Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

Bayesian Networks

I. Bayesian Networks / 3. Parameter Learning with Missing Values

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza
Information Systems and Machine Learning Lab (ISMLL)
Institute of Economics and Information Systems
\& Institute of Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

Let V be a set of variables. A complete case is a function

$$
c: V \rightarrow \bigcup_{v \in V} \operatorname{dom}(V)
$$

with $c(v) \in \operatorname{dom}(V)$ for all $v \in V$.

A incomplete case (or a case with missing data) is a complete case c for a subset $W \subseteq V$ of variables. We denote $\operatorname{var}(c):=W$ and say, the values of the variables $V \backslash W$ are missing or not observed.

A data set $D \in \operatorname{dom}(V)^{*}$ that contains complete cases only, is called complete data; if it contains an incomplete case, it is called incomplete data.
 Course on Bayesian Networks, winter term 2007

Figure 1: Complete data for

$$
V:=\{F, L, B, D, H\} .
$$

case	F	L	B	D	H
1	0	0	0	0	0
2	.	0	0	0	0
3	1	1	1	1	0
4	0	0	.	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	.	0	.	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	.	1	1

Figure 2: Incomplete data for

For each variable v, we can interpret its missing of values as new random variable M_{v},

$$
M_{v}:= \begin{cases}1, & \text { if } v_{\text {obs }}=., \\ 0, & \text { otherwise }\end{cases}
$$

called missing value indicator of v.

case	F	M_{F}	L	M_{L}	B	M_{B}	D	M_{D}	H	M_{H}
1	0	0	0	0	0	0	0	0	0	0
2	.	1	0	0	0	0	0	0	0	0
3	1	0	1	0	1	0	1	0	0	0
4	0	0	0	0	.	1	1	0	1	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	.	1	0	0	.	1	1	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	1	0	1	0	1	0
10	1	0	1	0	.	1	1	0	1	0

Figure 3: Incomplete data for $V:=\{F, L, B, D, H\}$ and missing value indicators.

A variable $v \in V$ is called missing completely at random (MCAR), if the probability of a missing value is (unconditionally) independent of the (true, unobserved) value of v, i.e, if

$$
I\left(M_{v}, v_{\text {true }}\right)
$$

(MCAR is also called missing unconditionally at random).

Example: think of an apparatus measuring the velocity v of wind that has a loose contact c. When the contact is closed, the measurement is recorded, otherwise it is skipped. If the contact c being closed does not depend on the velocity v of wind, v is MCAR.

If a variable is MCAR, for each value the probability of missing is the same,

case	$v_{\text {true }}$	$v_{\text {observed }}$
1	1	.
2	2	2
3	2	.
4	4	4
5	3	3
6	2	2
7	1	1
8	4	.
9	3	3
10	2	.
11	1	1
12	3	.
13	4	4
14	2	2
15	2	2

Figure 4: Data with a variable v MCAR. Missing values are stroken through.
unbiased estimator for the expectation of $v_{\text {true }}$; here

$$
\begin{aligned}
\hat{\mu}\left(v_{\text {obs }}\right) & =\frac{2 \cdot 4+4 \cdot 2+3 \cdot 2+1 \cdot 2}{10} \\
& =\frac{1 \cdot 3+2 \cdot 6+4 \cdot 3+3 \cdot 3}{15}=\hat{\mu}\left(v_{\text {true }}\right)
\end{aligned}
$$

Types of missingness / MAR

A variable $v \in V$ is called missing at random (MAR), if the probability of a missing value is conditionally independent of the (true, unobserved) value of v, i.e, if

$$
I\left(M_{v}, v_{\text {true }} \mid W\right)
$$

for some set of variables $W \subseteq V \backslash\{v\}$ (MAR is also called missing conditionally at random).

Example: think of an apparatus measuring the velocity v of wind. If we measure wind velocities at three different heights $h=0,1,2$ and say the apparatus has problems with height not recording
$1 / 3$ of cases at height 0 , $1 / 2$ of cases at height 1 , $2 / 3$ of cases at height 2,

Types of missingness / MAR

If v depends on variables in W, then, e.g., the sample mean is not an unbiased estimator, but the weighted mean w.r.t. W has to be used; here:

$$
\begin{aligned}
& \sum_{h=0}^{2} \hat{\mu}(v \mid H=h) p(H=h) \\
= & 2 \cdot \frac{9}{22}+3.5 \cdot \frac{4}{22}+4 \cdot \frac{9}{22} \\
\neq & \frac{1}{11} \sum_{\substack{i=1, \ldots, 22 \\
v_{i} \neq .}} v_{i} \\
= & 2 \cdot \frac{6}{11}+3.5 \cdot \frac{2}{11}+4 \cdot \frac{3}{11}
\end{aligned}
$$

case	$\cdots 0^{\circ}$		h
1	1		0
2	2	2	0
3	B		0
4	3	3	0
5	1	1	0
6	3	3	0
7	1	1	0
8	2		0
9	2	2	0

case	$\cdots \omega^{\circ}$		
14	B		2
15	4	4	2
16	4		2
17	5	5	2
18	B		2
19	5		2
20	3	3	2
21	4	.	2
22	5		2

Figure 5: Data with a variable v MAR (conditionally on h).

Types of missingness / missing systematically

A variable $v \in V$ is called missing systematically (or not at random), if the probability of a missing value does depend on its (unobserved, true) value.

Example: if the apparatus has problems measuring high velocities and say, e.g., misses
$1 / 3$ of all measurements of $v=1$, $1 / 2$ of all measurements of $v=2$, $2 / 3$ of all measurements of $v=3$,
i.e., the probability of a missing value does depend on the velocity, v is missing systematically.

case		No
1	1	-
2	1	1
3	2	.
4	B	.
5	3	3
6	2	2
7	1	1
8	2	.
9	B	.
10	2	2

Figure 6: Data with a variable v missing systematically.

