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Bayesian Networks / 1. Incomplete Data

Complete and incomplete cases

Let V be a set of variables. A complete
case is a function

c : V →
⋃
v∈V

dom(V )

with c(v) ∈ dom(V ) for all v ∈ V .

A incomplete case (or a case with
missing data) is a complete case c for
a subset W ⊆ V of variables. We
denote var(c) := W and say, the values
of the variables V \W are missing or
not observed.

A data set D ∈ dom(V )∗ that contains
complete cases only, is called
complete data; if it contains an
incomplete case, it is called
incomplete data.

case F L B D H
1 0 0 0 0 0
2 0 0 0 0 0
3 1 1 1 1 0
4 0 0 1 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 1 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 0 1 1

Figure 1: Complete data for
V := {F,L,B,D,H}.

case F L B D H
1 0 0 0 0 0
2 . 0 0 0 0
3 1 1 1 1 0
4 0 0 . 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 . 0 . 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 . 1 1

Figure 2: Incomplete data for
V := {F,L,B,D,H}. Missing values are
marked by a dot.
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Bayesian Networks / 1. Incomplete Data

Missing value indicators

For each variable v, we can interpret its
missing of values as new random
variable Mv,

Mv :=

{
1, if vobs = .,

0, otherwise

called missing value indicator of v.

case F MF L ML B MB D MD H MH

1 0 0 0 0 0 0 0 0 0 0
2 . 1 0 0 0 0 0 0 0 0
3 1 0 1 0 1 0 1 0 0 0
4 0 0 0 0 . 1 1 0 1 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 . 1 0 0 . 1 1 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 1 0 1 0 1 0

10 1 0 1 0 . 1 1 0 1 0

Figure 3: Incomplete data for
V := {F,L,B,D,H} and missing value
indicators.
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Bayesian Networks / 1. Incomplete Data

Types of missingness / MCAR

A variable v ∈ V is called missing
completely at random (MCAR), if the
probability of a missing value is
(unconditionally) independent of the
(true, unobserved) value of v, i.e, if

I(Mv, vtrue)

(MCAR is also called missing
unconditionally at random).

Example: think of an apparatus
measuring the velocity v of wind that
has a loose contact c. When the
contact is closed, the measurement is
recorded, otherwise it is skipped. If the
contact c being closed does not depend
on the velocity v of wind, v is MCAR.

If a variable is MCAR, for each value
the probability of missing is the same,
and, e.g., the sample mean of vobs is an

case vtrue vobserved

1 /1 .
2 2 2
3 /2 .
4 4 4
5 3 3
6 2 2
7 1 1
8 /4 .
9 3 3

10 /2 .
11 1 1
12 /3 .
13 4 4
14 2 2
15 2 2

Figure 4: Data with a variable v MCAR. Missing
values are stroken through.
unbiased estimator for the expectation
of vtrue; here

µ̂(vobs) =
2 · 4 + 4 · 2 + 3 · 2 + 1 · 2

10

=
1 · 3 + 2 · 6 + 4 · 3 + 3 · 3

15
= µ̂(vtrue)
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Bayesian Networks / 1. Incomplete Data

Types of missingness / MAR

A variable v ∈ V is called missing at
random (MAR), if the probability of a
missing value is conditionally
independent of the (true, unobserved)
value of v, i.e, if

I(Mv, vtrue |W )

for some set of variables W ⊆ V \ {v}
(MAR is also called missing
conditionally at random).

Example: think of an apparatus
measuring the velocity v of wind. If we
measure wind velocities at three
different heights h = 0, 1, 2 and say the
apparatus has problems with height not
recording

1/3 of cases at height 0,
1/2 of cases at height 1,
2/3 of cases at height 2,

case v t
ru

e
v o

bs
er

ve
d

h
1 /1 . 0
2 2 2 0
3 /3 . 0
4 3 3 0
5 1 1 0
6 3 3 0
7 1 1 0
8 /2 . 0
9 2 2 0

case v t
ru

e
v o

bs
er

ve
d

h
10 /3 . 1
11 4 4 1
12 /4 . 1
13 3 3 1

case v t
ru

e
v o

bs
er

ve
d

h
14 /3 . 2
15 4 4 2
16 /4 . 2
17 5 5 2
18 /3 . 2
19 /5 . 2
20 3 3 2
21 /4 . 2
22 /5 . 2

Figure 5: Data with a variable v MAR
(conditionally on h).

then v is missing at random
(conditionally on h).
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Bayesian Networks / 1. Incomplete Data

