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Bayesian Networks / 4. Markov networks

Complete graphs, orderings

Definition 1. An undirected graph G :=
(V,E) is called complete, if it contains
all possible edges (i.e. if E = P2(V )).

Definition 2. Let G := (V,E) be a di-
rected graph.
A bijective map

σ : {1, . . . , |V |} → V

is called an ordering of (the vertices
of) G.

We can write an ordering as enumera-
tion of V , i.e. as v1, v2, . . . , vn with V =
{v1, . . . , vn} and vi 6= vj for i 6= j.

A B

F C

E D

Figure 1: Undirected complete graph with 6 ver-
tices.
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Bayesian Networks / 4. Markov networks

Topological orderings (1/2)

Definition 3. An ordering σ =
(v1, . . . , vn) is called topological order-
ing if

(i) all parents of a vertex have smaller
numbers, i.e.
fanin(vi) ⊆ {v1, . . . , vi−1}, ∀i = 1, . . . , n

or equivalently

(ii) all edges point from smaller to
larger numbers
(v, w) ∈ E ⇒ σ−1(v) < σ−1(w), ∀v, w ∈ V

The reverse of a topological ordering –
e.g. got by using the fanout instead of
the fanin – is called ancestral number-
ing.

In general there are several topological
orderings of a DAG.
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Figure 2: DAG with different topological order-
ings: σ1 = (A,B,C) and σ2 = (B,A,C). The
ordering σ3 = (A,C,B) is not topological.
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Bayesian Networks / 4. Markov networks

Topological orderings (2/2)

Lemma 1. Let G be a directed graph. Then

G is acyclic (a DAG)⇔ G has a topological ordering

1 topological-ordering(G = (V, E)) :
2 choose v ∈ V with fanout(v) = ∅
3 σ(|V |) := v
4 σ|{1,...,|V |−1} := topological-ordering(G \ {v})
5 return σ

Figure 3: Algorithm to compute a topologcial or-
dering of a DAG.

Exercise: write an algorithm for check-
ing if a given directed graph is a acyclic.
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Bayesian Networks / 4. Markov networks

Complete DAGs

Definition 4. A DAG G := (V,E) is
called complete, if

(i) it has a topological ordering σ =
(v1, . . . , vn) with
fanin(vi) = {v1, . . . , vi−1}, ∀i = 1, . . . , n

or equivalently

(ii) it has exactly one topological order-
ing
or equivalently

(iii) every additional edge introduces a
cycle.

A B

F C

E D

Figure 4: Complete DAG with 6 vertices. Its
topological ordering is σ = (A,B,C,D,E, F ).
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Bayesian Networks / 4. Markov networks

Graph representations of ternary relations on P(V )

Definition 5. Let V be a set and I a
ternary relation on P(V ) (i.e. I ⊆
P(V )3). In our context I is often called
an independency model.

Let G be a graph on V (undirected or
DAG).
G is called a representation of I, if

IG(X, Y |Z)⇒ I(X, Y |Z) ∀X, Y, Z ⊆ V

A representation G of I is called faith-
ful, if

IG(X, Y |Z)⇔ I(X, Y |Z) ∀X, Y, Z ⊆ V

Representations are also called in-
dependency maps of I or markov
w.r.t. I, faithful representations are also
called perfect maps of I.

A

B C

D

Figure 5: Non-faithful representation of

I := {(A,B|{C,D}), (B,C|{A,D}),
(B,A|{C,D}), (C,B|{A,D})}

A

B C

D

Figure 6: Faithful representation of I. Which I?
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Bayesian Networks / 4. Markov networks

Faithful representations

In G also holds
IG(B, {A,C}|D), IG(B,A|D), IG(B,C|D), . . .

so G is not a representation of
I := {(A,B|{C,D}), (B,C|{A,D}),

(B,A|{C,D}), (C,B|{A,D})}
at all. It is a representation of

A

B C

D

Figure 7: Faithful representation of J .

J := {(A,B|{C,D}), (B,C|{A,D}), (B, {A,C}|D), (B,A|D), (B,C|D),

(B,A|{C,D}), (C,B|{A,D}), ({A,C}, B|D), (A,B|D), (C,B|D)}

and as all independency statements of
J hold in G, it is faithful.
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Bayesian Networks / 4. Markov networks

Trivial representations

For a complete undirected graph or a
complete DAG G := (V,E) there is

IG ≡ false,
i.e. there are no triples X, Y, Z ⊆ V
with IG(X, Y |Z). Therefore G repre-
sents any independency model I on V
and is called trivial representation.

There are independency models without
faithful representation.

