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Bayesian Networks

1. Basic Probability Calculus

2. Separation in undirected graphs

3. Separation in directed graphs
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Bayesian Networks / 3. Separation in directed graphs

Directed graphs

Definition 1. Let V be any set and

E ⊆ V × V

be a subset of sets of ordered pairs of
V . Then G := (V, E) is called a directed
graph. The elements of V are called
vertices or nodes, the elements of E
edges.

Let e = (x, y) ∈ E be an edge, then
we call the vertices x, y incident to the
edge e. We call two vertices x, y ∈ V
adjacent, if there is an edge (x, y) ∈ E
or (y, x) ∈ E.

The set of all vertices with an edge from
a given vertex x ∈ V is called its fanout:

fanout(x) := {y ∈ V | (x, y) ∈ E}

The set of all vertices with an edge to a
given vertex x ∈ V is called its fanin:

fanin(x) := {y ∈ V | (y, x) ∈ E}
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Figure 1: Fanin (orange) and fanout (green) of a
node (blue).
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Bayesian Networks / 3. Separation in directed graphs

Paths on directed graphs

Definition 2. Let G = (V, E) be a di-
rected graph. We call
G∗ := V ∗|G := {p ∈ V ∗ | (pi, pi+1) ∈ E,

i = 1, . . . , |p| − 1}
the set of paths on G. For two vertices
x, y ∈ V we denote by

G∗[x,y] := {p ∈ V ∗|G | p1 = x, p|p| = y}
the set of paths from x to y.

The notions of subpath, interior, and
proper path carry over to directed
graphs.

A proper path p = (p1, . . . , pn) ∈ G∗ with
p1 = pn is called cyclic. A path without
cyclic subpath is called a simple path.
A graph without a cyclic path is called
directed acyclig graph (DAG).
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Figure 2: Example for a cycle.
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Bayesian Networks / 3. Separation in directed graphs

Paths on directed graphs (2/2)

Definition 3. For a DAG G vertices of
the fanout are also called children
child(x) := fanout(x) := {y ∈ V | (x, y) ∈ E}
and the vertices of the fanin parents:
pa(x) := fanin(x) := {y ∈ V | (y, x) ∈ E}

Vertices y with a proper path from y to x
are called ancestors of x:

anc(x) := {y ∈ V | ∃p ∈ G∗ : |p| ≥ 2,

p1 = y, p|p| = x}

Vertices y with a proper path from x to y
are called descendents of x:

desc(x) := {y ∈ V | ∃p ∈ G∗ : |p| ≥ 2,

p1 = x, p|p| = y}

Vertices that are not a descendent of x
are called nondescendents of x.
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Figure 3: Parents/Fanin (orange) and additional
ancestors (light orange), children/fanout (green)
and additional descendants (light green) of a
node (blue).
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Bayesian Networks / 3. Separation in directed graphs

Chains

Definition 4. Let G := (V, E) be a di-
rected graph. We can construct an
undirected pendant u(G) := (V, u(E))
of G by dropping the directions of the
edges:
u(E) := {{x, y} | (x, y) ∈ E or (y, x) ∈ E}

The paths on u(G) are called chains of
G:

GN := u(G)∗

i.e., a chain is a sequence of vertices
that are linked by a forward or a back-
ward edge. If we want to stress the di-
rections of the linking edges, we denote
a chain p = (p1, . . . , pn) ∈ GN by

p1 ← p2 → p3 ← · · · ← pn−1 → pn

The notions of length, subchain, inte-
rior and proper carry over from undi-
rected paths to chains.
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Figure 4: Chain (A, B, E, D, F ) on directed
graph and path on undirected pendant.
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Bayesian Networks / 3. Separation in directed graphs

Blocked chains

Definition 5. Let G := (V, E) be a di-
rected graph. We call a chain

p1 → p2 ← p3

a head-to-head meeting.

Let Z ⊆ V be a subset of vertices.
Then a chain p ∈ GN is called blocked
at position i by Z, if for its subchain
(pi−1, pi, pi+1) there is{

pi ∈ Z, if not pi−1 → pi ← pi+1

pi 6∈ Z ∪ anc(Z), else
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Figure 5: Chain (A, B, E, D, F ) is blocked by
Z = {B} at 2.
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Bayesian Networks / 3. Separation in directed graphs

Blocked chains / more examples
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Figure 6: Chain (A, B, E, D, F ) is blocked by
Z = ∅ at 3.
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Figure 7: Chain (A, B, E, D, F ) is not blocked by
Z = {E} at 3.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 6/17



Bayesian Networks / 3. Separation in directed graphs

Blocked chains / rationale

The notion of blocking is choosen in
a way so that chains model "flow of
causal influence" through a causal net-
work where the states of the vertices Z
are already know.

