



## Bayesian Networks

IV. Approximate Inference (sections 4+5)

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab(ISMLL) University of Hildesheim



- 1. Why exact inference may not be good enough
- 2. Acceptance-Rejection Sampling
- 3. Importance Sampling
- 4. Self and Adaptive Importance Sampling
- 5. Stochastic / Loopy Propagation



## Problems of Likelihood Weighting Sampling

Likelihood weighting sampling still can reject cases, if the cdfs of the evidence variables have zeros and thus can generate a case weight 0.

**Example:** consider the studfarm example with evidence J= aa again. Whenever H or I are pure (aa), J cannot be sick. In these cases the case weight is zero, e.g.,

$$w(x) := p_J(J = aa|H = aa, I = ...) = 0$$

and the sample is dropped.

| Н     | aa |    | aA |     |
|-------|----|----|----|-----|
| 1     | aa | aA | aa | aA  |
| J= aa | 1  | .5 | .5 | .25 |
| aA    | 0  | .5 | .5 | .5  |
| AA    | 0  | 0  | 0  | .25 |

Figure 1: Studfarm example: p(J|H,I) if H and I cannot be sick.

As the marginal of H, I w/o evidence is

the probability for acceptance is only

$$p(H = aA, I = aA) = 0.00170$$

i.e., only 1 from 588 samples is accepted.



## Some rejections may be unavoidable

If CPDs have zeros, forward sampling always may lead to some rejected cases.

### **Example 1.** If we observe evidence

$$C = 1,$$

then

$$p(A=0|C=1) > 0$$

and

$$p(B=0|C=1) > 0,$$

thus forward sampling

- (i) will have to sample A=0 as well as B=0,
- (ii) will sample A and B independently, and thus
- (iii) will occasionally sample A=0 and B=0,

which will be rejected as it is not compatible with the observed evidence.

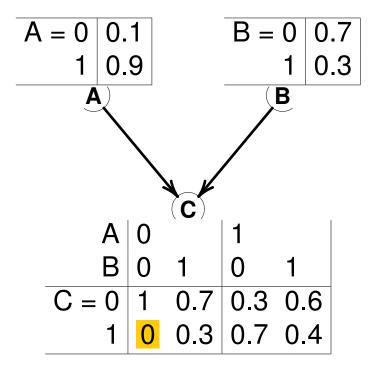


Figure 2: Bayesian network with a zero in a conditional potential.



## Optimal sampling distribution

**Theorem 1** (Rubinstein 1981). The optimal sampling distribution is q = p. i.e., in our case:

$$q = p_E = \prod_{v \in V} (p_v)_E$$

## Idea of Self Importance Sampling:

- (i) compute  $(p_v)_E$  for all vertices  $v \in V$ ,
- (ii) sample from  $q:=p_E$  by replacing the vertex potentials  $p_v$  by  $(p_v)_E$ .

Forward sampling automatically samples from  $(p_v)_E$  for all vertices v w/o. evidence descendant (as then all evidence vertices have been enumerated before v and we effectively sample conditional on all vertices sampled before).

 $\Rightarrow$   $(p_v)_E$  has to be estimated only for ancestors v of evidential vertices.

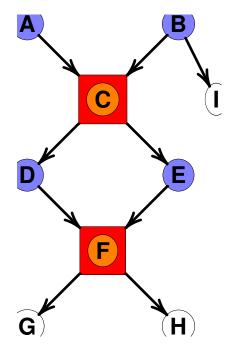


Figure 3: CPDs of blue vertices have to be estimated.



## **Self Importance Sampling [SP90]:**

a) Update sampling distribution  $q_v := \widehat{(p_v)_E}$  in step k:

$$\widehat{(p_v)_E}^{(k+1)} := (1-\lambda) \cdot p_v + \lambda \cdot \widehat{(p_v)_E}^{(\mathsf{all})}$$

## with learning rate

$$\lambda(k) := \frac{k}{k+1}$$

where  $\widehat{(p_v)_E}^{(\text{all})}$  is estimated based on all samples seen so far.

b) Estimate target potentials based on all samples generated.

