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1. Basic Probability Calculus

2. Separation in undirected graphs
3. Separation in directed graphs

4. Markov networks
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Definition 1. An undirected graph G := A B
(V, F) is called complete, if it contains
all possible edges (i.e. if £ = P?*(V)).

Definition 2. Let G = (V, F) be a di-
rected graph.
A bijective map

o {1,..., |V} >V
is called an ordering of (the vertices Figure 1: Undirected complete graph with 6 ver-
of) G. tices.

E D

We can write an ordering as enumera-
tion of V, i.e. as vy, v9,...,v, With V' =

{v1,...,v,} and v; # v; for i # j.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 1/26
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Topological orderings (1/2)

Definition 3. An ordering o =
(v1,...,v,) is called topological order-
ing if
(i) all parents of a vertex have smaller
numbers, i.e.
fanin(v;) C {vy,...,v;1}, Vi=1,...
or equivalently
(i) all edges point from smaller to
larger numbers
(v,w) € E= o 'v) <o Hw), Yu,1

The reverse of a topological ordering —
e.g. got by using the fanout instead of
the fanin — is called ancestral number-

ing.

In general there are several topological

v eV

Figure 2: DAG with different topological order-
ings: o1 = (A,B,C) and 0o = (B, A,C). The
ordering o3 = (A, C, B) is not topological.

orderings of a DAG.
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Topological orderings (2/2) s ¥

Lemma 1. Let G be a directed graph. Then
G is acyclic (a DAG) < G has a topological ordering

1 topological-ordering(G = (V, E)) : Exercise: write an algorithm for check-
2 choose v € V with fanout(v) = () ing if a given directed graph is a acyclic.
3 o(|V]) =

4 0|1, |v|-1y := topological-ordering(G \ {v})

5 return o

Figure 3: Algorithm to compute a topologcial or-

dering of a DAG.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Complete DAGs

Definition 4. A DAG G
called complete, if

(i) it has a topological ordering o
(v, ..., v,) With
fanin(v;) = {vy, ..
or equivalently

(V,E) is

.,fUZ'_l}, \V/Z:L,

(i) it has exactly one topological order-

N Figure 4: Complete DAG with 6 vertices. Its
Ing _ topological orderingis o = (A, B,C, D, E, F).
or equivalently
(iii) every additional edge introduces a
cycle.
Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Graph representations of ternary relations on P(V)

Definition 5. Let V be a set and I a A
ternary relation on P(V) (i.e. [ C
P(V)?). In our context I is often called B C
an independency model.

Let G be a graph on V (undirected or D

DAG)' ] . Figure 5: Non-faithful representation of
(7 is called a representation of /, if

[(X.Y|2)= I(X,Y|Z) VX,Y,ZCV I={(A,B{C,D}),(B,C{A, D}),

(B, AQC, D}), (€, BRA, D})}

A representation G of I is called faith-
ful, if

A
Io(X,)Y|Z)= [(X,)Y|Z) VXY, ZCV J
Representations are also called In-
dependency maps of [/ or markov
w.r.t. 7, faithful representations are also D
called perfect maps of /.

Figure 6: Faithful representation of 7. Which 7

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 5/26
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Faithful representations 2003
In G also holds (A
IG<Bv{A7C}‘D)a[G(BJA‘D>7IG<B70‘D>7 -
so G is not a representation of B C
I={(A, B{C,D}),(B,C{A, D}),
(B, A{C, D}), (C, BI{A, D})} D
at all. It is a representation of Figure 7: Faithful representation of .J.

J = 1(A, BRC, D}), (B, C{A, D}), (B, 14, C}D), (B, A|D), (B, C|D),
(B, A{C, D}), (C, B{A, D}), ({4, C}, BID), (A, B|D), (C, B|D)}

and as all independency statements of
J hold in G, it is faithful.
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Trivial representations 7 2000

For a complete undirected graph or a
complete DAG G := (V, F) there is

I = false,
l.e. there are no triples X,Y.Z C V
with I5(X,Y|Z). Therefore G repre-

sents any independency model 7 on V
and is called trivial representation.

There are independency models without
faithful representation.

