G, if every path
from x to y contains some vertex of Z
(∀p ∈ G∗ : p1 = x, p|p| = y ⇒ ∃i ∈
{1, . . . , n} : pi ∈ Z).

Let X, Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are u-separated by Z in G, if ev-
ery path from any vertex from X to any
vertex from Y is separated by Z, i.e.,
contains some vertex of Z.

We write IG(X, Y |Z) for the statement,
that X and Y are u-separated by Z in
G.
IG is called u-separation relation in G.

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 13: Example for u-separation [?, p. 179].
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Bayesian Networks / 2. Separation in undirected graphs

Separation in graphs (u-separation)

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 14: More examples for u-separation [?, p. 179].
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Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 12. Let V be any set and I a ternary relation on P(V ), i.e., I ⊆ (P(V ))3.

I is called symmetric, if
I(X, Y |Z)⇒ I(Y, X|Z)

I is called decomposable, if

I(X, Y ∪W |Z)⇒ I(X, Y |Z) and I(X, W |Z)

I is called composable, if

I(X, Y |Z) and I(X, W |Z)⇒ I(X, Y ∪W |Z)186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 15: Examples for a) symmetry and b) decomposition [?, p. 186].
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Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 13. I is called strongly unionable, if

I(X, Y |Z)⇒ I(X, Y |Z ∪W )

I is called weakly unionable, if

I(X, Y ∪W |Z)⇒ I(X, W |Z ∪ Y ) and I(X, Y |Z ∪W )

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 16: Examples for a) strong union and b) weak union [?, p. 186,189].
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Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 14. I is called contractable, if

I(X, W |Z ∪ Y ) and I(X, Y |Z)⇒ I(X, Y ∪W |Z)

I is called intersectable, if

I(X, W |Z ∪ Y ) and I(X, Y |Z ∪W )⇒ I(X, Y ∪W |Z)

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 17: Examples for a) contraction and b) intersection [?, p. 186].
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Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 15. I is called strongly transitive, if

I(X, Y |Z)⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

I is called weakly transitive, if

I(X, Y |Z) and I(X, Y |Z ∪ {v})⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 18: Examples for a) strong transitivity and b) weak transitivity. [?, p. 189]
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Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 16. I is called chordal, if

I({a}, {c}|{b, d}) and I({b}, {d}|{a, c})⇒ I({a}, {c}|{b}) or I({a}, {c}|{d})

a

b d

c

&

a

b d

c

⇒

a

b d

c

or

a

b d

c

Figure 19: Example for chordality.
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Bayesian Networks / 2. Separation in undirected graphs

Properties of u-separation / no chordality

For u-separation the chordality property does not hold (in general).

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 20: Counterexample for chordality in undirected graphs (u-separation) [?, p. 189].
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Bayesian Networks / 2. Separation in undirected graphs

Properties of u-separation
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Bayesian Networks / 2. Separation in undirected graphs

Breadth-First Search

Idea:

• start with initial node as border.

• iteratively replace border by all nodes reachable from the old
border.
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Bayesian Networks / 2. Separation in undirected graphs

Breadth-First Search / Example
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Bayesian Networks / 2. Separation in undirected graphs

Breadth-First Search / Example
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Bayesian Networks / 2. Separation in undirected graphs

Breadth-First Search / Example
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Bayesian Networks / 2. Separation in undirected graphs

Checking u-separation

To test, if for a given graph G = (V, E)
two given sets X, Y ⊆ V of vertices
are u-separated by a third given set
Z ⊆ V of vertices, we may use standard
breadth-first search to compute all ver-
tices that can be reached from X (see,
e.g., [?], [?]).

1 breadth-first search(G, X) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached
7 od
8 return reached

Figure 24: Breadth-first search algorithm for
enumerating all vertices reachable from X.

For checking u-separation we have to
tweak the algorithm

1. not to add vertices from Z to the bor-
der and

2. to stop if a vertex of Y has been
reached.
1 check-u-separation(G, X, Y, Z) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached \ Z
7 if border ∩ Y 6= ∅
8 return false
9 fi

10 od
11 return true

Figure 25: Breadth-first search algorithm for
checking u-separation of X and Y by Z.
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