A

B C

D

A

B C

D

Figure 8: Independency model

I := {(A,B|{C,D})}
without faithful representation.
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Bayesian Networks / 4. Markov networks

Minimal representations

Definition 6. A representation G of I is called minimal, if
none of its subgraphs omitting an edge is a representation
of I.

A

B C

D

A

B C

D

Figure 9: Different minimal undirected representations of the inde-
pendency model

I := {(A,B|{C,D}), (A,C|{B,D}),
(B,A|{C,D}), (C,A|{B,D})}
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Bayesian Networks / 4. Markov networks

Minimal representations

Lemma 2 (uniqueness of minimal undirected representation). An
independency model I has exactly one minimal undirected repre-
sentation, if and only if it is

(i) symmetric: I(X, Y |Z)⇒ I(Y,X|Z).

(ii) decomposable: I(X, Y ∪W |Z)⇒ I(X, Y |Z) and I(X,W |Z)

(iii) intersectable: I(X,W |Z ∪ Y ) and I(X, Y |Z ∪W ) ⇒ I(X, Y ∪
W |Z)

Then this representation is G = (V,E) with

E := {{x, y} ∈ P2(V ) |not I(x, y|V \ {x, y}}

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 9/26



Bayesian Networks / 4. Markov networks

Minimal representations (2/2)

Example 1.

I := {(A,B|{C,D}), (A,C|{B,D}), (A, {B,C}|D), (A,B|D), (A,C|D),

(B,A|{C,D}), (C,A|{B,D}), ({B,C}, A|D), (B,A|D), (C,A|D)}
is symmetric, decomposable and intersectable.

Its unique minimal undirected represen-
tation is

A

B C

D

If a faithful representation exists, obvi-
ously it is the unique minimal represen-
tation, and thus can be constructed by
the rule in lemma 2.
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Bayesian Networks / 4. Markov networks

Properties of conditional independency

relation sy
m

m
et

ry
de

co
m

po
si

tio
n

co
m

po
si

tio
n

st
ro

ng
un

io
n

we
ak

un
io

n
co

nt
ra

ct
io

n
in

te
rs

ec
tio

n
st

ro
ng

tra
ns

iti
vi

ty

we
ak

tra
ns

iti
vi

ty

ch
or

da
lit

y

u-separation + + + + + + + + + –
d-separation + + + – + + + – + +

cond. ind. in general JPD + + – – + + – – – –1)

cond. ind. in non-extreme JPD + + – – + + + – – –1)

1) + for decomposable JPDs.

Independency models that satisfy sym-
metry, decomposition, weak union, and
contraction (as conditional indepen-

dency of general JPDs) are called semi-
graphoids. If they satisfy also inter-
section (as conditional independency
of non-extreme JPDs), they are called
graphoids.
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Bayesian Networks / 4. Markov networks

Representation of conditional independency

Definition 7. We say, a graph repre-
sents a JPD p, if it represents the con-
ditional independency relation Ip of p.

As for general JPDs the intersection
property does not hold, they may have
several minimal undirected representa-
tions.

For non-extreme JPDs all properties re-
quired for uniqueness of the minimal
representation hold (symmetry, decom-
position, intersection; see lemma 2), i.e.
non-extreme JPDs have a unique mini-
mal undirected representation.

To compute this representation we have
to check Ip(X, Y |V \ {X, Y }) for all pairs
of variables X, Y ∈ V , i.e.

p · p↓V \{X,Y } = p↓V \{X} · p↓V \{Y }

Then the minimal representation is the
complete graph on V omitting the edges
{X, Y } for that Ip(X, Y |V \ {X, Y })
holds.
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Bayesian Networks / 4. Markov networks

Representation of conditional independency

Example 2. Let p be the JPD on V :=
{X, Y, Z} given by:

Z X Y p(X, Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Checking p · p↓V \{X,Y } = p↓V \{X} ·
p↓V \{Y } one finds that the only indepen-
dency relations of p are Ip(X, Y |Z) and
Ip(Y,X|Z).

Its marginals are:

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y, Z)
0 0 0.06
0 1 0.14
1 0 0.32
1 1 0.48

X Y p(X, Y )
0 0 0.12
0 1 0.2
1 0 0.26
1 1 0.42

X p(X)
0 0.32
1 0.68

Y p(Y )
0 0.38
1 0.62

Y p(Z)
0 0.2
1 0.8
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Bayesian Networks / 4. Markov networks

Representation of conditional independency

Example 2 (cont.).
Z X Y p(X, Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Checking p · p↓V \{X,Y } = p↓V \{X} ·
p↓V \{Y } one finds that the only indepen-
dency relations of p are Ip(X, Y |Z) and
Ip(Y,X|Z).