PANENEIN
N e

Figure 8: Independency model

I:={(4, B{C, D})}

S

without faithful representation.
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Minimal representations K

Definition 6. A representation G of I is called minimal, if
none of its subgraphs omitting an edge is a representation

of 1.
A (A

o)
@)
(@]

D D

Figure 9: Different minimal undirected representations of the inde-

pendency model
I = {(Av B’{Ca D})> (A7 O‘{Bv D})7
(B, A{C, D}),(C, A{B, D})}
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Minimal representations R

Lemma 2 (uniqueness of minimal undirected representation). An
independency model I has exactly one minimal undirected repre-

sentation, if and only if it is
(i) symmetric: 1(X,Y|Z) = I(Y, X|Z).

(i) decomposable: [( X, Y UW|Z) = I(X,Y|Z) and I(X,W|Z)

(iii) intersectable: [( X, W|ZUY)and (X, Y|ZUW) = I(X,Y U
w|2)
Then this representation is G = (V, E/) with
E = {{z,y} € PA(V)|not I(z,y|V \ {z,y}}

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Example 1.

Minimal representations (2/2)

[:= (A, B{C, D}), (A, C{B, D}), (A, AB,C}[D), (A, BID), (A, C|D),

(B, A{C, D}), (C, AL B, D}), ({B,C}, AID), (B, A|D), (C, A|D)}

IS symmetric, decomposable and intersectable.

Its unique minimal undirected represen-

tation is

(A)

N

If a faithful representation exists, obvi-
ously it is the unique minimal represen-
tation, and thus can be constructed by

the rule in lemma 2.
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Properties of conditional independency 7 2o
©§§§’c\°§§é§<§§\
SO RAISS
SESCFSLLLE
relation S S ESELTHE LSS
u-separation |+ |+ + |+ + |+ + + + | —
d-separation |+ |+ +|— + |+ +|— + |+
cond. ind. in general JPD |+ |+ — | — +|+ —|— — =V
cond. ind. in non-extreme JPD |+ |+ —|— +|+ +|— — |-V

) + for decomposable JPDs.

Independency models that satisfy sym-
metry, decomposition, weak union, and
contraction (as conditional indepen-

dency of general JPDs) are called semi-
graphoids. If they satisfy also inter-
section (as conditional independency
of non-extreme JPDs), they are called
graphoids.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Representation of conditional independency 200%

Definition 7. We say, a graph repre-
sents a JPD p, if it represents the con-
ditional independency relation I, of p.

As for general JPDs the intersection
property does not hold, they may have
several minimal undirected representa-
tions.

For non-extreme JPDs all properties re-
quired for uniqueness of the minimal
representation hold (symmetry, decom-
position, intersection; see lemma 2), i.e.
non-extreme JPDs have a unique mini-
mal undirected representation.

To compute this representation we have
to check I,,(X, Y|V \ {X,Y}) for all pairs
of variables X, Y € V, i.e.

p - ptVMYE B IXE Y
Then the minimal representation is the
complete graph on V omitting the edges
{X,Y} for that (X, Y|V \ {X,Y})
holds.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Representation of conditional independency ¢ 20~

Example 2. Let p be the JPD on V := | lis marginals are:
{X,)Y,Z} given by: 71X | p(X.2) Z1Y (oY, 2)
Z|X|YIpX, Y, Z) 00 0.08 0 0 006
01007 0.024 01 0.12 01 0.14
01911} 0.06 110 0.24 110 032
01110} 0.036 111 056 111 048
0/ 1|1 0.084
170[/0] 0.096 XY p(X,Y)
110/ 1] 0.144 0/0| 0.12
110 0.224 01 002
1111 0.336 110! 0.26
111] 042
Checking p - p!VM&YE = pIn{X} .
p"\"} one finds that the only indepen- X pX) Y |pY) Y pZ)
dency relations of p are I,(X,Y|Z) and 071032 10038 10 02
LY, X|Z). 110.68 110.62 1] 0.8

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 12/26



Bayesian Networks / 4. Markov networks

Representation of conditional independency ¢ = *

Example 2 (cont.).
X p(X,Y, Z)
0.024
0.056

Y
0
1
0 0.036
1
0
1
0
1

0.084
0.096
0.144
0.224
0.336

_L_L_L_LOOOON

Checking p - pr\{X,Y} pr\{X} :
pV\'} one finds that the only indepen-
dency relations of p are ,(X,Y|Z) and
L(Y, X |Z).

Thus, the graph

%\
Y) Z

/ \

represents p, as its independency
model is I .= {(X,Y|2), (Y, X|Z)}.

