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Bayesian Networks / 1. Why exact inference may not be good enough

bayesian network # variables time for exact inference
studfarm 12 0.18s
Hailfinder 56 0.36s
Pathfinder-23 135 4.04s
Link 742 307.72s1)

on a 1.6MHz Pentium-M notebook
(1) on a 2.5 MHz Pentium-IV)

though

• w/o optimized implementation

• with very simple triangulation heuristics (minimal de-
gree).
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Estimating marginals from data
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1 0 0 0 0 0
2 0 0 0 0 0
3 1 1 1 1 0
4 0 0 1 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 1 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 0 1 1

Figure 1: Example data for the dog-problem.

family-out bowel-problem

light-on dog-out

hear-bark

Figure 2: Bayesian network for dog-problem.

family-out 0 8
1 2

a) counts

family-out 0 0.8
1 0.2

b) probabilities

Figure 3: Estimating absolute probabilities (root node tables).
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Figure 1: Example data for the dog-problem.

family-out bowel-problem

light-on dog-out

hear-bark

Figure 2: Bayesian network for dog-problem.

family-out 0 1
bowel 0 1 0 1

dog-out 0 5 0 0 0
1 1 2 1 1

a) counts

family-out 0 1
bowel 0 1 0 1

dog-out 0 0.5 0 0 0
1 0.1 0.2 0.1 0.1

b) absolute probabilities

family-out 0 1
bowel 0 1 0 1

dog-out 0 5
6 0 0 0

0 1
6 1 1 1

c) cond. probabilities

Figure 4: Estimating conditional probabilities (inner node tables).
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Estimating marginals from data given evidence

If we want to estimate the probabilities
for family-out given the evidence that
dog-out is 1, we have

(i) identify all cases that are compati-
ble with the given evidence,

(ii) estimate the target potential
p(familiy-out) from these cases.
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1 0 0 0 0 0 rejected
2 0 0 0 0 0 rejected
3 1 1 1 1 0 accepted
4 0 0 1 1 1 accepted
5 0 0 0 0 0 rejected
6 0 0 0 0 0 rejected
7 0 0 0 1 1 accepted
8 0 0 0 0 0 rejected
9 0 0 1 1 1 accepted

10 1 1 0 1 1 accepted

Figure 5: Accepted and rejected cases for evi-
dence dog-out = 1.

family-out 0 3
1 2

a) counts

family-out 0 0.6
1 0.4

b) probabilities

Figure 6: Estimating target potentials given evidence, here p(family-out|dog-out = 1).
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Learning and inferencing

data model

target potentials

learn: a) parameters: estimate vertex potentials
b) graph structure

infer

Figure 7: Learing models from data for inferencing.
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Sampling and estimating

data model

target potentials

learn: a) parameters: estimate vertex potentials
b) graph structure

generate synthetic data / sample

estimate
infer

Figure 7: Learing models from data for inferencing vs. sampling from models and estimating.
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Sampling a discrete distribution

Given a discrete distribution, e.g.,

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y .169 .210 .048 .049 .119 .112 .009 .005

N .003 .009 .010 .024 .039 .090 .044 .062

Figure 8: Example for a discrete distribution.

How do we draw samples from this distribution?
= generate synthetic data that is distributed according to it?
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Sampling a discrete distribution

(i) Fix an enumeration of all states of
the distribution p, i.e.,

σ : {1, . . . , |Ω|} → Ω bijective

with Ω the set of all states,

(ii) compute the cumulative distribution
function in the state index, i.e.,

cump,σ : {1, . . . , |Ω|} → [0, 1]

i 7→
∑
j≤i

p(σ(j))

(iii) draw a random real value r uni-
formly from [0,1],

(iv) search the state ω with

cump,σ(ω) ≤ r

and maximal cump,σ(ω).

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y .169 .210 .048 .049 .119 .112 .009 .005

N .003 .009 .010 .024 .039 .090 .044 .060

Figure 8: Example for a discrete distribution.

