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Bayesian Networks / 5. Bayesian networks

DAG-representations

Lemma 1 (criterion for DAG-representation). Let p be a joint probability distribution
of the variables V and G be a graph on the vertices V . Then:

G represents p⇔ v and nondesc(v) are conditionally independent
given pa(v) for all v ∈ V , i.e.,

Ip({v}, nondesc(v)| pa(v)), ∀v ∈ V
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Figure 1: Parents of a vertex (orange).
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Faithful DAG-representations

Lemma 2 (necessary conditions for faithful DAG-representability). An indepen-
dency model I has a faithful DAG representation, only if it is

(i) symmetric: I(X, Y |Z)⇒ I(Y,X|Z).

(ii) (de)composable: I(X, Y ∪W |Z)⇔ I(X, Y |Z) and I(X,W |Z)

(iii) contractable: I(X, Y |Z ∪W ) and I(X,W |Z)⇒ I(X, Y ∪W |Z)

(iv) intersectable: I(X,W |Z ∪ Y ) and I(X, Y |W ∪ Z)⇒ I(X, Y ∪W |Z)

(v) weakly unionable: I(X, Y ∪ Z|W )⇒ I(X, Y |W ∪ Z)

(vi) weakly transitive: I(X, Y |Z) and I(X, Y |Z∪{v})⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈
V \ Z

(vii) chordal: I({a}, {c}|{b, d}) and I({b}, {d}|{a, c})⇒ I({a}, {c}|{b}) or I({a}, {c}|{d})
It is still an open research problem, if there is a finite axiomatisation of faithful
DAG-representability.
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Example for a not faithfully DAG-representable dependency model

Example 1. The independency model

I := {I(x, y|z), I(y, x|z), I(x, y|w), I(y, x|w)}
satisfies all conditions of lemma 2,
but it does not have a faithful DAG-
representation. [CGH97, p. 239]

Exercise: compute all minimal DAG-
representations of I using lemma 3 and
check if they are faithful.

Probability distributions can violate
composition, weak transitivity and
chordality, and may thus have no faithful
DAG-representation.
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Minimal DAG-representations

Lemma 3 (construction and uniqueness of minimal DAG-representation, [VP90]).
Let I be an independence model on a set V that satisfies symmetry, decomposi-
tion, weak union, and contraction. Then:

(i) A minimal DAG-representation can be constructed as follows: Choose an arbi-
trary ordering σ := (v1, . . . , vn) of V . Choose a maximal set πi ⊆ {v1, . . . , vi−1}
of σ-precursors of vi with

I(vi, {v1, . . . , vi−1} \ πi|πi)
Then G := (V,E) with

E := {(w, vi) | i = 1, . . . , n, w ∈ πi}
is a minimal DAG-representation of p.

(ii) If I also satisfies intersection, then the minimal representation G is unique up
to ordering σ.

The lemma provides an algorithm for the construction of a minimal DAG-represen-
tation for any joint probability distribution p. Furthermore it assures uniqueness up
to ordering for non-extreme JPDs.
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Minimal DAG-representations / example

I := {(A,C|B), (C,A|B)},,-~~---

VTV
(!i}(A,B, C) (b) (A, C, B) (e) (B, A, C)

(B,C,A)
(d)(C,A, B) (e) (C, B, A)

---n~~ ~ ,.., ~"... 1 rI . -' T
. cl . h h cl cl Ymode

.-.~o 're>rt.PlI-maDS assoclate Wlt t e epen ene .
Figure 2: Minimal DAG-representations of I [CGH97, p. 240].

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 5/17



Bayesian Networks / 5. Bayesian networks

Minimal representations / conclusion

Representations always exist (e.g., trivial).

Minimal representations always exist
(e.g., start with trivial and drop edges successively).

Markov network (undirected) Bayesian network (directed)
minimal faithful minimal faithful

general JPD may not be
unique

may not
exist

may not be
unique

may not
exist

non-extreme JPD unique may not
exist

unique up
to ordering

may not
exist
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factorization of a JPD according to a DAG

Definition 1. Let p be a joint probability distribution of a
set of variables V . Let G be a DAG.

p factorizes according to G, if

p =
∏
v∈V

p(v| pa(v))

Lemma 4. Let p be a JPD and G a DAG on V . Then:

(i) p factorizes acc. to G⇔ G represents p

(ii) If G is a DAG and pv are conditional probability distri-
butions on {v} ∪ pa(v) conditioned on pa(v) for each
of its vertices v ∈ V , then G represents the JPD

p =
∏
v∈V

pv
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bayesian network

Definition 2. A pair (G := (V,E), (pv)v∈V )
consisting of

(i) a directed graph G on a set of vari-
ables V and

(ii) a set of conditional probability dis-
tributions
pX : dom(X)×

∏
Y ∈pa(X)

dom(Y )→ R+
0

at the vertices X ∈ V conditioned
on its parents (called (conditional)
vertex probability distributions)

is called a bayesian network.
Thus, a bayesian network encodes

(i) a joint probability distribution factor-
ized as

p =
∏
X∈V

p(X| pa(X))

and

(ii) conditional independency state-
ments

IG(X, Y |Z)⇒ Ip(X, Y |Z)

G represents p, but not necessarily faith-
fully.