As for p only I(X,Y|Z) and I,(Y, X |Z)
hold, G is a faithful representation.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Factorization of a JPD according to a graph

Definition 8. Let p be a joint probability
distribution of a set of variables V. Let
C be a cover of V, i.e. C C P(V) with

UXGC X=V.
p factorizes according to C, if there are

potentials
Vx HX%R(T, XecC
XeX
with
p= H Vx
xXeC

In general, the potentials are not unique
and do not have a natural interpretation.

Example 3.

Z1 XY |pX)Y, Z)

00/ 0| 0.024

0|0 1| 0.056

0|10 0.036

0|1 1] 0.084

100 0.096

10 1 0.144

11110 0.224

1111 0.336
21X pX,2)| Z|Y |pY,Z2) pY|Z)
00| 0.08 ||[0/0] 0.06 0.3
o|/1 012 |[0|1] 0.14 0.7
10 024 ||[1]0] 0.32 0.4
111 056 |[1]|1] 0.48 0.6
p factorizes according to C =

X, 72},{Y,Z}} as

p=pX. 7)) -pY|Z)

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems
Course on Bayesian Networks, winter term 2007

and Machine Learnlng Lab (ISMLL) Umversﬂy of H|Ideshe|m Germany,
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Factorization of a JPD according to a graph

Definition 9. Let G be an undirected
graph. A maximal complete subgraph
of (¢ is called a clique of GG. C; denotes
the set of all cliques of G.

p factorizes according to G, if it factor-
izes according to its clique cover Cq.

The factorization induced by the com-
plete graph is trivial.

i

;J‘El

2003

A B
E
F——G—H

Figure 10: A graph with cliques {A, B,C},
{B,C,D,E}, {E,F,G} and {E,G, H}.

Example 4. The JPD p from last exam-
ple factorized according to the graph

%\
v

/ \

as it has cliques C = {{X, 7} ,{Y, Z}}

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Factorization and representation R

Lemma 3. Let p be a JPD of a set of variables V', G be an
undirected graph on V. Then
(i) p factorizes acc. to G = G represents p.

(i) If p > 0 then
p factorizes acc. to G < G represents p.

(ili) If p > 0 then p factorizes acc. to its (unique) minimal
representation.

(iv) If G is an undirected graph and yx for X € Cq are any
potentials on its cliques, then G represents the JPD

p = H )l

XeCq

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Multiplication of potentials

Multiplication of potentials has the fol-
lowing properties:

(i) dom(19p9) = dom (1) U dom(1pz)

(i) The commutative law: 111y = 1914

(iii) The associative law:(y11s)p3 =

V1 (harhs)

(iv) Existence of unit: 1 is a potential
over the empty set where 1.9 = v
for all potentials

%{5&\'-1 Migr

2003

Example 5.
Bl Aly(B,A)| B|C|y¢(B,0)
b1 | aq T bi| ¢y Y1
b1 | as X2 ® b1 |co Y2 =
bylar| a3 bylc1|  y3
balaz| 4 by ca| 4
B|A|C|¥(B,A,C)
bi|ai|c L1Y1
bi|ai|c L1Y2
bi|as|c L2Y1
bi|as|co T2Y2
byl ai|c L3Y3
by | a1 | co L3Y4
by | az| ¢y L4Y3
by as | co L4Y4

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Markov networks e

Definition 10. A pair (G, (¢Y¢)cec,..) con- | Thus, a markov network encodes

sisting of (i) a joint probability distribution factor-
(i) an undirected graph G on a set of ized as
variables V" and p= H o)
I t of potential e
a set of potentials
(i) potent and
Yoo ] dom(X) >Ry, CeCe
XeC (if) conditional independency state-
on the cliques of G (called clique ments
potentials) [6(X,Y|Z) = L,(X,Y|Z)

is called a markov network.
Gz represents p, but not necessarily faith-

D on the product of the domains of the | fully:

variables of each clique. If G is triangulated/chordal and C =
C1,...,C, a chain of cliques, then .

can be replaced by the conditional prob-

" L] L] \LC?: S/[; L] L]
Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems'and Machine Leatning Lab (ISMLL), University of
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Markov networks / examples 2003

Z| X |pX,2)

00 0.08

0|1 0.12

110 0.24

11 0.56
-
Yz
0
0
1
1

Figure 11: Example for a markov network.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Chain of