# Adaptive Importance Sampling [CD00]:

a) Update sampling distribution  $q_v := \widehat{(p_v)_E}$  in step k:

$$\widehat{(p_v)_E}^{(0)} := p_v$$
 
$$\widehat{(p_v)_E}^{(k+1)} := (1-\lambda) \cdot \widehat{(p_v)_E}^{(k)} + \lambda \cdot \widehat{(p_v)_E}^{(\text{new})}$$

#### with learning rate

$$\lambda(k) := \lambda_0 \cdot \left(rac{\lambda_{\mathsf{max}}}{\lambda_0}
ight)^{k/k_{\mathsf{max}}}$$

(with  $\lambda_0:=0.4$  and  $\lambda_{\max}:=0.14$ ) where  $\widehat{(p_v)_E}^{(\text{new})}$  is estimated based on a fresh sample.

b) Estimate target potentials based on samples weighted by a factor dependend on step k (e.g., only on samples drawn in the last step)



## Self Importance Sampling (SIS)

```
1 infer-sis(B := (G, (p_v)_{v \in V_G}), W: target domain, E: evidence,
                    n: sample size, k_{\text{max}}: no of adaptions, \lambda: learning rate):
 (D, w) := 0
 A := anc(dom(E))
 5 q_v := p_v, \quad \forall v \in V_G
 6 for k := 1, ..., k_{\text{max}} do
          (D, w) := (D, w) \cup (sample-lw-tweaked(B, (q_v)_{v \in V_G}, E) \mid i = 1, \dots, \lfloor \frac{n}{k_{\max}} \rfloor)
          \widehat{((p_v)_E}^{(\text{all})})_{v \in A} := \operatorname{estimate}(D, w, \{\operatorname{dom}(p_v) \mid v \in A\})
 q_v := (1 - \lambda(k)) \cdot p_v + \lambda(k) \cdot \widehat{(p_v)_E}^{\text{(all)}}, \quad \forall v \in A
12 return estimate (D, w, W)
 1 sample-lw-tweaked(B := (G, (p_v)_{v \in V_G}), (q_v)_{v \in V_G \setminus \mathbf{dom}(E)} : sampling distribution, E : evidence) :
 \sigma := topological-ordering(G \setminus dom(E))
 x := 0_{V_G}
 |x|_{\operatorname{\mathbf{dom}}(E)} := \operatorname{val}(E)
 5 for i = 1, ..., |\sigma| do
      v := \sigma(i)
 7 \qquad q := q_v|_{x|_{\mathsf{pa}(v)}}
          draw x_v \sim q
 9 od
10 \ w(x) := \prod_{v \in \text{dom}(E)} p_v(x_v \,|\, x | \mathbf{pa}(v)) \cdot \prod_{v \in V_G \setminus \text{dom}(E)} \frac{p_v(x_v \,|\, x | \mathbf{pa}(v))}{q_v(x_v \,|\, x | \mathbf{pa}(v))}
11 return (x, w(x))
```

Figure 4: Algorithm for approximate inference by Self Importance Sampling.



## Adaptive Importance Sampling (AIS)

```
\begin{array}{l} \text{$I$ infer-ais}(B:=(G,(p_v)_{v\in V_G}),W: target\ domain,}\ E: evidence,\\ 2 \qquad \qquad n: sample\ size, k_{\max}: \ no\ of\ adaptions, \lambda: learning\ rate, \alpha: target\ weights):\\ 3\ (D,w):=0\\ 4\ A:=anc(\operatorname{dom}(E))\\ 5\ q_v:=p_v,\quad \forall v\in V_G\\ 6\ \underline{\textbf{for}}\ k:=0,\ldots,k_{\max}\ \underline{\textbf{do}}\\ 7\ (D',w'):=(sample-lw-tweaked(B,(q_v)_{v\in V_G},E)\,|\,i=1,\ldots,\lfloor\frac{n}{k_{\max}+1}\rfloor)\\ 8\ (D,w):=(D,w)\cup(D',w'\cdot\alpha(k))\\ 9\ (\widehat{(p_v)_E}^{(\text{new})})_{v\in A}:=\operatorname{estimate}(D',w',\{\operatorname{dom}(p_v)\,|\,v\in A\})\\ 10\ q_v:=(1-\lambda(k))\cdot q_v+\lambda(k)\cdot\widehat{(p_v)_E}^{(\text{new})},\quad \forall v\in A\\ 12\ \underline{\textbf{od}}\\ 13\ \underline{\textbf{return}}\ \operatorname{estimate}(D,w,W) \end{array}
```

Figure 5: Algorithm for approximate inference by Adaptive Importance Sampling.

