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Problems of Likelihood Weighting Sampling

Likelihood weighting sampling still can
reject cases, if the cdfs of the evidence
variables have zeros and thus can gen-
erate a case weight O.

Example: consider the studfarm exam-
ple with evidence J = aa again. When-
ever H or I are pure (aa), J cannot be
sick. In these cases the case weight is
zero, e.g.,

w(z) =pyj(J=aalH=aa,l=...)=0

and the sample is dropped.

tung

2003

H| aa aA

|| aa aA|aa aA
J=aa| 1 5].5 25
aAl 0 5.5 5
AA O O | 0O .25

Figure 1: Studfarm example: p(J|H,I) if H and
I cannot be sick.

As the marginal of H, I w/o evidence is

| aa aA
H=aa|0.98265 0.00823
aA 0.00742 0.00170

the probability for acceptance is only
p(H =aA, I =aA) = 0.00170

l.e., only 1 from 588 samples is ac-
cepted.
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Some rejections may be unavoidable

If CPDs have zeros, forward sam- A=00.1 B=0/07
pling always may lead to some rejected 110.9 1/0.3
cases. A B
Example 1. If we observe evidence
C =1,
C
then  pa—ojc=1)>0 IR
and BIO1 [0 1
B=0lC=1)>0

thus forwa]:é sam |Iin | | C=0/1 07103 0.6

u piing 10 0.3/0.7 0.4

(i) will have to sample A = 0 as well as
B—=0 Figure 2: Bayesian network with a zero in a con-

i , ditional potential.
(i) will sample A and B independently,

and thus

(iii) will occasionally sample A = 0 and
B =0,

which will be rejected as it is not com-

patible with the observed evidence.
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Optimal sampling distribution

Theorem 1 (Rubinstein 1981). The opti-
mal sampling distribution is q = p.
l.e., in our case:
¢=pe=]]@)e
veV
Idea of Self Importance Sampling:

(i) compute (p,)g for all vertices v € V,

(i) sample from ¢ := pg by replacing
the vertex potentials p, by (p,)z.

Forward sampling automatically sam-
ples from (p,) for all vertices v w/o. evi-
dence descendant (as then all evidence
vertices have been enumerated before
v and we effectively sample conditional
on all vertices sampled before).

= (p,)r has to be estimated only for an-
cestors v of evidential vertices.

%‘;3,‘[\'4”9

2003

A

Figure 3: CPDs of blue vertices have to be esti-
mated.
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Self Importance Sampling [SP90]:
a) Update sampling distribution ¢,

e ——

(py)E In step k:

(pv)E = (1 — )‘) “ Py T A (pv>E
with learning rate
k
ANE) = ——
() k+1

— (aII)

where (p,)r  is estimated based on all
samples seen so far.

b) Estimate target potentials based on
all samples generated.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems
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Adaptive
[CDO0O0]:
a) Update sampling distribution ¢,

/\

(py)E In step k:

Importance  Sampling

(pv>E = Puv
——— (k+1) ——— (k) ——— (new
(pv>E = (1 - >\> | (pv)E + A (]%)E

with learning rate
)\max

k/kmax
)\ .
! ( Ao )

(with Ay := 0.4 and Anax = 0.14) where

——— (new)

(pv)E
sample.

AE)

IS estimated based on a fresh

b) Estimate target potentials based on
samples weighted by a factor depen-
dend on step k£ (e.g., only on samples

and Machine Learning Lab(i%MLL), Unijessfty of Hildesheim, Germany,
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Self Importance Sampling (SIS) 00

infer-sis(B := (G, (py)vevy, ), W : target domain, E : evidence,
n : sample size, ky,x : no of adaptions, \ : learning rate) :
(D,w):=0
A := anc(dom(E))
v ‘= Pu, Yo e Vg
for k:=1,. .., kn.x do
(D, w) := (D, w) U (sample-lw-tweaked (B, (¢u)vevy: £) [i = 1,..., [;=])

N & L AW N~

—— (all)
8 ((pv)E  )vea = estimate(D,w, {dom(p,) |v € A})
—— (all)
9 =1 =XKk)) -po+AXE)- (po)g , YveEA
11 od
12 return estimate(D, w, W)

sample-lw-tweaked(B := (G, (py)veve), (QU)veVG\dom(E) : sampling distribution, E : evidence) :
o := topological-ordering (G \ dom(F))
T = OVG
7| dom(p) = val(E)
fori=1,...,|c|do
v:=o(i)
q = Qv|x|pa(v)
draw z, ~ q

pv(‘rv | I| a(v))
[ »lelepaw) -  J] S

v x’l} € v
vedom(E) veVg\dom(E) 6ol |pa( )
(Iv#pv

O Co NS UL AW N~

S
g
=
Il

11 return (z,w(x))