Thus, the graph
X

Y Z

represents p, as its independency
model is IG := {(X, Y |Z), (Y,X|Z)}.

As for p only Ip(X, Y |Z) and Ip(Y,X|Z)
hold, G is a faithful representation.
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Bayesian Networks / 4. Markov networks

Factorization of a JPD according to a graph

Definition 8. Let p be a joint probability
distribution of a set of variables V . Let
C be a cover of V , i.e. C ⊆ P(V ) with⋃
X∈C X = V .

p factorizes according to C, if there are
potentials

ψX :
∏
X∈X

X → R+
0 , X ∈ C

with
p =

∏
X∈C

ψX

In general, the potentials are not unique
and do not have a natural interpretation.

Example 3.

Z X Y p(X, Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y, Z) p(Y |Z)
0 0 0.06 0.3
0 1 0.14 0.7
1 0 0.32 0.4
1 1 0.48 0.6

p factorizes according to C =
{{X,Z}, {Y, Z}} as

p = p(X,Z) · p(Y |Z)
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Bayesian Networks / 4. Markov networks

Factorization of a JPD according to a graph

Definition 9. Let G be an undirected
graph. A maximal complete subgraph
of G is called a clique of G. CG denotes
the set of all cliques of G.

p factorizes according to G, if it factor-
izes according to its clique cover CG.

The factorization induced by the com-
plete graph is trivial.

A B

C D

E

F G H

Figure 10: A graph with cliques {A,B,C},
{B,C,D,E}, {E,F,G} and {E,G,H}.

Example 4. The JPD p from last exam-
ple factorized according to the graph

X

Y Z

as it has cliques C = {{X,Z}, {Y, Z}}
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Bayesian Networks / 4. Markov networks

Factorization and representation

Lemma 3. Let p be a JPD of a set of variables V , G be an
undirected graph on V . Then

(i) p factorizes acc. to G⇒ G represents p.

(ii) If p > 0 then
p factorizes acc. to G⇔ G represents p.

(iii) If p > 0 then p factorizes acc. to its (unique) minimal
representation.

(iv) If G is an undirected graph and ψX for X ∈ CG are any
potentials on its cliques, then G represents the JPD

p := (
∏
X∈CG

ψX )|∅
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Bayesian Networks / 4. Markov networks

Multiplication of potentials

Multiplication of potentials has the fol-
lowing properties:

(i) dom(ψ1ψ2) = dom(ψ1) ∪ dom(ψ2)

(ii) The commutative law: ψ1ψ2 = ψ2ψ1

(iii) The associative law:(ψ1ψ2)ψ3 =
ψ1(ψ2ψ3)

(iv) Existence of unit: 1 is a potential
over the empty set where 1.ψ = ψ
for all potentials ψ

Example 5.

B A ψ(B,A)
b1 a1 x1

b1 a2 x2

b2 a1 x3

b2 a2 x4

⊗

B C ψ(B,C)
b1 c1 y1

b1 c2 y2

b2 c1 y3

b2 c2 y4

=

B A C ψ(B,A,C)
b1 a1 c1 x1y1

b1 a1 c2 x1y2

b1 a2 c1 x2y1

b1 a2 c2 x2y2

b2 a1 c1 x3y3

b2 a1 c2 x3y4

b2 a2 c1 x4y3

b2 a2 c2 x4y4

with xi, yi ∈ R+
0
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Bayesian Networks / 4. Markov networks

Markov networks

Definition 10. A pair (G, (ψC)C∈CG) con-
sisting of

(i) an undirected graph G on a set of
variables V and

(ii) a set of potentials

ψC :
∏
X∈C

dom(X)→ R+
0 , C ∈ CG

on the cliques1) of G (called clique
potentials)

is called a markov network.

1) on the product of the domains of the
variables of each clique.

Thus, a markov network encodes

(i) a joint probability distribution factor-
ized as

p = (
∏
C∈CG

ψC)|∅

and

(ii) conditional independency state-
ments

IG(X, Y |Z)⇒ Ip(X, Y |Z)

G represents p, but not necessarily faith-
fully.

If G is triangulated/chordal and C =
C1, . . . , Cn a chain of cliques, then ψCi
can be replaced by the conditional prob-
abilities p↓Ci|Si (without changing p).