[CD00] use  $k_{max} := 10$  and the targets weights

$$\alpha(k) := \begin{cases} 0, & \text{if } k < k_{\text{max}} \\ 1, & \text{otherwise} \end{cases}$$

effectivly separating the estimation process for the sampling distribution and for the target potentials.



## Measuring accuracy of estimates

To measure accuracy of estimated target potentials  $\hat{p}_d$  ( $d \in D$ ) for a set of target domains D:

- (i) for each target domain  $d \in D$  the exact potential  $p_d$  is computed (e.g., by clustering),
- (ii) the mean squared error on parameters is used as quality measure:

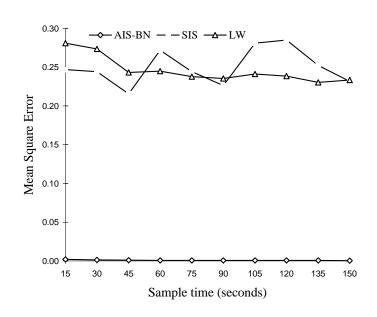


Figure 6: Experimental evaluation of LW, SIS, and AIS on CPCS network [CD00, p. 174].

$$\mathsf{MSE}((\hat{p}_d)_{d \in D}) := \sqrt{\frac{1}{\sum_{d \in D} |\prod \text{dom}(d)|} \sum_{d \in D} \sum_{x \in \prod \text{dom}(d)} (\hat{p}_d(x) - p_d(x))^2}$$

able domains are used.

As target domains usually all single vari- | [CD00] use as evidence the joint instantiation of 20 random leaf vertices.



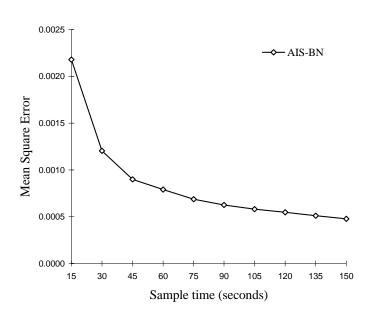


Figure 7: Convergence of AIS estimates: overall MSE [CD00, p. 175].

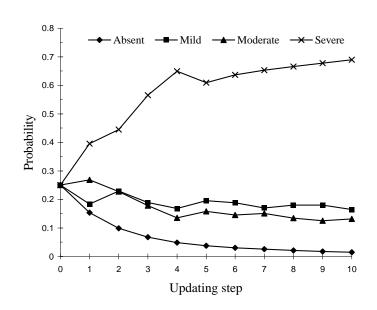


Figure 8: Convergence of AIS estimates for a single target potential [CD00, p. 176].



Heuristics for the improvement of importance sampling (1/2)

Two simple heuristics can dramatically improve the efficiency of the estimator [CD00]:

If the marginal probability of an evidential variable is low, i.e.,

$$p(X = e) < \frac{1}{2 \cdot |\operatorname{dom}(X)|}$$

then the vertex potentials of all its parent vertices are reset to a uniform distribution.

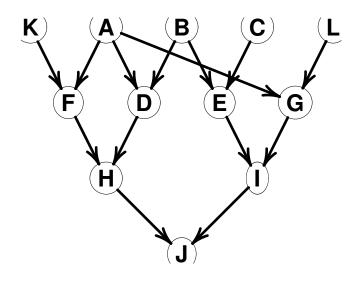


Figure 9: Studfarm bayesian network. In the studfarm example

$$p(J = aa) = 0.00043 < \frac{1}{6}$$

thus  $p(H|{\cal F},D)$  and  $p(I|{\cal E},G)$  are reset to

| father $Y$  | aa |    | aA |    |
|-------------|----|----|----|----|
| $mother\ Z$ | aa | aA | aa | aA |
| aa          | .5 | .5 | .5 | .5 |
| aA          | .5 | .5 | .5 | .5 |



## Heuristics for the improvement of importance sampling (2/2)

Small coefficients of sampling potentials are replaced by a minimal threshold  $\theta$ :

if 
$$p_v(x|y) < \theta$$
 (for a  $(x,y) \in \prod \mathrm{dom}(p_v)$ ), then

$$p_v(x|y)':= heta \ p_v(x'|y)':= p_v(x'|y) - ( heta - p_v(x|y)), \ ext{for } x' ext{ with max. } p_v(x'|y)$$

[CD00] use  $\theta = 0.04$ .

