Leandri baükfj





## **Bayesian Networks**

# II. Probabilistic Independence and Separation in Graphs (part 3)

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007



- **1. Basic Probability Calculus**
- 2. Separation in undirected graphs
- 3. Separation in directed graphs
- 4. Markov networks



#### Complete graphs, orderings

**Definition 1.** An undirected graph G := (V, E) is called **complete**, if it contains all possible edges (i.e. if  $E = \mathcal{P}^2(V)$ ).

**Definition 2.** Let G := (V, E) be a directed graph. A bijective map

 $\sigma: \{1, \ldots, |V|\} \to V$ 

is called an **ordering of (the vertices of)** *G*.

We can write an ordering as enumeration of V, i.e. as  $v_1, v_2, \ldots, v_n$  with  $V = \{v_1, \ldots, v_n\}$  and  $v_i \neq v_j$  for  $i \neq j$ .



Figure 1: Undirected complete graph with 6 vertices.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007



#### Topological orderings (1/2)



Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 2/26



#### Topological orderings (2/2)

## Lemma 1. Let G be a directed graph. Then

*G* is acyclic (a DAG)  $\Leftrightarrow$  *G* has a topological ordering

1 topological-ordering(G = (V, E)): 2 choose  $v \in V$  with fanout $(v) = \emptyset$ 3  $\sigma(|V|) := v$ 4  $\sigma|_{\{1,...,|V|-1\}}$  := topological-ordering $(G \setminus \{v\})$ 5 <u>return</u>  $\sigma$ Figure 3: Algorithm to compute a topological or

Figure 3: Algorithm to compute a topologcial ordering of a DAG. Exercise: write an algorithm for checking if a given directed graph is a acyclic.



## Complete DAGs

**Definition 4.** A DAG G := (V, E) is called complete, if (i) it has a topological ordering  $\sigma = (v_1, \ldots, v_n)$  with  $fanin(v_i) = \{v_1, \ldots, v_{i-1}\}, \quad \forall i = 1, \ldots, n$ or equivalently

- (ii) it has exactly one topological ordering or equivalently
- (iii) every additional edge introduces a cycle.



Figure 4: Complete DAG with 6 vertices. Its topological ordering is  $\sigma = (A, B, C, D, E, F)$ .

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 4/26

Bayesian Networks / 4. Markov networks



Graph representations of ternary relations on  $\mathcal{P}(V)$ 

**Definition 5.** Let *V* be a set and *I* a ternary relation on  $\mathcal{P}(V)$  (i.e.  $I \subseteq \mathcal{P}(V)^3$ ). In our context *I* is often called an **independency model**.

Let G be a graph on V (undirected or DAG).

G is called a **representation of** I, if

 $I_G(X, Y|Z) \Rightarrow I(X, Y|Z) \quad \forall X, Y, Z \subseteq V$ 

A representation G of I is called **faith-ful**, if

 $I_G(X, Y|Z) \Leftrightarrow I(X, Y|Z) \quad \forall X, Y, Z \subseteq V$ 

Representations are also called independency maps of *I* or markov w.r.t. *I*, faithful representations are also called perfect maps of *I*.



Figure 5: Non-faithful representation of

$$\begin{split} I &:= \{(A,B|\{C,D\}), (B,C|\{A,D\}), \\ & (B,A|\{C,D\}), (C,B|\{A,D\})\} \end{split}$$



Figure 6: Faithful representation of *I*. Which *I*?