Types of missingness / MAR

If v depends on variables in W , then,
e.g., the sample mean is not an
unbiased estimator, but the weighted
mean w.r.t. W has to be used; here:

2∑
h=0

µ̂(v|H = h)p(H = h)

=2 · 9

22
+ 3.5 · 4

22
+ 4 · 9

22

6= 1

11

∑
i=1,...,22
vi 6=.

vi

=2 · 6

11
+ 3.5 · 2

11
+ 4 · 3

11

case v t
ru

e
v o

bs
er

ve
d

h
1 /1 . 0
2 2 2 0
3 /3 . 0
4 3 3 0
5 1 1 0
6 3 3 0
7 1 1 0
8 /2 . 0
9 2 2 0

case v t
ru

e
v o

bs
er

ve
d

h
10 /3 . 1
11 4 4 1
12 /4 . 1
13 3 3 1

case v t
ru

e
v o

bs
er

ve
d

h
14 /3 . 2
15 4 4 2
16 /4 . 2
17 5 5 2
18 /3 . 2
19 /5 . 2
20 3 3 2
21 /4 . 2
22 /5 . 2

Figure 5: Data with a variable v MAR
(conditionally on h).
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Bayesian Networks / 1. Incomplete Data

Types of missingness / missing systematically

A variable v ∈ V is called missing
systematically (or not at random), if
the probability of a missing value does
depend on its (unobserved, true) value.

Example: if the apparatus has
problems measuring high velocities and
say, e.g., misses

1/3 of all measurements of v = 1,
1/2 of all measurements of v = 2,
2/3 of all measurements of v = 3,

i.e., the probability of a missing value
does depend on the velocity, v is
missing systematically.

case v t
ru

e
v o

bs
er

ve
d

1 /1 .
2 1 1
3 /2 .
4 /3 .
5 3 3
6 2 2
7 1 1
8 /2 .
9 /3 .

10 2 2

Figure 6: Data with a variable v missing
systematically.

Again, the sample mean is not
unbiased; expectation can only be
estimated if we have background
knowledge about the probabilities of a
missing value dependend on its true
value.
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Bayesian Networks / 1. Incomplete Data

Types of missingness / hidden variables

A variable v ∈ V is called hidden, if the
probability of a missing value is 1, i.e., it
is missing in all cases.

Example: say we want to measure
intelligence I of probands but cannot
do this directly. We measure their level
of education E and their income C
instead. Then I is hidden.

case Itrue Iobs E C

1 /1 . 0 0
2 /2 . 1 2
3 /2 . 2 1
4 /2 . 2 2
5 /1 . 0 2
6 /2 . 2 0
7 /1 . 1 2
8 /0 . 2 1
9 /1 . 2 2

10 /2 . 2 1

Figure 7: Data with a hidden variable I.

intelligence

education income

Figure 8: Suggested dependency of variables
I, E, and C.
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Bayesian Networks / 1. Incomplete Data

types of missingness

variable X

missing at random (MAR)
I(MX , X | Z)

missing systematically

missing completely
at random (MCAR)

I(MX , X)

hidden
p(MX = 1) = 1

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].
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Bayesian Networks / 1. Incomplete Data

complete case analysis

The simplest scheme to learn from
incomplete data D, e.g., the vertex
potentials (pv)v∈V of a Bayesian
network, is complete case analysis
(also called casewise deletion): use
only complete cases

Dcompl := {d ∈ D | d is complete}

case F L B D H
1 0 0 0 0 0
2 . 0 0 0 0
3 1 1 1 1 0
4 0 0 . 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 . 0 . 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 . 1 1

Figure 10: Incomplete data and data used in
complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample
Dcompl are unbiased for Dtrue.
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Bayesian Networks / 1. Incomplete Data

complete case analysis (2/2)

But for higher-dimensional data (i.e., with a larger
number of variables), complete cases might become
rare.

Let each variable have a probability for missing values of
0.05, then for 20 variables the probability of a case to be
complete is

(1− 0.05)20 ≈ 0.36

for 50 variables it is ≈ 0.08, i.e., most cases are deleted.
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Bayesian Networks / 1. Incomplete Data

available case analysis

A higher case rate can be achieved by
available case analysis. If a quantity
has to be estimated based on a subset
W ⊆ V of variables, e.g., the vertext
potential pv of a specific vertex v ∈ V of
a Bayesian network (W = fam(v)), use
only complete cases of D|W
(D|W )compl = {d ∈ D|W | d is complete}

case F L B D H
1 0 0 0 0 0
2 . 0 0 0 0
3 1 1 1 1 0
4 0 0 . 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 . 0 . 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 . 1 1

Figure 11: Incomplete data and data used in
available case analysis for estimating the
potential pL(L |F ) (highlighted).