In the studfarm example, the probabilities of the root vertices will be adjusted:

$$A = aa \begin{vmatrix} 0.99 \\ aA \end{vmatrix} 0.01$$
 becomes  $A = aa \begin{vmatrix} 0.96 \\ aA \end{vmatrix} 0.04$ 

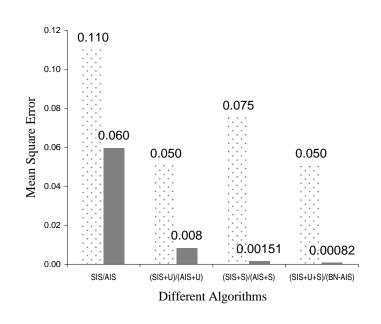


Figure 10: MSE of SIS and AIS with different initializations of the sampling distribution (stock  $p_v$ , with uniform parents (U), with small coefficients replaced (S), and with both) [CD00, p. 180].



- 1. Why exact inference may not be good enough
- 2. Acceptance-Rejection Sampling
- 3. Importance Sampling
- 4. Self and Adaptive Importance Sampling
- 5. Stochastic / Loopy Propagation

# Sounting State of the state of

## Cluster graphs

**Definition 1.** Let V be a set (of variables).

An undirected graph  $G:=(\mathcal{V},E)$  on  $\mathcal{V}\subseteq\mathcal{P}(V)$  is called an **cluster graph on** V, if

(i) the induced subgraph on all vertices containing a given variable v, i.e.,

$$\{W \in \mathcal{V} \mid v \in W\}$$

is connected for all variables  $v \in V$ .

(ii) all separators are non-empty

$$U \cap W \neq \emptyset$$
, for all  $U, W \in \mathcal{V}$ 

Any cluster tree obviously is a cluster graph.

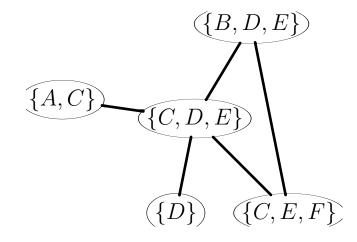


Figure 11: A cluster graph on  $V := \{A, B, C, D, E, F\}$  that is not a cluster tree.

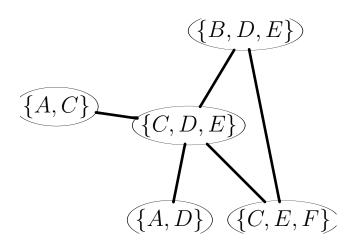


Figure 12: Not a cluster graph.



## The family cluster graph

Let G be a directed graph. For  $v \in V$ 

$$fam(v) := \{v\} \cup pa(v)$$

is called the **familiy of** v.

Let  $(G=(V,E),(p_v)_{v\in V})$  be any Bayesian network (not necessarily a polytree). Let

$$\mathcal{V} := \{ fam(v) \mid v \in V \}$$

and

$$F := \{ \{ fam(v), fam(w) \} \mid v \in V, w \in pa(v) \}$$

Then  $H:=(\mathcal{V},F)$  is a cluster graph for  $Q:=\{p_v\,|\,v\in V\}$  called **family cluster graph**.

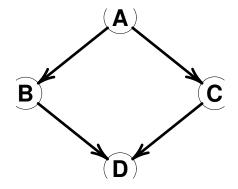


Figure 13: Bayesian network (that is not a polytree).

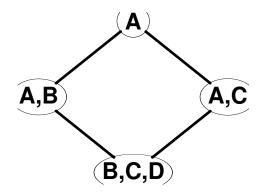


Figure 14: Family cluster graph of Bayesian network above.



Problem of loopy cluster graphs: there is no leaf to start computations with, but all link potentials depend on other linkpotentials.

## Idea of loopy propagation:

- (i) initialize link potentials to arbitrary values (uniform distribution; random distribution).
- (ii) compute link potentials sucessively in arbitrary order.

This seems to be sensible in so far, as the true link potentials

$$q_{U,T} := p_U \prod_{\substack{W \in \text{fan}(U) \\ W \neq T}} q_{W,U}$$

"often" form a fixpoint of the propagation operation, i.e., once all link potentials have their true values, any propagation step will reproduce the true value.

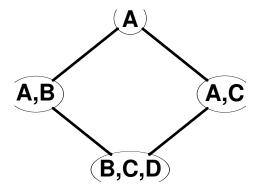


Figure 14: Family cluster graph of a Bayesian network.



