Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

Bayesian Networks

I. Bayesian Networks / 1. Probabilistic Independence and Separation in Graphs

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza
Information Systems and Machine Learning Lab (ISMLL)
Institute of Economics and Information Systems
\& Institute of Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

Outline of the Course

section

I. Probabilistic Independence and Separation in Graphs
II. Inference
III. Learning
key concepts
Prob. independence, separation in graphs, Markov and Bayesian Network

Exact inference, Approx. inference

Parameter Learning, Parameter Learning with missing values, Learning structure by
Constrained-based
Learning, Learning Structure by Local Search

1. Basic Probability Calculus

2. Separation in undirected graphs

2003

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 1: Joint probability distribution $p(P, W, V, A)$ of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Discrete JPDs are described by

- nested tables,
- multi-dimensional arrays,
- data cubes, or
- tensors
having entries in $[0,1]$ and summing to 1 .

Marginal probability distributions

2003
Definition 1. Let p be a the joint probability of the random variables $\mathcal{X}:=\left\{X_{1}, \ldots, X_{n}\right\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$
p(\mathcal{Y}=y):=p^{\downarrow \mathcal{Y}}(y):=\sum_{x \in \operatorname{dom} \mathcal{X} \backslash \mathcal{Y}} p(\mathcal{X} \backslash \mathcal{Y}=x, \mathcal{Y}=y)
$$

is a probability distribution of \mathcal{Y} called marginal probability distribution.

Example 1. Marginal $p(V, A)$:

Vomiting	Y	N
Adeno Y	0.350	0.350
N	0.090	0.210

Pain	Y			N				
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 2: Joint probability distribution $p(P, W, V, A)$ of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Marginal probability distributions / example

Figure 3: Joint probability distribution and all of its marginals [?, p. 75].
Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

Extreme and non-extreme probability distributions

Definition 2. By $p>0$ we mean

$$
p(x)>0, \quad \text { for all } x \in \prod \operatorname{dom}(p)
$$

Then p is called non-extreme.

Example 2.

$$
\left(\begin{array}{ll}
0.4 & 0.0 \\
0.3 & 0.3
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)
$$

Definition 3. For a JPD p and a subset $\mathcal{Y} \subseteq \operatorname{dom}(p)$ of its variables with $p^{\downarrow \mathcal{Y}}>0$ we define

$$
p^{\mid \mathcal{Y}}:=\frac{p}{p^{\downarrow \mathcal{Y}}}
$$

as conditional probability distribution of p w.r.t. \mathcal{Y}.

A conditional probability distribution w.r.t. \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y}, i.e.,

$$
\left(p^{\mid \mathcal{V}}\right)^{\downarrow \mathcal{Y}} \equiv 1
$$

Conditional probability distributions / example

Example 3. Let p be the JPD

$$
p:=\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)
$$

on two variables R (rows) and C (columns) with the domains $\operatorname{dom}(R)=\operatorname{dom}(C)=\{1,2\}$.

The conditional probability distribution w.r.t. C is

$$
p^{\mid C}:=\left(\begin{array}{ll}
2 / 3 & 1 / 4 \\
1 / 3 & 3 / 4
\end{array}\right)
$$

Chain rule

Lemma 1 (Chain rule). Let p be a JPD on variables $X_{1}, X_{2}, \ldots, X_{n}$ with $p\left(X_{1}, \ldots, X_{n-1}\right)>0$. Then

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \cdots p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

The chain rule provides a factorization of the JPD in some of its conditional marginals.