Adeno Y N
Pain Y N Y N

Weightloss Y N Y N Y N Y N
Vomiting Y N Y N Y N Y N Y N Y N Y N Y N
cump,σ(i) .169 .379 .427 .476 .595 .707 .716 .721 .724 .733 .743 .767 .806 .896 .940 1.000

index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 9: Cumulative distribution function.
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Sampling a Bayesian Network / naive approach

As a bayesian network encodes a
discrete distribution, we can use the
method from the former slide to draw
samples from a bayesian network:

(i) Compute the full JPD table from the
bayesian network,

(ii) draw a sample from the table as on
the slide before.

This approach is not sensible though, as
we actually used bayesian networks s.t.
we not have to compute the full JPD (as
it normally is way to large to handle).

How can we make use of the indepen-
dencies encdoded in the bayesian net-
work structure?
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Sampling a Bayesian Network

Idea: sample variables separately, one
at a time.

If we have sampled
X1, . . . , Xk

already and Xk+1 is a vertex s.t.
desc(Xk+1) ∩ {X1, . . . , Xk} = ∅

then
p(Xk+1|X1, . . . , Xk) = p(Xk+1| pa(Xk+1))

i.e., we can sample Xk+1 from its vertex
potential given the evidence of its par-
ents (as sampled before).

1 sample-forward(B := (G := (V, E), (pv)v∈V )) :
2 σ := topological-ordering(G)
3 x := 0V

4 for i = 1, . . . , |σ| do
5 v := σ(i)
6 q := pv|x|pa(v)

7 draw xv ∼ q

8 od
9 return x

Figure 10: Algorithm for sampling a bayesian
network.
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Sampling a Bayesian Network / example

Let σ := (F, B, L, D,H).

1. xF ∼ pF = (0.85, 0.15)
say with outcome 0.

2. xB ∼ pB = (0.8, 0.2)
say with outcome 1.

3. xL ∼ pL(F = 0) = (0.95, 0.05)
say with outcome 0.

4. xD ∼ pD(F = 0, B = 1) = (0.03, 0.97)
say with outcome 1.

5. xH ∼ pH(D = 1) = (0.3, 0.7)
say with outcome 1.

The result is

x = (0, 1, 0, 1, 1)

family-out bowel-problem

light-on dog-out

hear-bark

F = 0 0.85
1 0.15

B = 0 0.8
1 0.2

F 0 1
L = 0 0.95 0.4

1 0.05 0.6

D 0 1
H = 0 0.99 0.3

1 0.01 0.7

B 0 1
F 0 1 0 1

D = 0 0.7 0.1 0.03 0.01
1 0.3 0.9 0.97 0.99

Figure 11: Bayesian network for dog-problem.
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Bayesian Networks / 2. Acceptance-Rejection Sampling

Acceptance-rejection sampling

Inferencing by acceptance-rejection
sampling means:

(i) draw a sample from the bayesian
network (w/o evidence entered),

(ii) drop all data from the sample that
are not conformant with the evi-
dence,

(iii) estimate target potentials from the
remaining data.

For bayesian networks sampling is done
by forward-sampling. — Forward sam-
pling is stopped as soon as an evidence
variable has been instantiated that con-
tradicts the evidence.

Acceptance-rejection sampling for
bayesian networks is also called logic
sampling [Hen88].

1 infer-acceptance-rejection(B : bayesian network ,

2 W : target domain, E : evidence, n : sample size) :
3 D := (sample-forward(B) | i = 1, . . . , n)
4 return estimate(D, W, E)

1 sample-forward(B := (G := (V, E), (pv)v∈V )) :
2 σ := topological-ordering(G)
3 x := 0V

4 for i = 1, . . . , |σ| do
5 v := σ(i)
6 q := pv|x|pa(v)

7 draw xv ∼ q

8 od
9 return x

1 estimate(D : data, W : target domain, E : evidence) :
2 D′ := (d ∈ D | d|dom(E)

= val(E))

3 return estimate(D′, W )

1 estimate(D : data, W : target domain) :
2 q := zero-potential on W
3 for d ∈ D do
4 q(d)++
5 od
6 q := q/|data|
7 return q

Figure 12: Algorithm for acceptance-rejection
sampling.
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Bayesian Networks / 3. Importance Sampling

Acceptance rate of acceptance-rejection sampling

How efficient acceptance-rejection sampling is depends
on the acceptance rate.

