Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

## Bayesian Networks

## II. Probabilistic Independence and Separation in Graphs (part 2)

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems<br>\& Institute of Computer Science<br>University of Hildesheim<br>http://www.ismll.uni-hildesheim.de

## 1. Basic Probability Calculus

2. Separation in undirected graphs

## 3. Separation in directed graphs

Definition 1. Let $V$ be any set and

$$
E \subseteq V \times V
$$

be a subset of sets of ordered pairs of $V$. Then $G:=(V, E)$ is called a directed graph. The elements of $V$ are called vertices or nodes, the elements of $E$ edges.

Let $e=(x, y) \in E$ be an edge, then we call the vertices $x, y$ incident to the edge $e$. We call two vertices $x, y \in V$ adjacent, if there is an edge $(x, y) \in E$ or $(y, x) \in E$.

The set of all vertices with an edge from a given vertex $x \in V$ is called its fanout:

$$
\text { fanout }(x):=\{y \in V \mid(x, y) \in E\}
$$

The set of all vertices with an edge to a given vertex $x \in V$ is called its fanin:

$$
\operatorname{fanin}(x):=\{y \in V \mid(y, x) \in E\}
$$



Figure 1: Fanin (orange) and fanout (green) of a node (blue).

Paths on directed graphs

Definition 2. Let $G=(V, E)$ be a directed graph. We call

$$
\begin{aligned}
G^{*}:=V_{\mid G}^{*}:=\left\{p \in V^{*} \mid\right. & \left(p_{i}, p_{i+1}\right) \in E, \\
& \quad i=1, \ldots,|p|-1\}
\end{aligned}
$$

the set of paths on $G$. For two vertices $x, y \in V$ we denote by

$$
G_{[x, y]}^{*}:=\left\{p \in V_{\mid G}^{*} \mid p_{1}=x, p_{[p \mid}=y\right\}
$$

the set of paths from $x$ to $y$.
The notions of subpath, interior, and proper path carry over to directed graphs.

A proper path $p=\left(p_{1}, \ldots, p_{n}\right) \in G^{*}$ with $p_{1}=p_{n}$ is called cyclic. A path without cyclic subpath is called a simple path. A graph without a cyclic path is called directed acyclig graph (DAG).

Paths on directed graphs (2/2)
Definition 3. For a DAG $G$ vertices of the fanout are also called children
$\operatorname{child}(x):=\operatorname{fanout}(x):=\{y \in V \mid(x, y) \in E\}$ and the vertices of the fanin parents:

$$
\operatorname{pa}(x):=\operatorname{fanin}(x):=\{y \in V \mid(y, x) \in E\}
$$

Vertices $y$ with a proper path from $y$ to $x$ are called ancestors of $x$ :

$$
\begin{array}{r}
\operatorname{anc}(x):=\left\{y \in V \left|\exists p \in G^{*}:|p| \geq 2\right.\right. \\
\left.p_{1}=y, p_{|p|}=x\right\}
\end{array}
$$

Vertices $y$ with a proper path from $x$ to $y$ are called descendents of $x$ :

$$
\begin{array}{r}
\operatorname{desc}(x):=\left\{y \in V \left|\exists p \in G^{*}:|p| \geq 2,\right.\right. \\
\left.p_{1}=x, p_{|p|}=y\right\}
\end{array}
$$

Vertices that are not a descendent of $x$ are called nondescendents of $x$.


Figure 3: Parents/Fanin (orange) and additional ancestors (light orange), children/fanout (green) and additional descendants (light green) of a node (blue).

## Chains

Definition 4. Let $G:=(V, E)$ be a directed graph. We can construct an undirected pendant $u(G):=(V, u(E))$ of $G$ by dropping the directions of the edges:
$u(E):=\{\{x, y\} \mid(x, y) \in E$ or $(y, x) \in E\}$
The paths on $u(G)$ are called chains of $G$ :

$$
G^{\mathbf{\Delta}}:=u(G)^{*}
$$

i.e., a chain is a sequence of vertices


Figure 4: Chain $(A, B, E, D, F)$ on directed graph and path on undirected pendant.

The notions of length, subchain, interior and proper carry over from undi-

Definition 5. Let $G:=(V, E)$ be a directed graph. We call a chain

$$
p_{1} \rightarrow p_{2} \leftarrow p_{3}
$$

## a head-to-head meeting.

Let $Z \subseteq V$ be a subset of vertices. Then a chain $p \in G^{\mathbf{\Delta}}$ is called blocked at position $i$ by $Z$, if for its subchain $\left(p_{i-1}, p_{i}, p_{i+1}\right)$ there is
$\left\{p_{i} \in Z, \quad\right.$ if not $p_{i-1} \rightarrow p_{i} \leftarrow p_{i+}$


Figure 5: Chain $(A, B, E, D, F)$ is blocked by $Z=\{B\}$ at 2.