The factorizations stemming from the chain rule are trivial as they have as many parameters as the original JPD:

$$
\# \text { parameters }=2^{n-1}+2^{n-2}+\cdots+2^{1}+2^{0}=2^{n}-1
$$

(example computation for all binary variables)

Bayes formula

Lemma 2 (Bayes Formula). Let p be a JPD and \mathcal{X}, \mathcal{Y} be two disjoint sets of its variables. Let $p(\mathcal{Y})>0$. Then

$$
p(\mathcal{X} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathcal{X}) \cdot p(\mathcal{X})}{p(\mathcal{Y})}
$$

Thomas Bayes (1701/2-1761)

Definition 4. Two sets \mathcal{X}, \mathcal{Y} of variables are called independent, when

$$
p(\mathcal{X}=x, \mathcal{Y}=y)=p(\mathcal{X}=x) \cdot p(\mathcal{Y}=y)
$$

for all x and y or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y)=p(\mathcal{X}=x)
$$

for y with $p(\mathcal{Y}=y)>0$.

Example 4. Let Ω be the cards in an ordinary deck and

- $R=$ true, if a card is royal,
- $T=$ true, if a card is a ten or a jack,
- $S=$ true, if a card is spade.

Cards for a single color:

S	R	T	$p(R, T \mid S)$
Y	Y	Y	$1 / 13$
		N	$2 / 13$
	N	Y	$1 / 13$
		N	$9 / 13$
N	Y	Y	$3 / 39=1 / 13$
		N	$6 / 39=2 / 13$
	N	Y	$3 / 39=1 / 13$
		N	$27 / 39=9 / 13$

R	T	$p(R, T)$
Y	Y	$4 / 52=1 / 13$
	N	$8 / 52=2 / 13$
N	Y	$4 / 52=1 / 13$
	N	$36 / 52=9 / 13$

Conditionally independent variables

Definition 5. Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be sets of variables.
\mathcal{X}, \mathcal{Y} are called conditionally independent given \mathcal{Z}, when for all events $\mathcal{Z}=z$ with $p(\mathcal{Z}=z)>0$ all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are conditionally independend given $\mathcal{Z}=z$, i.e.
$p(\mathcal{X}=x, \mathcal{Y}=y, \mathcal{Z}=z)=\frac{p(\mathcal{X}=x, \mathcal{Z}=z) \cdot p(\mathcal{Y}=y, \mathcal{Z}=z)}{p(\mathcal{Z}=z)}$
for all x, y and z (with $p(\mathcal{Z}=z)>0$), or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y, \mathcal{Z}=z)=p(\mathcal{X}=x \mid \mathcal{Z}=z)
$$

We write $I_{p}(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z}.

Conditionally independent variables

Example 5. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 4.

We show $I_{p}(\{L\},\{S\} \mid\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	$p(L \mid C, S)$
black	square	1	$2 / 6=1 / 3$
		2	$4 / 6=2 / 3$
	round	1	$1 / 3$
	2	$2 / 3$	
white	square	1	$1 / 2$
	2	$1 / 2$	
	round	1	$1 / 2$
	2	$1 / 2$	

C	L	$p(L \mid C)$
black	1	$3 / 9=1 / 3$
	2	$6 / 9=2 / 3$
white	1	$2 / 4=1 / 2$
	2	$2 / 4=1 / 2$

Figure 4: 13 objects with different shape, color, and label [?, p. 8].

1. Basic Probability Calculus

2. Separation in undirected graphs

Graphs

Definition 6. Let V be any set and

$$
E \subseteq \mathcal{P}^{2}(V):=\{\{x, y\} \mid x, y \in V\}
$$

be a subset of sets of unordered pairs of V. Then $G:=(V, E)$ is called an undirected graph. The elements of V are called vertices or nodes, the elements of E edges.

Let $e=\{x, y\} \in E$ be an edge, then we call the vertices x, y incident to the edge e.

Figure 5: Example graph.

Graphs Representation

2003

The most useful methods of representing graphs are:

- Symbolically as (V, E)
- Pictorially
- Numerically, using certain types of matrices

Definition 7. We call two vertices $x, y \in$ V adjacent, or neighbors if there is an edge $\{x, y\} \in E$.

The set of all vertices adjacent with a given vertex $x \in V$ is called its fan or boundary:

$$
\operatorname{fan}(x):=\{y \in V \mid\{x, y\} \in E\}
$$

Figure 6: Neighbors of node E [?, p. 120].