There are several arrangements of the computations possible:

## **Parallel loopy propagation** [MWJ99]: Compute

$$q_{U,T}^{(k+1)} := p_U \prod_{\substack{W \in \text{fan}(U) \\ W \neq T}} q_{W,U}^{(k)}$$

in parallel for all U, T.

## Sequential loopy propagation:

Fix an ordering of the links  $({\cal U},{\cal T})$  and compute

$$q_{U,T} := p_U \prod_{\substack{W \in \text{fan}(U) \\ W \neq T}} q_{W,U}$$

in that ordering several times.

### **Random loopy propagation:**

Draw successively links  $({\cal U},{\cal T})$  uniformly and compute

$$q_{U,T} := p_U \prod_{\substack{W \in \text{fan}(U) \\ W \neq T}} q_{W,U}$$

## Random walk loopy propagation:

Draw a start vertex U. Then

(i) draw a vertex  $T \in \text{fan}(U)$  and compute

$$q_{U,T} := p_U \prod_{\substack{W \in \text{fan}(U) \\ W \neq T}} q_{W,U}$$

(ii) set U := T and repeat until convergence.



**Convergence:** computations continue as long as

$$MSE(\{q'_1, \dots, q'_n\}, \{q_1, \dots, q_n\}\}) > \epsilon$$

with  $(q_i')_{i=1,\dots,n}$  the last n computed link potentials,  $q_i$  the value of link potential  $q_i'$  before the last update and  $\epsilon$  a given threshold for the error (e.g., 0.0001).

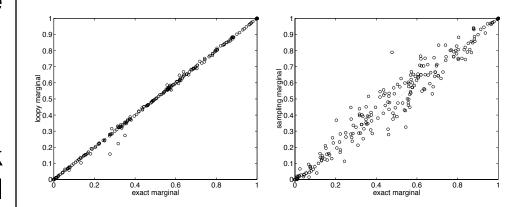


Figure 15: Correlation of true and estimated coefficients using Loopy Propagation ( $\epsilon = 10^{-4}$ ) and LW (200 samples) on PYRAMID network (28 binary variables) [MWJ99, p. 4].



In general, there is no guarantee that loopy propagation converges.

There are example bayesian networks known, for that loopy propagation does not converge (e.g., QMR-DT), but oscillates between different estimates.

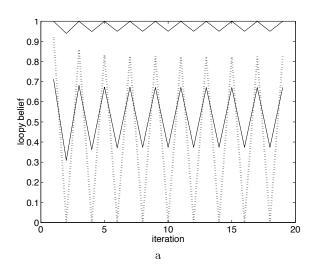


Figure 16: Oscillations of the estimates of three vertices of the QMR-DT network using Loopy Propagation [MWJ99, p. 6].



Loopy propagation has been successfully used in different application areas:

- (i) iterative decoding of error-correcting codes (Tanner and factor graphs),
- (ii) computer vision (pairwise markov random fields), and
- (iii) local magnetizations (Potts and Ising models).

Furthermore there are theoretical underpinnings from statistical physics (Bethe and Kikuchi energy, see [YFW02]) that can help to assess convergence for models with special topologies.

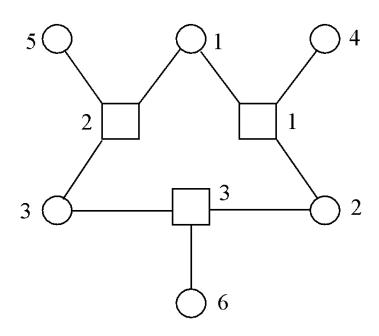


Figure 17: Tanner graph of a 3 bit information in 6 bit messages parity check code [YFW02, p. 6]. Circles denote bits, squares parity checks.



#### References

- [CD00] Jian Cheng and Marek J. Druzdzel. Ais-bn: An adaptive importance sampling algorithm for evidential reasoning in large bayesian networks. *Journal on Artificial Intelligence*, 13:155–188, 2000.
- [MWJ99] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In *Proceedings of the 15th Conference* on UAI, 1999.
- [SP90] R. D. Shachter and M. Peot. Simulation approaches to general probabilistic inference on belief networks. In M. Henrion, R. D. Shachter, L. N. Kanal, and J. F. Lemmer, editors, *Uncertainty in Artificial Intelligence 5*, pages 221–231. North Holland, Amsterdam, 1990.
- [YFW02] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propagation and its generalizations. Technical Report TR-2001-22, Mitsubishi Electric Research Laboratories, 2002.