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 5/26

## Faithful representations

 $\begin{array}{l} \mbox{In $G$ also holds} \\ I_G(B, \{A, C\} | D), I_G(B, A | D), I_G(B, C | D), \\ \mbox{so $G$ is not a representation of} \\ I := \{(A, B | \{C, D\}), (B, C | \{A, D\}), \\ (B, A | \{C, D\}), (C, B | \{A, D\})\} \end{array} \right.$ 

at all. It is a representation of



Figure 7: Faithful representation of J.

$$\begin{split} J &:= \{(A,B|\{C,D\}), (B,C|\{A,D\}), (B,\{A,C\}|D), (B,A|D), (B,C|D), \\ & (B,A|\{C,D\}), (C,B|\{A,D\}), (\{A,C\},B|D), (A,B|D), (C,B|D)\} \end{split}$$

and as all independency statements of J hold in G, it is faithful.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007



### **Trivial representations**

For a complete undirected graph or a complete DAG G := (V, E) there is

 $I_G \equiv \mathsf{false},$ 

i.e. there are no triples  $X, Y, Z \subseteq V$ with  $I_G(X, Y|Z)$ . Therefore *G* represents any independency model *I* on *V* and is called **trivial representation**.

There are independency models without faithful representation.



Figure 8: Independency model

$$I := \{ (A, B | \{C, D\}) \}$$

without faithful representation.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 7



#### Minimal representations

**Definition 6.** A representation G of I is called **minimal**, if none of its subgraphs omitting an edge is a representation of I.



Figure 9: Different minimal undirected representations of the independency model

$$\begin{split} I &:= \{(A,B|\{C,D\}), (A,C|\{B,D\}), \\ & (B,A|\{C,D\}), (C,A|\{B,D\})\} \end{split}$$

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

#### Minimal representations



**Lemma 2** (uniqueness of minimal undirected representation). *An independency model I has exactly one minimal undirected representation, if and only if it is* 

(i) symmetric:  $I(X, Y|Z) \Rightarrow I(Y, X|Z)$ .

(ii) decomposable:  $I(X, Y \cup W|Z) \Rightarrow I(X, Y|Z)$  and I(X, W|Z)

(iii) intersectable:  $I(X, W|Z \cup Y)$  and  $I(X, Y|Z \cup W) \Rightarrow I(X, Y \cup W|Z)$ 

Then this representation is G = (V, E) with

 $E := \{\{x, y\} \in \mathcal{P}^2(V) \mid \textit{not } I(x, y|V \setminus \{x, y\}\}\}$ 

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 9.



#### Minimal representations (2/2)

## Example 1.

$$\begin{split} I &:= \{(A,B|\{C,D\}), (A,C|\{B,D\}), (A,\{B,C\}|D), (A,B|D), (A,C|D), \\ & (B,A|\{C,D\}), (C,A|\{B,D\}), (\{B,C\},A|D), (B,A|D), (C,A|D)\} \end{split}$$

is symmetric, decomposable and intersectable.

Its unique minimal undirected representation is



If a faithful representation exists, obviously it is the unique minimal representation, and thus can be constructed by the rule in lemma 2.



Properties of conditional independency

|                               |      | 1 |   |          |         |         |   |           | 5       | Sitiuity Sitiuity | 12. 1 |
|-------------------------------|------|---|---|----------|---------|---------|---|-----------|---------|-------------------|-------|
| relation                      | SUMA |   |   | Str. NOS | Megy UI | CONF UN |   | Strong Ct | Weal th | chord l'a         |       |
| u-separation                  | +    | + | + | +        | +       | +       | + | +         | +       |                   |       |
| d-separation                  | +    | + | + | -        | +       | Ŧ       | ╋ | _         | ╋       | +                 |       |
| cond. ind. in general JPD     | +    | + | _ | —        | +       | +       | _ | —         | _       | _1)               |       |
| cond. ind. in non-extreme JPD | +    | + |   | —        | +       | +       | + | _         |         | _1)               |       |

 $^{1)}$  + for decomposable JPDs.

Independency models that satisfy symmetry, decomposition, weak union, and contraction (as conditional independency of general JPDs) are called **semigraphoids**. If they satisfy also intersection (as conditional independency of non-extreme JPDs), they are called **graphoids**.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 11/26



Representation of conditional independency

**Definition 7.** We say, a graph **represents a JPD** p, if it represents the conditional independency relation  $I_p$  of p.