Let E be evidence. Then the acceptance rate, i.e., the
fraction of samples conformant with E, is

p(E)

the marginal probability of the evidence.

Thus, acceptance-rejection sampling performs poorly if
the probability of evidence is small. In the studfarm ex-
ample

p(J = aa) = 0.00043

i.e., from 2326 sampled cases 2325 are rejected.
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Bayesian Networks / 3. Importance Sampling

Idea of importance sampling

Idea: do not sample the evidence vari-
ables, but instantiate them to the values
of the evidence.
Instantiating the evidence variables first,
means, we have to sample the other
variables from

p(Xk+1| X1 = x1, . . . , Xk = xk,
E1 = e1, . . . , Em = em)

even for a topological ordering of non-
evidential variables.
Problem: if there is an evidence vari-
able that is a descendant of a non-
evidential variable Xk+1 that has to be
sampled, then
• it does neither occur among its par-

ents nor is independent from Xk+1,
and

• it may open dependency chains to
other variables !

A B

C

Figure 13: If C is evidential and already instan-
tiated, say C = c, then A is dependent on C, so
we would have to sample A from p(A|C = c).
Even worse, B is dependant on C and A (d-
separation), so we would have to sample B from
p(B|A = a, C = c). But neither of these cpdfs is
known in advance.
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Bayesian Networks / 3. Importance Sampling

Inference from a stochastic point of view

Let V be a set of variables and p a pdf
on

∏
dom(V ). Infering the marginal on a

given set of variables W ⊆ V and given
evidence E means to compute

(pE)↓W

i.e., for all x ∈
∏

dom(W )

(pE)↓W (x) =
∑

y∈
∏

dom(V \W\dom(E))

p(x, y, e)

=
∑

y∈
∏

dom(V )

Ix,e(y) · p(y)

with the indicator function
Ix :

∏
dom(V ) → {0, 1}

y 7→

{
1, if y|dom(x) = x

0, else

So we can reformulate the inference
problem as the problem of averaging a
given random variable f (here: f :=
Ix,e) over a given pdf p, i.e., to compute
/ estimate the mean

Ep(f ) :=
∑

x∈dom(p)

f (x) · p(x)

Theorem 1 (strong law of large num-
bers). Let p : Ω → [0, 1] be a pdf, f : Ω →
R be a random variable with Ep(|f |) <
∞, and Xi ∼ f, i ∈ N independently.
Then

1

n

n∑
i=1

Xi →a.s. Ep(f )

Proof. See, e.g., [Sha03, p. 62]
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Bayesian Networks / 3. Importance Sampling

Sampling from the wrong distribution

Inference by sampling applies the
SLLN:∑

x∈dom(p)

f (x) · p(x) =:Ep(f )

≈1

n

∑
x∼p

(n draws)

f (x)

Now let q be any other pdf with
p(x) > 0 =⇒ q(x) > 0, ∀x ∈ dom(p) = dom(q)

Due to∑
x∈dom(p)

f (x) · p(x) =
∑

x∈dom(p)

f (x) · p(x)

q(x)
· q(x)

=:Eq(f ·
p

q
)

≈1

n

∑
x∼q

(n draws)

f (x) · p(x)

q(x)

we can sample from q instead from p if
we adjust the function values of f ac-
cordingly.

The pdf q is called importance func-
tion, the function w := p/q is called
score or case weight.