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 18/26



Bayesian Networks / 4. Markov networks

Markov networks / examples

X

Y Z

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y |Z)
0 0 0.3
0 1 0.7
1 0 0.4
1 1 0.6

Figure 11: Example for a markov network.
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Bayesian Networks / 4. Markov networks

Chain of cliques

Definition 11. Let G be an undirected
graph and CG be its cliques. A sequence
C1, . . . , Cn of cliques of G is called chain
of cliques, if

1. every clique occurs exactly once and

2. the running intersection property
holds:

Ci ∩
i−1⋃
j=1

Cj ⊆ Ck, ∀i∃k < i

A B

C D

E

F G H

Figure 12: A graph with chain of cliques
{A,B,C}, {B,C,D,E}, {E,F,G} and
{E,G,H}. A B

C D

E

F G H

Figure 13: A graph with cliques {A,B,C},
{B,D}, {C,E}, {D,E}, {E,F,G} and
{E,G,H}, but without chain of cliques.
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Bayesian Networks / 4. Markov networks

Triangulated/chordal graphs

Definition 12. Let G be an undirected
graph.
G is called triangulated (or chordal), if
every cycle of length ≥ 4 has a chord,
i.e. it exists an additional edge in G
between non-successive vertices of the
cycle.

Lemma 4. G is chordal⇔ IG is chordal.

B

C D

E

B

C D

E

Figure 14: Cycle with chord and cycle without
chord.

B

C

D

F

E

Figure 15: Chordal or non-chordal graph?

A

B E D

C

Figure 16: Chordal or non-chordal graph?
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Perfect ordering

Definition 13. Let G be an undirected
graph.
An ordering σ of (the vertices of) G is
called perfect, if

(i) σ(i) and its neighbors form a clique
of the subgraph on σ({1, . . . , i})
or equivalently

(ii) the subgraph on

fan(σ(i)) ∩ σ({1, . . . , i− 1})
is complete for i := 2, ..., n.

A perfect ordering is also called a per-
fect numbering. The reverse of a per-
fect ordering is also called elimination
or deletion sequence.

A B

C D

E

F G H

Figure 17: There are several perfect orderings
of this graph, e.g., H,G,E, F,D,C,B,A and
G,E,B,C,H,D, F,A.

A B

C D

E

F G H

Figure 18: A graph without perfect ordering.
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Triangulation, perfect ordering, and chain of cliques

Lemma 5. Let G be an undirected
graph. It is equivalent:

(i) G is triangulated / chordal.

(ii) G admits a perfect ordering.

(iii) G admits a chain of cliques.

A B

C D

E

F G H

Figure 19: MCS finds the perfect ordering
(A,B,C,D,E, F,G,H).

1 perfect-ordering-MCS(G = (V, E)) :
2 for i = 1, . . . , |V | do
3 σ(i) := v ∈ V \ σ({1, . . . , i − 1}) with maximal |fanG(v) ∩ σ({1, . . . , i− 1})|
4 breaking ties arbitrarily
5 od
6 return σ

Figure 20: Algorithm to find a perfect ordering of a triangulated graph by maximum cardinality
search.
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Triangulation, perfect ordering, and chain of cliques

1 chain-of-cliques(G) :
2 C := enumerate-cliques(G)
3 σ := perfect-ordering(G)
4 Order C by ascending max(σ−1(C)) for C ∈ C
5 breaking ties arbitrarily
6 return C

Figure 21: Algorithm to find a chain of cliques of
a triangulated graph.

A B

C D

E

F G H

Figure 22: Based on the perfect ordering
(A,B,C,D,E, F,G,H) the rank of the cliques
is computed as {A,B,C} (3) {B,C,D,E} (5),
{E,F,G} (7) and {E,G,H} (8). The algo-
rithm outputs the chain of cliques {A,B,C},
{B,C,D,E}, {E,F,G} and {E,G,H}.
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Factorization and representation (2/2)

Definition 14. A joint probability distri-
bution p is called decomposable, if its
conditional independency relation Ip is
chordal.

Warning. p being decomposable has
nothing to do with Ip being decompos-
able!

Definition 15. Let G be a triangulated
/ chordal graph and C = C1, . . . , Cn a
chain of cliques of G. Then

Si := Ci ∩
⋃
j<i

Cj

is called the i-th separator and
Ri := Ci \ Si

is called i-th residual

Lemma 6. Let p be a JPD of a set of
variables V , G be an undirected graph
on V . If G represents p and p is decom-
posable (i.e. G triangulated/chordal), let
C = C1, . . . , Cn be a chain of cliques, and
then

p =

n∏
i=1

p↓Ri|Si

i.e. p factorizes in the conditional proba-
bility distributions of the residuals of the
cliques given its separators.
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