Blocked chains / more examples


Figure 6: Chain $(A, B, E, D, F)$ is blocked by $Z=\emptyset$ at 3 .


Figure 7: Chain $(A, B, E, D, F)$ is not blocked by $Z=\{E\}$ at 3.

The notion of blocking is choosen in a way so that chains model "flow of causal influence" through a causal network where the states of the vertices $Z$ are already know.

1) Serial connection / intermediate cause:

2) Diverging connection / common cause:

3) Converging connection / common effect:


Models "discounting" [Nea03, p. 51].

Definition 6. Let $G:=(V, E)$ be a DAG.
As the moral graph of $G$ we denote the undirected skeleton graph of $G$ plus additional edges between each two parents of a vertex, i.e. $\operatorname{moral}(G):=\left(V, E^{\prime}\right)$ with

$$
E^{\prime}:=u(E) \cup\{\{x, y\} \mid \exists z \in V: x, y \in \operatorname{pa}(z)\}
$$



Separation in DAGs (d-separation)

Let $G:=(V, E)$ be a DAG.
Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices $X$ and $Y$ are separated by $Z$ in $G$, if
(i) every chain from any vertex from $X$ to any vertex from $Y$ is blocked by $Z$ or equivalently
(ii) $X$ and $Y$ are u-separated by $Z$ in the moral graph of the ancestral hull of $X \cup Y \cup Z$.

We write $I_{G}(X, Y \mid Z)$ for the statement, that $X$ and $Y$ are separated by $Z$ in $G$.


Figure 10: Are the vertices $A$ and $D$ separated by $C$ in $G$ ?

Bayesian Networks / 3. Separation in directed graphs
Separation in DAGs (d-separation) / examples


Figure 11: $A$ and $D$ are separated by $C$ in $G$.

Bayesian Networks / 3. Separation in directed graphs
Separation in DAGs (d-separation) / more examples


Figure 12: $A$ and $D$ are not separated by $\{C, G\}$ in $G$.

To test, if for a given graph $G=(V, E)$ two given sets $X, Y \subseteq V$ of vertices are d-separated by a third given set $Z \subseteq$ $V$ of vertices, we may build the moral graph of the ancestral hull and apply the u-separation criterion.

1 check-d-separation $(G, X, Y, Z)$ :
$2 G^{\prime}:=\operatorname{moral}\left(\operatorname{anc}_{G}(X \cup Y \cup Z)\right)$
${ }_{3}$ return check-u-separation $\left(G^{\prime}, X, Y, Z\right)$
Figure 13: Algorithm for checking d-separation via u-separation in the moral graph.

A drawback of this algorithm is that we have to rebuild the moral graph of the ancestral hull whenever $X$ or $Y$ changes.

Checking d-separation

Instead of constructing a moral graph, we can modify a breadth-first search for chains to find all vertices not dseparated from $X$ by $Z$ in $G$.

The breadth-first search must not hop over head-to-head meetings with the middle vertex not in $Z$ nor having an descendent in $Z$.

```
l enumerate-d-separation(G=(V,E),X,Z):
2 borderForward :=\emptyset
3 borderBackward := X\Z
4 reached :=\emptyset
5 \text { while borderForward } \neq \emptyset \text { or borderBackward } \neq \emptyset \underline { \text { do} }
6 reached := reached \cup(borderForward \Z) \cup borderBackward
7 borderForward := fanout }\mp@subsup{}{G}{}(\mathrm{ borderBackward }\cup(\mathrm{ borderForward \ Z )) \reached
8
9 Od
10 return }V\backslash\mathrm{ reached
```

Figure 15: Algorithm for enumerating all vertices d-separated from $X$ by $Z$ in $G$ via restricted breadth-first search (see [Nea03, p. 80-86] for another formulation).

## Properties of d-separation / no strong union

For d-separation the strong union property does not hold.
$I$ is called strongly unionable, if

$$
I(X, Y \mid Z) \Rightarrow I\left(X, Y \mid Z \cup Z^{\prime}\right) \quad \text { for all } Z^{\prime} \text { disjunct with } X, Y
$$



Figure 17: Counterexample for strong unions in DAGs (d-separation).

Figure 16: Example for strong union in undirected graphs (u-separation) [CGH97, p. 189].

Bayesian Networks / 3. Separation in directed graphs
Properties of d-separation / no strong transitivity

For d-separation the strong transitivity property does not hold.
$I$ is called strongly transitive, if

$$
I(X, Y \mid Z) \Rightarrow I(X,\{v\} \mid Z) \text { or } I(\{v\}, Y \mid Z) \quad \forall v \in V \backslash Z
$$



Figure 18: Example for strong transitivity in undi-
Figure 19: Counterexample for strong transitivity in DAGs (d-separation).

[CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. Expert Systems and Probabilistic Network Models. Springer, New York, 1997.
[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