As for general JPDs the intersection property does not hold, they may have several minimal undirected representations. For non-extreme JPDs all properties required for uniqueness of the minimal representation hold (symmetry, decomposition, intersection; see lemma 2), i.e. non-extreme JPDs have a unique minimal undirected representation.

To compute this representation we have to check  $I_p(X, Y|V \setminus \{X, Y\})$  for all pairs of variables  $X, Y \in V$ , i.e.

 $p \cdot p^{\downarrow V \setminus \{X,Y\}} = p^{\downarrow V \setminus \{X\}} \cdot p^{\downarrow V \setminus \{Y\}}$ 

Then the minimal representation is the complete graph on V omitting the edges  $\{X, Y\}$  for that  $I_p(X, Y|V \setminus \{X, Y\})$  holds.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 12/26



Representation of conditional independency

#### **Example 2.** Let p be the JPD on V := | Its marginals are: $\{X, Y, Z\}$ given by:

| Z | X | Y | p(X, Y, Z) |
|---|---|---|------------|
| 0 | 0 | 0 | 0.024      |
| 0 | 0 | 1 | 0.056      |
| 0 | 1 | 0 | 0.036      |
| 0 | 1 | 1 | 0.084      |
| 1 | 0 | 0 | 0.096      |
| 1 | 0 | 1 | 0.144      |
| 1 | 1 | 0 | 0.224      |
| 1 | 1 | 1 | 0.336      |

Checking  $p \cdot p^{\downarrow V \setminus \{X,Y\}} = p^{\downarrow V \setminus \{X\}}$ .  $p^{\downarrow V \setminus \{Y\}}$  one finds that the only independency relations of p are  $I_p(X, Y|Z)$  and  $I_p(Y, X|Z).$ 

ZXp(X,Z)80.0 0 0 0.12 0

0.24

0.56

1

1

0





Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

Representation of conditional independency



Checking  $p \cdot p^{\downarrow V \setminus \{X,Y\}} = p^{\downarrow V \setminus \{X\}} \cdot p^{\downarrow V \setminus \{Y\}}$  one finds that the only independency relations of p are  $I_p(X, Y|Z)$  and  $I_p(Y, X|Z)$ .

Thus, the graph



represents p, as its independency model is  $I_G := \{(X, Y|Z), (Y, X|Z)\}.$ 

As for p only  $I_p(X, Y|Z)$  and  $I_p(Y, X|Z)$  hold, G is a faithful representation.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 13/26



Factorization of a JPD according to a graph

**Definition 8.** Let p be a joint probability distribution of a set of variables V. Let C be a cover of V, i.e.  $C \subseteq \mathcal{P}(V)$  with  $\bigcup_{\mathcal{X}\in\mathcal{C}}\mathcal{X}=V$ .

p factorizes according to  $\mathcal{C},$  if there are potentials

$$\psi_{\mathcal{X}}: \prod_{X \in \mathcal{X}} X \to \mathbb{R}_0^+, \quad \mathcal{X} \in \mathcal{C}$$

with

$$p = \prod_{\mathcal{X} \in \mathcal{C}} \psi_{\mathcal{X}}$$

In general, the potentials are not unique and do not have a natural interpretation.

## Example 3.



Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 14/26 Bayesian Networks / 4. Markov networks



Factorization of a JPD according to a graph

**Definition 9.** Let *G* be an undirected graph. A maximal complete subgraph of *G* is called a **clique of** *G*.  $C_G$  denotes the set of all cliques of *G*.

*p* factorizes according to *G*, if it factorizes according to its clique cover  $C_G$ .

The factorization induced by the complete graph is trivial.



Figure 10: A graph with cliques  $\{A, B, C\}$ ,  $\{B, C, D, E\}$ ,  $\{E, F, G\}$  and  $\{E, G, H\}$ .

**Example 4.** The JPD p from last example factorized according to the graph



as it has cliques  $C = \{\{X, Z\}, \{Y, Z\}\}$ 

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 15/26



Factorization and representation

**Lemma 3.** Let p be a JPD of a set of variables V, G be an undirected graph on V. Then

(i) p factorizes acc. to  $G \Rightarrow G$  represents p.