Often we know the case weight only up
to a multiplicative constant, i.e., w′ :=
c · w ∝ p/q with unknown constant c.
For a sample x1, . . . , xn ∼ q, we then can
approximate Ep(f ) by

Ep(f ) ≈1

n

n∑
i=1

f (xi) · w(xi)

≈ 1∑
i w

′(xi)

n∑
i=1

f (xi) · w′(xi)
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Bayesian Networks / 3. Importance Sampling

Case weight

Back to
sampling from the true distribution pE

vs.
sampling from the bayesian network

with pre-instantiated evidence variables
(the wrong distribution)

The probability for a sample x from a
Bayesian network among samples con-
formant with a given evidence E is

p(x|E) =
p(x)

p(E)
=

∏
v∈V

pv(xv |x|pa(v))

p(E)

The probability for a sample x from a
Bayesian network with pre-instantiated
evidence variables is

qE(x) =
∏

v∈V \dom(E)

pv(xv |x|pa(v))

Thus, the case weight is

w(x) :=
p(x|E)

qE(x)
=

∏
v∈dom(E)

pv(xv |x|pa(v))

p(E)
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Bayesian Networks / 3. Importance Sampling

Likelihood weighting sampling

Inferencing by importance sampling
means:

(i) choose a sampling distribution q,

(ii) draw a weighted sample from q,

(iii) estimate target potentials from
these sample data.

For bayesian networks using sam-
pling from bayesian networks with pre-
instantiated evidence variables and the
case weight

w(x) :=
∏

v∈dom(E)

pv(xv |x|pa(v))

is called likelihood weighting sam-
pling [FC90, SP90]

1 infer-likelihood-weighting(B : bayesian network ,

2 W : target domain, E : evidence, n : sample size) :
3 (D, w) := (sample-likelihood-weighting(B, E) | i = 1, . . . , n)
4 return estimate(D, w, W )

1 sample-likelihood-weighting(B := (G, (pv)v∈VG
), E : evidence) :

2 σ := topological-ordering(G \ dom(E))
3 x := 0VG

4 x|dom(E) := val(E)

5 for i = 1, . . . , |σ| do
6 v := σ(i)
7 q := pv|x|pa(v)

8 draw xv ∼ q

9 od
10 w(x) :=

∏

v∈dom(E)

pv(xv | x|pa(v))

11 return (x, w(x))

1 estimate(D : data, w : case weight , W : target domain) :
2 q := zero-potential on W
3 wtot := 0
4 for d ∈ D do
5 q(d) := q(d) + w(d)
6 wtot := wtot + w(d)
7 od
8 q := q/wtot
9 return q

Figure 14: Algorithm for inference by likelihood
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Bayesian Networks / 3. Importance Sampling

Likelihood weighting sampling / example

Let the evidence be D = 1. Fix σ :=
(F, B, L, H).

1. xF ∼ pF = (0.85, 0.15)
say with outcome 0.

2. xB ∼ pB = (0.8, 0.2)
say with outcome 1.

3. xL ∼ pL(F = 0) = (0.95, 0.05)
say with outcome 0.

4. xH ∼ pH(D = 1) = (0.3, 0.7)
say with outcome 1.

The result is

x = (0, 1, 0, 1, 1)

and the case weight

w(x) = pD(D = 1|F = 0, B = 1) = 0.97

family-out bowel-problem

light-on dog-out

hear-bark

F = 0 0.85
1 0.15

B = 0 0.8
1 0.2

F 0 1
L = 0 0.95 0.4

1 0.05 0.6

D 0 1
H = 0 0.99 0.3

1 0.01 0.7

B 0 1
F 0 1 0 1

D = 0 0.7 0.1 0.03 0.01
1 0.3 0.9 0.97 0.99

Figure 15: Bayesian network for dog-problem.
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Bayesian Networks / 3. Importance Sampling

Acceptance-rejection sampling

Acceptance-rejection sampling can be viewed as another
instance of importance sampling. Here, the sampling dis-
tribution is q := p (i.e., the distribution without evidence
entered; the target distribtion is pE !) and the case weight

w(x) := Ie(x) :=

{
1, if x|dom(E) = val(E)

0, otherwise
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Bayesian Networks / 3. Importance Sampling
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