Definition 11. Let G be an undirected
graph and Cg be its cliques. A sequence
Ch,...,C, of cliques of G is called chain

of cliques, if
1. every clique occurs exactly once and

2. the running intersection property

holds:
1—1
cnlJo ca, vidk<i
j=1

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems

Course on Bayesian Networks, winter term 2007
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A B

E

F—G—H
Figure 12: A graph with chain of cliques
{A,B,C}, {B,C,D,E}, {E,F,G} and

F/ \G/ \H
Figure 13: A graph with cliques {A,B,C},
{B,D}, {C,E}, {D,E}, {E,F,G} and

, University of Hildesheim, Germany,
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Triangulated/chordal graphs

Definition 12. Let G be an undirected
graph.

(7 Is called triangulated (or chordal), if
every cycle of length > 4 has a chord,
l.e. it exists an additional edge in G
between non-successive vertices of the
cycle.

Lemma 4. G is chordal < 1 is chordal.

E

Figure 14: Cycle with chord and cycle without
chord.

E

Figure 15: Chordal or non-chordal graph?

Figure 16: Chordal or non-chordal graph?

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Perfect ordering

Definition 13. Let G be an undirected
graph.

An ordering o of (the vertices of) G is
called perfect, if

(i) o(i) and its neighbors form a clique
of the subgraph on o({1,...,7})

or equivalently

(il) the subgraph on
fan(o(i)) No({1,...,i —1})
iIs complete for i := 2, ..., n.

A perfect ordering is also called a per-
fect numbering. The reverse of a per-
fect ordering is also called elimination
or deletion sequence.

2003

A B
E
F——G—H

Figure 17: There are several perfect orderings
of this graph, e.g., H G,E,F,D,C,B,A and
G,E,B,C,H,D,F,A.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems

Course on Bayesian Networks, winter term 2007

and i@acﬁine tea'rnlnggag “éMLL), Enlversi[y o# Hliéeshelm, aermgr;'y,

22/26



.H;a,l =l

Bayesian Networks / 4. Markov networks 9% %
Triangulation, perfect ordering, and chain of cliques oY
Lemma 5. Let G be an undirected A B
graph. It is equivalent:
(i) G is triangulated / chordal.
(if) G admits a perfect ordering. E
(i) G admits a chain of cliques. F—G——H
Figure 19: MCS finds the perfect ordering
(A,B,C,D,E,F,G, H).

1 perfect-ordering-MCS(G = (V, E)) :

2 fori=1,...,|V]do

3 o(i):=veV\o({l,...,i —1}) with maximal |fang(v) No({1,...,7 — 1})]
4 breaking ties arbitrarily

5 od

6 return o

Figure 20: Algorithm to find a perfect ordering of a triangulated graph by maximum cardinality
search.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Triangulation, perfect ordering, and chain of cliques

1 chain-of-cliques(G) : A B
2 C := enumerate-cliques(G)

3 o := perfect-ordering (G)

4 Order C by ascending max(c~'(C)) for C € C
5 breaking ties arbitrarily

¢ return C E

Figure 21: Algorithm to find a chain of cliques of A
a triangulated graph. F—G——H

Figure 22: Based on the perfect ordering
(A,B,C,D,E,F,G, H) the rank of the cliques
is computed as {A,B,C} (3) {B,C,D,E} (5),
{E,F,G} (7) and {F,G,H} (8). The algo-
rithm outputs the chain of cliques {A, B,C},
{B,C,D,E}, {E,F,G}and {E,G,H}.
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Factorization and representation (2/2)

Definition 14. A joint probability distri-
bution p is called decomposable, if its
conditional independency relation I, is
chordal.

Warning. p being decomposable has
nothing to do with I, being decompos-
able!

Definition 15. Let G be a triangulated
/ chordal graph and C = (C4,...,C, a
chain of cliques of GG. Then

S;=Cinl JC,

j<i
is called the i-th separator and
Rz’ = CZ \ SZ

Is called -th residual

Lemma 6. Let p be a JPD of a set of
variables V', G be an undirected graph
onV. If G represents p and p is decom-
posable (i.e. G triangulated/chordal), let
C =C,,...,C, beachain of cliques, and

then i
p= leRz'\Sz
1=1

I.e. p factorizes in the conditional proba-
bility distributions of the residuals of the
cliques given its separators.
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