Figure 4: Algorithm for approximate inference by Self Importance Sampling.
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Adaptive Importance Sampling (AIS)

i

;J‘El

Qf’euggnﬁ%

1 infer-ais(B := (G, (pv)vevy ), W : target domain, E : evidence,

2 n : sample size, ky,x : no of adaptions, \ : learning rate, o : target weights) :
3 (D,w):=0

4 A := anc(dom(FE))

5 Qv ‘= Pu, Vv e Vg

6 for k:=0,..., knx do

7 (D', w'") := (sample-lw-tweaked (B, (qv)vevy, E) |1 =1,. .., )

8 (D,w) = (D,w)U (D", w"- a(k))

9 (@(HCW))%A := estimate(D’, w’, {dom(p,) |v € A})

—— (new)
10 Qv = (1 - /\<k)) "y T )‘(k) ’ (}%)E ’ Vv e A

12 od
13 return estimate(D,w, W)

Figure 5: Algorithm for approximate inference by Adaptive Importance Sampling.

[CDO00] use kmax := 10 and the targets weights

0, Ifk < kmax
1, otherwise

a(k) =

Y

effectivly separating the estimation process for the sampling distribution and for the
target potentials.
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Measuring accuracy of estimates -
To measure accuracy of estimated tar- 9T o jsen - —5etw
get potentials p, (d € D) for a set of tar- il . AN
get domains D: S :
. N ng 0.15
(i) for each target domain d € D the g
exact potential p, is computed (e.g., = o
by clustering),
(i) the mean squared error on pa- semple time (seconds)
rameters is used as quality mea-
sure: Figure 6: Experimental evaluation of LW, SIS,

and AIS on CPCS network [CDO0O, p. 174].

MSE((ﬁd)deD) =

ST 2 2, ) i)

dED ze] [ dom(d

As target domains usually all single vari- | [CD0OO0] use as evidence the joint instan-
able domains are used. tiation of 20 random leaf vertices.
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0.0025 +

0.8 -
o— AIS-BN —o— Absent —s—Mild —&— Moderate —»— Severe
0.7
0.0020 -+
= 0.6 -
o
=
| i 0.5
% 0.0015 =
= 8 o4
3 0.0010 + g
§ . T 0.3
=
0.2
0.0005 +
0.1
0.0000 : : | | | | | | | 0 ‘ ‘ ‘ T
15 30 45 60 75 90 105 120 135 150 0 1 2 3 4 5 6 7 10
Sample time (seconds) Updating step

Figure 7: Convergence of AlS estimates: overall | Figure 8: Convergence of AIS estimates for a
MSE [CDO0O, p. 175]. single target potential [CDOO, p. 176].
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Two simple heuristics can dramatically
improve the efficiency of the estimator
[CDO0O0]:

If the marginal probability of an eviden-
tial variable is low, i.e.,

1
2 - | dom(X)]
then the vertex potentials of all its parent

vertices are reset to a uniform distribu-
tion.

p(X =e) <

Figure 9: Studfarm bayesian network.
In the studfarm example

1
pl(.] = aa) = 0.00043 < -

thus p(H|F, D) and p(I|E,G) are reset
to

aA

aa aA
5 .5
5 5

father Y
mother Z

aa
aA

aa
aa aA
5 5
5 5

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza , Information Systems and Machine Learning Lab(ISMLL), University of Hildesheim, Germany,

Course on Bayesian Networks, winter term 2007

9/18



Bayesian Networks / 4. Self and Adaptive Importance Sampling

Small coefficients of sampling potentials
are replaced by a minimal threshold 6:

if p,(zly) < 6 (for a (z,y) €
[ dom(py)),

then

pv@j‘y)/ =0

pv(xl‘y)/ = pv($/|y> - (9 _pv('ﬂy))a

for 2" with max. p, (2|
[CDOO0] use ¢ = 0.04.