(ii) If p > 0 then p factorizes acc. to  $G \Leftrightarrow G$  represents p.

(iii) If p > 0 then p factorizes acc. to its (unique) minimal representation.

(iv) If G is an undirected graph and  $\psi_{\mathcal{X}}$  for  $\mathcal{X} \in C_G$  are any potentials on its cliques, then G represents the JPD

$$p := (\prod_{\mathcal{X} \in \mathcal{C}_G} \psi_{\mathcal{X}})^{|\emptyset|}$$

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 16/26



## Multiplication of potentials

Multiplication of potentials has the following properties:

(i)  $dom(\psi_1\psi_2) = dom(\psi_1) \cup dom(\psi_2)$ 

(ii) The commutative law:  $\psi_1\psi_2 = \psi_2\psi_1$ 

- (iii) The associative law: $(\psi_1\psi_2)\psi_3 = \psi_1(\psi_2\psi_3)$
- (iv) Existence of unit: 1 is a potential over the empty set where  $1.\psi = \psi$  for all potentials  $\psi$

## Example 5.

| B     | A     | $\psi(B,A)$ |           | B     | C     | $\psi(B,C)$ |   |
|-------|-------|-------------|-----------|-------|-------|-------------|---|
| $b_1$ | $a_1$ | $x_1$       |           | $b_1$ | $c_1$ | $y_1$       |   |
| $b_1$ | $a_2$ | $x_2$       | $\otimes$ | $b_1$ | $c_2$ | $y_2$       | = |
| $b_2$ | $a_1$ | $x_3$       |           | $b_2$ | $c_1$ | $y_3$       |   |
| $b_2$ | $a_2$ | $x_4$       |           | $b_2$ | $c_2$ | $y_4$       |   |

|   | В     | A     | C     | $\psi(B,A,C)$ |
|---|-------|-------|-------|---------------|
| - | $b_1$ | $a_1$ | $c_1$ | $x_1y_1$      |
|   | $b_1$ | $a_1$ | $c_2$ | $x_1y_2$      |
|   | $b_1$ | $a_2$ | $c_1$ | $x_2y_1$      |
|   | $b_1$ | $a_2$ | $c_2$ | $x_2y_2$      |
|   | $b_2$ | $a_1$ | $c_1$ | $x_3y_3$      |
|   | $b_2$ | $a_1$ | $c_2$ | $x_3y_4$      |
|   | $b_2$ | $a_2$ | $c_1$ | $x_4y_3$      |
|   | $b_2$ | $a_2$ | $c_2$ | $x_4y_4$      |

with 
$$x_i, y_i \in \mathbb{R}^+_0$$

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 17/26



## Markov networks

**Definition 10.** A pair  $(G, (\psi_C)_{C \in \mathcal{C}_G})$  consisting of

(i) an undirected graph G on a set of variables V and

(ii) a set of potentials

$$\psi_C : \prod_{X \in C} \operatorname{dom}(X) \to \mathbb{R}_0^+, \quad C \in \mathcal{C}_G$$

on the cliques<sup>1)</sup> of G (called **clique potentials**)

is called a markov network.

<sup>1)</sup> on the product of the domains of the variables of each clique.

Thus, a markov network encodes(i) a joint probability distribution factorized as

$$p = (\prod_{C \in \mathcal{C}_G} \psi_C)^{|\emptyset}$$

and

(ii) conditional independency statements

 $I_G(X, Y|Z) \Rightarrow I_p(X, Y|Z)$ 

 ${\cal G}$  represents p, but not necessarily faithfully.

If *G* is triangulated/chordal and  $C = C_1, \ldots, C_n$  a chain of cliques, then  $\psi_{C_i}$  can be replaced by the conditional prob-

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesneim, Germany, Course on Bayesian Networks, winter term 2007



#### Markov networks / examples



Figure 11: Example for a markov network.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 19/26





## Triangulated/chordal graphs



*G* is called **triangulated** (or **chordal**), if every cycle of length  $\geq 4$  has a chord, i.e. it exists an additional edge in *G* between non-successive vertices of the cycle.