1) Serial connection / intermediate
cause:

flu

nausea

palor

flu

nausea

palor

2) Diverging connection / common
cause:

flu

nausea fever

flu

nausea fever

3) Converging connection / common ef-
fect:

flu salmonella

nausea

palor

flu salmonella

nausea

palor

Models "discounting" [Nea03, p. 51].
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Bayesian Networks / 3. Separation in directed graphs

The moral graph

Definition 6. Let G := (V, E) be a DAG.

As the moral graph of G we denote the undirected skele-
ton graph of G plus additional edges between each two
parents of a vertex, i.e. moral(G) := (V, E ′) with

E ′ := u(E) ∪ {{x, y} | ∃z ∈ V : x, y ∈ pa(z)}
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Figure 9: DAG and its moral graph.Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 8/17



Bayesian Networks / 3. Separation in directed graphs

Separation in DAGs (d-separation)

Let G := (V, E) be a DAG.

Let X, Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are separated by Z in G, if
(i) every chain from any vertex from X

to any vertex from Y is blocked by Z

or equivalently

(ii) X and Y are u-separated by Z in the
moral graph of the ancestral hull of
X ∪ Y ∪ Z.

We write IG(X, Y |Z) for the statement,
that X and Y are separated by Z in G.
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Figure 10: Are the vertices A and D separated
by C in G?
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Bayesian Networks / 3. Separation in directed graphs

Separation in DAGs (d-separation) / examples
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Figure 11: A and D are separated by C in G.
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Bayesian Networks / 3. Separation in directed graphs

Separation in DAGs (d-separation) / more examples
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Figure 12: A and D are not separated by {C, G} in G.
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Bayesian Networks / 3. Separation in directed graphs

Checking d-separation

To test, if for a given graph G = (V, E)
two given sets X, Y ⊆ V of vertices are
d-separated by a third given set Z ⊆
V of vertices, we may build the moral
graph of the ancestral hull and apply the
u-separation criterion.

1 check-d-separation(G, X, Y, Z) :
2 G′ := moral(ancG(X ∪ Y ∪ Z))
3 return check-u-separation(G′, X, Y, Z)

Figure 13: Algorithm for checking d-separation
via u-separation in the moral graph.

A drawback of this algorithm is that
we have to rebuild the moral graph of
the ancestral hull whenever X or Y
changes.
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Bayesian Networks / 3. Separation in directed graphs

Checking d-separation

Instead of constructing a moral graph,
we can modify a breadth-first search
for chains to find all vertices not d-
separated from X by Z in G.

The breadth-first search must not hop
over head-to-head meetings with the
middle vertex not in Z nor having an de-
scendent in Z.

x y

z ∈ fanout(y)

z ∈ fanin(y)

if y∈Z∪anc(Z)

Figure 14: Restricted breadth-first search of
non-blocked chains.

1 enumerate-d-separation(G = (V, E), X, Z) :
2 borderForward := ∅
3 borderBackward := X \ Z
4 reached := ∅
5 while borderForward 6= ∅ or borderBackward 6= ∅ do
6 reached := reached ∪ (borderForward \ Z) ∪ borderBackward
7 borderForward := fanoutG(borderBackward ∪ (borderForward \ Z)) \ reached
8 borderBackward := faninG(borderBackward ∪ (borderForward ∩ (Z ∪ anc(Z)))) \ Z \ reached
9 od

10 return V \ reached

Figure 15: Algorithm for enumerating all vertices d-separated from X by Z in G via restricted
breadth-first search (see [Nea03, p. 80–86] for another formulation).
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Bayesian Networks / 3. Separation in directed graphs

Properties of d-separation / no strong union

For d-separation the strong union property does not hold.

I is called strongly unionable, if

I(X, Y |Z)⇒ I(X, Y |Z ∪ Z ′) for all Z ′ disjunct with X, Y

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 16: Example for strong union in undi-
rected graphs (u-separation) [CGH97, p. 189].
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Figure 17: Counterexample for strong unions in
DAGs (d-separation).
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Bayesian Networks / 3. Separation in directed graphs

Properties of d-separation / no strong transitivity

For d-separation the strong transitivity property does not hold.

I is called strongly transitive, if

I(X, Y |Z)⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 18: Example for strong transitivity in undi-
rected graphs (u-separation) [CGH97, p. 189].
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Figure 19: Counterexample for strong transitivity
in DAGs (d-separation).
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Bayesian Networks / 3. Separation in directed graphs

Properties of d-separation
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Bayesian Networks / 3. Separation in directed graphs
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