In the studfarm example, the probabili-
ties of the root vertices will be adjusted:

A =aa 0.99 A =aa 0.96
aA | 0.01 aA | 0.04

becomes

1 0.110

0.075
~+'0.060

0.050 0.050

Mean Square Error

0008 - o
-DI00151  -1Q:00082

SIS/AIS (SIS+U)/(AIS+U)

Different Algorithms

(SIS+S)/(AIS+S)  (SIS+U+S)/(BN-AIS)

Figure 10: MSE of SIS and AIS with different ini-
tializations of the sampling distribution (stock p,,
with uniform parents (U), with small coefficients
replaced (S), and with both) [CDO0O, p. 180].
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Cluster graphs

Definition 1. Let VV be a set (of vari-
ables).
An undirected graph G = (V,E) on
Y C P(V) is called an cluster graph on
V, if
(i) the induced subgraph on all ver-
tices containing a given variable v,
l.e.,
{WeV]ive W}
is connected for all variables v € V.

and
(i1) all separators are non-empty
UNWwW #0, forallU W eV

Any cluster tree obviously is a cluster
graph.

Figure 11: A cluster graph on
V .={A,B,C, D, E, F} thatis not a cluster tree.

Figure 12: Not a cluster graph.
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The family cluster graph

Let G be a directed graph. Forv e V
fam(v) := {v} U pa(v)

is called the familiy of v.

Let (G = (V,E),(p)ev) be any
Bayesian network (not necessarily a
polytree). Let

V = {fam(v) |v € V}
and
F = {{fam(v), fam(w)} |v € V,w € pa(v)}

Then H = (V, F) is a cluster graph for
Q = {p,|v € V} called family cluster
graph.

WA ;

2003

=3
&
=
=
-
i

Figure 13: Bayesian network (that is not a poly-
tree).

Figure 14: Family cluster graph of Bayesian net-
work above.
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Problem of loopy cluster graphs:
there is no leaf to start computations
with, but all link potentials depend on
other linkpotentials.

Idea of loopy propagation:

(1) initialize link potentials to arbitrary
values (uniform distribution; ran-
dom distribution).

(i) compute link potentials sucessively
in arbitrary order.

This seems to be sensible in so far, as
the true link potentials

qu,r -= PU H qw,u
Wetan(U)
W4T
"often" form a fixpoint of the propagation
operation, i.e., once all link potentials
have their true values, any propagation
step will reproduce the true value.

Figure 14: Family cluster graph of a Bayesian
network.
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There are several arrangements of the
computations possible:

Parallel loopy propagation [MWJ99]:.

Compute
=P H qWU

W etan(U
W%T

k:+1

in parallel for all U, T.

Sequential loopy propagation:
Fix an ordering of the links (U,T) and
compute

qu,r ‘= PU H qw,u

Wetan(U)
W#T

in that ordering several times.

""’é._
o

2003

AL
%g‘l. o %

Random loopy propagation:
Draw successively links (U, T') uniformly
and compute

qu,r ‘= PU H qw,u

Wetan(U)
WAT

Random walk loopy propagation:
Draw a start vertex U. Then

(i) draw a vertex T' € fan(U) and com-
pute

qu,r = PU H qw,u
Wefan(U)
WAT
(il) set U := T and repeat until conver-
gence.
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% 200 v
Convergence: computations continue | “
as long as ] T
/ / | 3d @;’i";”’
MSE({d),- - g} {ar, - - an}}) > € B
50-4: i Sjgs f ¢
with (¢});=1..» the last n computed link o :g@:% °

potentials, ¢; the value of link potential
q. before the last update and ¢ a given
threshold for the error (e.g., 0.0001).

Figure 15: Correlation of true and estimated co-
efficients using Loopy Propagation (¢ = 107%)
and LW (200 samples) on PYRAMID network
(28 binary variables) [MWJ99, p. 4].
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In general, there is no guarantee that
loopy propagation converges.

There are example bayesian networks
known, for that loopy propagation does
not converge (e.g., QMR-DT), but oscil-
lates between different estimates.

%‘;ﬁ\unﬂ
“roygant

2003

loopy belief
o
(%]

o 5 10 15 20
iteration

a

Figure 16: Oscillations of the estimates of three
vertices of the QMR-DT network using Loopy
Propagation [MWJ99, p. 6].
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Loopy propagation has been success-
fully used in different application areas:

(1) iterative decoding of error-correcting
codes (Tanner and factor graphs),

(i) computer vision (pairwise markov
random fields), and

(iii) local magnetizations (Potts and

Ising models).

Furthermore there are theoretical un-
derpinnings from statistical physics
(Bethe and Kikuchi energy, see
[YFWO02]) that can help to assess con-
vergence for models with special topolo-
gies.

5 1 4
2 I
3 & 2
6

Figure 17: Tanner graph of a 3 bit information in
6 bit messages parity check code [YFWO02, p. 6].
Circles denote bits, squares parity checks.
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