**Lemma 4.** *G* is chordal  $\Leftrightarrow$  *I*<sub>*G*</sub> is chordal.



Figure 14: Cycle with chord and cycle without chord.







Figure 16: Chordal or non-chordal graph?





## Perfect ordering

**Definition 13.** Let *G* be an undirected graph.

An ordering  $\sigma$  of (the vertices of) G is called **perfect**, if

(i)  $\sigma(i)$  and its neighbors form a clique of the subgraph on  $\sigma(\{1,\ldots,i\})$  or equivalently

(ii) the subgraph on

 $fan(\sigma(i)) \cap \sigma(\{1,\ldots,i-1\})$ 

is complete for i := 2, ..., n.

A perfect ordering is also called a **perfect numbering**. The reverse of a perfect ordering is also called **elimination** or **deletion sequence**.



Figure 17: There are several perfect orderings of this graph, e.g., H, G, E, F, D, C, B, A and G, E, B, C, H, D, F, A.



Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 Bayesian Networks / 4. Markov networks



Triangulation, perfect ordering, and chain of cliques

**Lemma 5.** Let G be an undirected graph. It is equivalent:

(i) G is triangulated / chordal.

(ii) G admits a perfect ordering.

(iii) G admits a chain of cliques.



Figure 19: MCS finds the perfect ordering (A, B, C, D, E, F, G, H).

1 perfect-ordering-MCS
$$(G = (V, E))$$
:  
2 for  $i = 1, ..., |V|$  do  
3  $\sigma(i) := v \in V \setminus \sigma(\{1, ..., i - 1\})$  with maximal  $|fan_G(v) \cap \sigma(\{1, ..., i - 1\})|$   
4 breaking ties arbitrarily  
5 od  
6 **return**  $\sigma$ 

Figure 20: Algorithm to find a perfect ordering of a triangulated graph by maximum cardinality search.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 23/26



Triangulation, perfect ordering, and chain of cliques

1 chain-of-cliques(G):
2  $\mathcal{C} := enumerate-cliques(G)$ 3  $\sigma := perfect-ordering(G)$ 4 Order  $\mathcal{C}$  by ascending  $\max(\sigma^{-1}(C))$  for  $C \in \mathcal{C}$ 5 breaking ties arbitrarily
6 <u>return</u>  $\mathcal{C}$ 

Figure 21: Algorithm to find a chain of cliques of a triangulated graph.



Figure 22: Based on the perfect ordering (A, B, C, D, E, F, G, H) the rank of the cliques is computed as  $\{A, B, C\}$  (3)  $\{B, C, D, E\}$  (5),  $\{E, F, G\}$  (7) and  $\{E, G, H\}$  (8). The algorithm outputs the chain of cliques  $\{A, B, C\}$ ,  $\{B, C, D, E\}$ ,  $\{E, F, G\}$  and  $\{E, G, H\}$ .



Factorization and representation (2/2)

**Definition 14.** A joint probability distribution p is called **decomposable**, if its conditional independency relation  $I_p$  is chordal.

Warning. p being decomposable has nothing to do with  $I_p$  being decomposable!

**Definition 15.** Let *G* be a triangulated / chordal graph and  $C = C_1, \ldots, C_n$  a chain of cliques of *G*. Then

$$S_i := C_i \cap \bigcup_{j < i} C_j$$

is called the *i*-th separator and

$$R_i := C_i \setminus S_i$$

is called *i*-th residual

**Lemma 6.** Let p be a JPD of a set of variables V, G be an undirected graph on V. If G represents p and p is decomposable (i.e. G triangulated/chordal), let  $C = C_1, \ldots, C_n$  be a chain of cliques, and then

$$p = \prod_{i=1}^{n} p^{\downarrow R_i | S_i}$$

*i.e. p* factorizes in the conditional probability distributions of the residuals of the *cliques given its separators.*