If D is MCAR, estimations based on the subsample
(DW )compl are unbiased for (DW )true.
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Bayesian Networks
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2. Incomplete Data for Parameter Learning (EM algorithm)
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

completions

Let V be a set of variables and d be an
incomplete case. A (complete) case d̄
with

d̄(v) = d(v), ∀v ∈ var(d)

is called a completion of d.

A probability distribution

d̄ : dom(V )→ [0, 1]

with
d̄↓var(d) = epdd

is called a distribution of completions
of d (or a fuzzy completion of d).

Example If V := {F,L,B,D,H} and
d := (2, ., 0, 1, .)

an incomplete case, then
d̄1 :=(2, 1, 0, 1, 1)

d̄2 :=(2, 2, 0, 1, 0)

etc. are possible completions, but
e :=(1, 1, 0, 1, 1)

is not.

Assume dom(v) := {0, 1, 2} for all v ∈ V .
The potential
d̄ : dom(V ) → [0, 1]

(xv)v∈V 7→


1
9, if xF = 2, xB = 0,

and xD = 1

0, otherwise
is the uniform distribution of
completions of d.
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

learning from "fuzzy cases"

Given a bayesian network structure
G := (V,E) on a set of variables V and
a "fuzzy data set" D ∈ pdf(V )∗ of "fuzzy
cases" (pdfs q on V ). Learning the
parameters of the bayesian network
from "fuzzy cases" D means to find
vertex potentials (pv)v∈V s.t. the
maximum likelihood criterion, i.e.,
the probability of the data given the
bayesian network is maximal:

find (pv)v∈V s.t. p(D) is maximal,
where p denotes the JPD build from
(pv)v∈V . Here,

p(D) :=
∏
q∈D

∏
v∈V

∏
x∈dom(fam(v))

(pv(x))q
↓fam(v)(x)

Lemma 1. p(D) is maximal iff

pv(x|y) :=

∑
q∈D q

↓fam(v)(x, y)∑
q∈D q↓pa(v)(y)

(if there is a q ∈ D with q↓pa(v) > 0,
otherwise pv(x|y) can be choosen
arbitrarily – p(D) does not depend on
it).
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Maximum likelihood estimates

If D is incomplete data, in general we are looking for

(i) distributions of completions D̄ and

(ii) vertex potentials (pv)v∈V ,

that are

(i) compatible, i.e.,

d̄ = infer(pv)v∈V (d)

for all d̄ ∈ D̄ and s.t.

(ii) the probability, that the completed data D̄ has been
generated from the bayesian network specified by
(pv)v∈V , is maximal:

p((pv)v∈V , D̄) :=
∏
d̄∈D̄

∏
v∈V

∏
x∈dom(fam(v))

(pv(x))d̄
↓fam(v)(x)

(with the usual constraints that Impv ⊆ [0, 1] and∑
y∈dom(pa(v)) pv(x|y) = 1 for all v ∈ V and x ∈ dom(v)).
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Maximum likelihood estimates

Unfortunately this is

• a non-linear,

• high-dimensional,

• for bayesian networks in general even non-convex

optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent,
Newton-Raphson, BFGS, etc.) could be used to search
local maxima of this probability function.
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Example

Let the following bayesian network structure and training
data given.

case A B
1 0 0
2 0 1
3 0 1
4 . 1
5 . 0
6 . 0
7 1 0
8 1 0
9 1 1

10 1 .

A B
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Optimization Problem (1/3)

case A B weight
1 0 0 1
2 0 1 1
3 0 1 1
7 1 0 1
8 1 0 1
9 1 1 1
4 1 1 α4

4 0 1 1− α4

5,6 1 0 2α5

5,6 0 0 2 (1− α5)
10 1 1 β10

10 1 0 1− β10

A B

θ =p(A = 1)

η1 =p(B = 1 |A = 1)

η2 =p(B = 1 |A = 0)

p(D) =θ4+α4+2α5 (1− θ)3+(1−α4)+2 (1−α5) η1+α4+β10
1 (1− η1)2+2α5+(1−β10)

· η2+(1−α4)
2 (1− η2)1+2 (1−α5)
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Optimization Problem (2/3)