A B

C

D

E F

G

p(A)

p(B|A, C)

p(C)

p(D|C)

p(E|B, D) p(F |D, E)

p(G|E)

Figure 3: Example for a bayesian network.
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Markov-equivalence

Definition 3. Let G,H be two graphs on a set V (undi-
rected or DAGs).
G and H are called markov-equivalent, if they have the
same independency model, i.e.

IG(X, Y |Z)⇔ IH(X, Y |Z), ∀X, Y, Z ⊆ V

The notion of markov-equivalence for undirected graphs
is uninteresting, as every undirected graph is markov-
equivalent only to itself. However, different DAGs can lead
to the same (in)dependency model.
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Markov-equivalence (DAGs)

Definition 4. Let G be a directed graph.
We call a chain

p1 − p2 − p3

uncoupled if there is no edge between
p1 and p3.

Lemma 5 (markov-equivalence crite-
rion, [PGV90]). Let G and H be two
DAGs on the vertices V .
G and H are markov-equivalent if and
only if

(i) G and H have the same links
(u(G) = u(H)) and

(ii) G and H have the same uncoupled
head-to-head meetings.

The set of uncoupled head-to-head
meetings is also denoted as V-
structure of G.
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E F

G
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E F
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Figure 4: Example for markov-equivalent DAGs.
,,-~~---

VTV
(!i}(A,B, C) (b) (A, C, B) (e) (B, A, C)

(B,C,A)
(d)(C,A, B) (e) (C, B, A)

---n~~ ~ ,.., ~"... 1 rI . -' T
. cl . h h cl cl Ymode

.-.~o 're>rt.PlI-maDS assoclate Wlt t e epen ene .

Figure 5: Which minimal DAG-representations
of I are equivalent? [CGH97, p. 240]
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DAG patterns represent markov equivalence classes

Lemma 6. Each markov equivalence
class corresponds uniquely to a DAG
pattern G:

(i) The markov equivalence class con-
sists of all DAGs that G is a pattern
of, i.e., that give G by dropping the
directions of some edges.

(ii) The DAG pattern contains a di-
rected edge (v, w), if all represen-
tatives of the markov equivalence
class contain this directed edge,
otherwise (i.e. if some represen-
tatives have (v, w), some others
(w, v)) the DAG pattern contains the
undirected edge {v, w}.

The directed edges of the DAG pat-
tern are also called irreversible or com-
pelled, the undirected edges are also

called reversible.
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Figure 6: DAG pattern and its markov equiva-
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Toplogical edge ordering

Definition 5. Let G := (V,E) be a di-
rected graph.
A bijective map

τ : {1, . . . , |E|} → E

is called an ordering of the edges of
G.

An edge ordering τ is called topologi-
cal edge ordering if

(i) numbers increase on all paths, i.e.

τ−1(x, y) < τ−1(y, z)

for paths x→ y → z and

(ii) shortcuts have larger numbers, i.e.
for x, y, z with

x

y

z
it is

τ−1(x, y) < τ−1(y, z)
!
< τ−1(x, z)

x

y

z

v

w

2

4

5

1

3

Figure 7: Example for a topological edge order-
ing.
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Toplogical edge ordering

1 topological-edge-ordering(G = (V, E)) :
2 σ := topological-ordering(G)
3 E ′ := E
4 for i = 1, . . . , |E| do
5 Let (v, w) ∈ E ′ with σ−1(w) minimal and then with σ−1(v) maximal
6 τ(i) := (v, w)
7 E ′ := E ′ \ {(v, w)}
8 od
9 return τ

Figure 8: Algorithm for computing a topological edge ordering of a DAG.
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1 dag-pattern(G = (V, E)) :
2 τ := topological-edge-ordering(G)
3 Eirr := ∅
4 Erev := ∅
5 Erest := E
6 while Erest 6= ∅ do
7 Let (y, z) ∈ Erest with τ−1(y, z) minimal
8 [label pa(z) :]
9 if ∃(x, y) ∈ Eirr with (x, z) 6∈ E

10 Eirr := Eirr ∪ {(x′, z) | x′ ∈ pa(z)}
11 else
12 Eirr := Eirr ∪ {(x′, z) | (x′, y) ∈ Eirr}
13 if ∃(x, z) ∈ E with x 6∈ {y} ∪ pa(y)
14 Eirr := Eirr ∪ {(x′, z) | (x′, z) ∈ Erest}
15 else
16 Erev := Erev ∪ {(x′, z) | (x′, z) ∈ Erest}
17 fi
18 fi
19 Erest := E \ Eirr \ Erev

20 od
21 return Ḡ := (V, Eirr ∪ {{v, w}|(v, w) ∈ Erev})

Figure 9: Algorithm for computing the DAG pattern representing the markov equivalence class of a
DAG G. [Chi95]
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Types of probabilistic networks

probabilistic network

rep. discrete JPD rep. continuous JPD rep. mixed JPD

markov network bayesian network gaussian network dirichlet network ...

Figure 10: Types of probabilistic networks.
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