Figure 7: Boundary of the set $\{D, E\}[\mathbf{?}, \mathrm{p} .120]$.

Definition 8. Let $G=(V, E)$ be an undirected graph. An undirected graph $G_{X}=\left(X, E_{X}\right)$ is called a subgraph of G iff $X \subseteq V$ and $E_{X}=(X \times X) \cap E$

An undirected graph is said to be complete iff its set of edges is complete, i.e. iff all possible edges are present, or formally iff $E=V \times V-\{(A, A) \mid A \in V\}$

A complete subgraph is called a clique. A clique is called maximal iff it is not a subgraph of a larger clique.

Figure 8: Example of complete graph [?, p. 118].

Figure 9: Example of cliques[?, p. 119].

Paths on graphs

2003

Definition 9. Let V be a set. We call $V^{*}:=\bigcup_{i \in \mathbb{N}} V^{i}$ the set of finite sequences in V. The length of a sequence $s \in V^{*}$ is denoted by $|s|$.

Let $G=(V, E)$ be a graph. We call

$$
\begin{aligned}
G^{*}:=V_{\mid G}^{*}:=\left\{p \in V^{*} \mid\right. & \left\{p_{i}, p_{i+1}\right\} \in E, \\
& i=1, \ldots,|p|-1\}
\end{aligned}
$$

the set of paths on G.

Any contiguous subsequence of a path $p \in G^{*}$ is called a subpath of p, i.e. any path $\left(p_{i}, p_{i+1}, \ldots, p_{j}\right)$ with $1 \leq i \leq j \leq n$. The subpath $\left(p_{2}, p_{3}, \ldots, p_{n-1}\right)$ is called the interior of p. A path of length $|p| \geq 2$ is called proper.

Figure 10: Example graph.
The sequences
(A, D, G, H)
(C, E, B, D)
(F)
are paths on G, but the sequences
(A, D, E, C)
(A, $H, C, F)$

Types of Undirected Graphs

Definition 10. Let $G=(V, E)$ be an undirected graph. Two distinct nodes $A, B \in V$ are called connected in G iff there exists at least one path between every two nodes.

A connected undirected graph is said to be a tree if for every pair of nodes there exists a unique path.

A connected undirected graph is called multiply-connected if it contains at least one pair of nodes that are joined by more than one path.

Figure 11: Disconnected graph [?, p. 121].

Figure 12: Examples of a tree and a multiplyconnected graph [?, p. 122].

Separation in graphs (u-separation)

Definition 11. Let $G:=(V, E)$ be a graph. Let $Z \subseteq V$ be a subset of vertices. We say, two vertices $x, y \in V$ are u-separated by Z in G, if every path from x to y contains some vertex of Z $\left(\forall p \in G^{*}: p_{1}=x, p_{|p|}=y \Rightarrow \exists i \in\right.$ $\left.\{1, \ldots, n\}: p_{i} \in Z\right)$.

Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices X and Y are u-separated by Z in G, if every path from any vertex from X to any vertex from Y is separated by Z, i.e., contains some vertex of Z.

We write $I_{G}(X, Y \mid Z)$ for the statement, that X and Y are u-separated by Z in G.
I_{G} is called u-separation relation in G.

Figure 13: Example for u-separation [?, p. 179].

Bayesian Networks / 2. Separation in undirected graphs
Separation in graphs (u-separation)
2003

Figure 14: More examples for u-separation [?, p. 179].

Properties of ternary relations

Definition 12. Let V be any set and I a ternary relation on $\mathcal{P}(V)$, i.e., $I \subseteq(\mathcal{P}(V))^{3}$.
I is called symmetric, if

$$
I(X, Y \mid Z) \Rightarrow I(Y, X \mid Z)
$$

I is called decomposable, if

$$
I(X, Y \cup W \mid Z) \Rightarrow I(X, Y \mid Z) \text { and } I(X, W \mid Z)
$$

I is called composable, if

$$
I(X, Y \mid Z) \text { and } I(X, W \mid Z) \Rightarrow I(X, Y \cup W \mid Z)
$$

Figure 15: Examples for a) symmetry and b) decomposition [?, p. 186].

Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 13. I is called strongly unionable, if

$$
I(X, Y \mid Z) \Rightarrow I(X, Y \mid Z \cup W)
$$

I is called weakly unionable, if

$$
I(X, Y \cup W \mid Z) \Rightarrow I(X, W \mid Z \cup Y) \text { and } I(X, Y \mid Z \cup W)
$$

Figure 16: Examples for a) strong union and b) weak union [?, p. 186,189].

Bayesian Networks / 2. Separation in undirected graphs

Properties of ternary relations

Definition 14. I is called contractable, if

$$
I(X, W \mid Z \cup Y) \text { and } I(X, Y \mid Z) \Rightarrow I(X, Y \cup W \mid Z)
$$

I is called intersectable, if

$$
I(X, W \mid Z \cup Y) \text { and } I(X, Y \mid Z \cup W) \Rightarrow I(X, Y \cup W \mid Z)
$$

Figure 17: Examples for a) contraction and b) intersection [?, p. 186].

Properties of ternary relations

Definition 15. I is called strongly transitive, if

$$
I(X, Y \mid Z) \Rightarrow I(X,\{v\} \mid Z) \text { or } I(\{v\}, Y \mid Z) \quad \forall v \in V \backslash Z
$$

I is called weakly transitive, if

$$
I(X, Y \mid Z) \text { and } I(X, Y \mid Z \cup\{v\}) \Rightarrow I(X,\{v\} \mid Z) \text { or } I(\{v\}, Y \mid Z) \quad \forall v \in V \backslash Z
$$

Figure 18: Examples for a) strong transitivity and b) weak transitivity. [?, p. 189]

Properties of ternary relations

Definition 16. I is called chordal, if
$I(\{a\},\{c\} \mid\{b, d\})$ and $I(\{b\},\{d\} \mid\{a, c\}) \Rightarrow I(\{a\},\{c\} \mid\{b\})$ or $I(\{a\},\{c\} \mid\{d\})$

Figure 19: Example for chordality.

Bayesian Networks / 2. Separation in undirected graphs

Properties of u-separation / no chordality

For u-separation the chordality property does not hold (in general).

Figure 20: Counterexample for chordality in undirected graphs (u-separation) [?, p. 189].

Bayesian Networks / 2. Separation in undirected graphs
Properties of u-separation

2003

Breadth-First Search

Idea:

- start with initial node as border.
- iteratively replace border by all nodes reachable from the old border.

Breadth-First Search / Example

Bayesian Networks / 2. Separation in undirected graphs

Breadth-First Search / Example

Bayesian Networks / 2. Separation in undirected graphs

Breadth-First Search / Example

Checking u-separation

To test, if for a given graph $G=(V, E)$ two given sets $X, Y \subseteq V$ of vertices are u-separated by a third given set $Z \subseteq V$ of vertices, we may use standard breadth-first search to compute all vertices that can be reached from X (see, e.g., [?], [?]).

```
l breadth-first search(G,X) :
2 border := X
3 reached :=\emptyset
4 while border }\not=\emptyset\underline{\mathrm{ do}
5 reached := reached }\cup\mathrm{ border
6 border := fan }\mp@subsup{G}{G}{(\mathrm{ border ) \ reached}
7 Od
8 return reached
```

For checking u-separation we have to tweak the algorithm

1. not to add vertices from Z to the border and
2. to stop if a vertex of Y has been reached.

1 check-u-separation (G, X, Y, Z) :
2 border $:=X$
3 reached $:=\emptyset$
4 while border $\neq \emptyset$ do
5 reached $:=$ reached \cup border
$6 \quad$ border $:=\operatorname{fan}_{G}$ (border) \backslash reached $\backslash Z$
$7 \quad$ if border $\cap Y \neq \emptyset$
return false
fi
10 od
11 return true
Figure 25: Breadth-first search algorithm for checking u-separation of X and Y by Z.