From parameters

θ =p(A = 1)

η1 =p(B = 1 |A = 1)

η2 =p(B = 1 |A = 0)

we can compute distributions of completions:

α4 = p(A = 1 |B = 1) =
p(B = 1 |A = 1) p(A = 1)∑
a∈A p(B = 1 |A = a) p(A = a)

=
θ η1

θ η1 + (1− θ) η2

α5 = p(A = 1 |B = 0) =
p(B = 0 |A = 1) p(A = 1)∑
a∈A p(B = 0 |A = a) p(A = a)

=
θ (1− η1)

θ (1− η1) + (1− θ) (1− η2)

β10 = p(B = 1 |A = 1) = η1
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Optimization Problem (3/3)

Substituting α4, α5 and β10 in p(D), finally yields:

p(D) =θ
4+

θ η1
θ η1+(1−θ)η2+2

θ (1−η1)
θ (1−η1)+(1−θ)(1−η2)

· (1− θ)
6− θ η1

θ η1+(1−θ)η2−2
θ (1−η1)

θ (1−η1)+(1−θ)(1−η2)

· η1
1+

θ η1
θ η1+(1−θ)η2+η1

· (1− η1)
3+2

θ (1−η1)
θ (1−η1)+(1−θ)(1−η2)

−η1

· η2
3− θ η1

θ η1+(1−θ)η2

· (1− η2)
3−2

θ (1−η1)
θ (1−η1)+(1−θ)(1−η2)
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

EM algorithm

For bayesian networks a widely used technique to search
local maxima of the probability function p is
Expectation-Maximization (EM, in essence a gradient
descent).

At the beginning, (pv)v∈V are initialized, e.g., by complete,
by available case analysis, or at random.

Then one computes alternating
expectation or E-step:

d̄ := infer(pv)v∈V (d), ∀d ∈ D
(forcing the compatibility constraint) and
maximization or M-step:

(pv)v∈V with maximal p((pv)v∈V , D̄)

keeping D̄ fixed.
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

EM algorithm

The E-step is implemented using an inference algorithm,
e.g., clustering [Lau95]. The variables with observed
values are used as evidence, the variables with missing
values form the target domain.

The M-step is implemented using lemma 2:

pv(x|y) :=

∑
q∈D q

↓fam(v)(x, y)∑
q∈D q↓pa(v)(y)

See [BKS97] and [FK03] for further optimizations aiming
at faster convergence.
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Example

Let the following bayesian network
structure and training data given.

A B

case A B
1 0 0
2 0 1
3 0 1
4 . 1
5 . 0
6 . 0
7 1 0
8 1 0
9 1 1

10 1 .

Using complete case analysis we
estimate (1st M-step)

p(A) = (0.5, 0.5)

and

p(B|A) =
A 0 1

B = 0 0.333 0.667
1 0.667 0.333

Then we estimate the distributions of
completions (1st E-step)

case B p(A=0) p(A=1)
4 1 0.667 0.333

5,6 0 0.333 0.667
case A p(B=0) p(B=1)

10 1 0.667 0.333
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

example / second & third step

From that we estimate (2nd M-step)

p(A) = (0.433, 0.567)

and

p(B|A) =
A 0 1

B = 0 0.385 0.706
1 0.615 0.294

Then we estimate the distributions of
completions (2nd E-step)

case B p(A=0) p(A=1)
4 1 0.615 0.385

5,6 0 0.294 0.706
case A p(B=0) p(B=1)

10 1 0.706 0.294

From that we estimate (3rd M-step)
p(A) = (0.420, 0.580)

and

p(B|A) =
A 0 1

B = 0 0.378 0.710
1 0.622 0.290

etc.

2 4 6 8 10 12

0.
3

0.
4

0.
5

0.
6

0.
7

step

pr
ob

ab
ili

ty

Figure 12: Convergence of the EM algorithm
(black p(A=1), red p(B=1|A=0), green
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Summary

• To learn parameters from data with missing values, sometimes
simple heuristics as complete or available case analysis can
be used.

• Alternatively, one can define a joint likelihood for
distributions of completions and parameters.

• In general, this gives rise to a nonlinear optimization
problem.
But for given distributions of completions, maximum
likelihood estimates can be computed analytically.

• To solve the ML optimization problem, one can employ the
expectation maximization (EM) algorithm:
– parameters→ completions (expectation; inference)

– completions→ parameters (maximization; parameter
learning)
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)
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