Again, the sample mean is not unbiased; expectation can only be estimated if we have background knowledge about the probabilities of a missing value dependend on its true value.

A variable $v \in V$ is called hidden, if the probability of a missing value is 1 , i.e., it is missing in all cases.

Example: say we want to measure intelligence I of probands but cannot do this directly. We measure their level of education E and their income C instead. Then I is hidden.

case	$I_{\text {true }}$	$I_{\text {obs }}$	E	C
1	1	.	0	0
2	2	.	1	2
3	2	.	2	1
4	2	.	2	2
5	1	.	0	2
6	2	.	2	0
7	1	.	1	2
8	0	.	2	1
9	1	.	2	2
10	2	.	2	1

Figure 7: Data with a hidden variable I.

Figure 8: Suggested dependency of variables I, E, and C.

2003

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].

The simplest scheme to learn from incomplete data D, e.g., the vertex potentials $\left(p_{v}\right)_{v \in V}$ of a Bayesian network, is complete case analysis (also called casewise deletion): use only complete cases

$$
D_{\text {compl }}:=\{d \in D \mid d \text { is complete }\}
$$

case	F	L	B	D	H
1	0	0	0	0	0
2	.	0	0	0	0
3	1	1	1	1	0
4	0	0	.	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	.	0	.	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	.	1	1

Figure 10: Incomplete data and data used in complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample $D_{\text {compl }}$ are unbiased for $D_{\text {true }}$.

But for higher-dimensional data (i.e., with a larger number of variables), complete cases might become rare.

Let each variable have a probability for missing values of 0.05 , then for 20 variables the probability of a case to be complete is

$$
(1-0.05)^{20} \approx 0.36
$$

for 50 variables it is ≈ 0.08, i.e., most cases are deleted.

A higher case rate can be achieved by available case analysis. If a quantity has to be estimated based on a subset $W \subseteq V$ of variables, e.g., the vertext potential p_{v} of a specific vertex $v \in V$ of a Bayesian network ($W=$ fam (v)), use only complete cases of $\left.D\right|_{W}$
$\left(\left.D\right|_{W}\right)_{\text {compl }}=\left\{\left.d \in D\right|_{W} \mid d\right.$ is complete $\}$

case	F	L	B	D	H
1	0	0	0	0	0
2	.	0	0	0	0
3	1	1	1	1	0
4	0	0	.	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	.	0	.	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	.	1	1

Figure 11: Incomplete data and data used in available case analysis for estimating the potential $p_{L}(L \mid F)$ (highlighted).

If D is MCAR, estimations based on the subsample $\left(D_{W}\right)_{\text {compl }}$ are unbiased for $\left(D_{W}\right)_{\text {true }}$.

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

Let V be a set of variables and d be an incomplete case. A (complete) case \bar{d} with

$$
\bar{d}(v)=d(v), \quad \forall v \in \operatorname{var}(d)
$$

is called a completion of d.
A probability distribution

$$
\bar{d}: \operatorname{dom}(V) \rightarrow[0,1]
$$

with

$$
\bar{d}^{\downarrow \operatorname{var}(d)}=\mathrm{epd}_{d}
$$

is called a distribution of completions of d (or a fuzzy completion of d).

Example If $V:=\{F, L, B, D, H\}$ and

$$
d:=(2, ., 0,1, .)
$$

an incomplete case, then

$$
\begin{aligned}
& \bar{d}_{1}:=(2,1,0,1,1) \\
& \bar{d}_{2}:=(2,2,0,1,0)
\end{aligned}
$$

etc. are possible completions, but

$$
e:=(1,1,0,1,1)
$$

is not.
Assume $\operatorname{dom}(v):=\{0,1,2\}$ for all $v \in V$. The potential

$$
\bar{d}: \operatorname{dom}(V) \rightarrow[0,1]
$$

$$
\left(x_{v}\right)_{v \in V} \mapsto\left\{\begin{array}{lc}
\frac{1}{9}, & \text { if } x_{F}=2, x_{B}=0 \\
\text { and } x_{D}=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

is the uniform distribution of
completions of d. University of Hildesheim, Germany,

Given a bayesian network structure $G:=(V, E)$ on a set of variables V and a "fuzzy data set" $D \in \operatorname{pdf}(V)^{*}$ of "fuzzy cases" (pdfs q on V). Learning the parameters of the bayesian network from "fuzzy cases" D means to find vertex potentials $\left(p_{v}\right)_{v \in V}$ s.t. the maximum likelihood criterion, i.e., the probability of the data given the bayesian network is maximal:
find $\left(p_{v}\right)_{v \in V}$ s.t. $p(D)$ is maximal, where p denotes the JPD build from $\left(p_{v}\right)_{v \in V}$. Here,

$$
p(D):=\prod_{q \in D} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))}\left(p_{v}(x)\right)^{q^{\lfloor\operatorname{fam}(v)}(x)}
$$

Lemma 1. $p(D)$ is maximal iff

$$
p_{v}(x \mid y):=\frac{\sum_{q \in D} q^{\operatorname{lfam}(v)}(x, y)}{\sum_{q \in D} q^{\operatorname{Lpa}(v)}(y)}
$$

(if there is a $q \in D$ with $q^{\operatorname{lpa}(v)}>0$, otherwise $p_{v}(x \mid y)$ can be choosen arbitrarily $-p(D)$ does not depend on $i t)$.

If D is incomplete data, in general we are looking for
(i) distributions of completions \bar{D} and
(ii) vertex potentials $\left(p_{v}\right)_{v \in V}$, that are
(i) compatible, i.e.,

$$
\bar{d}=\operatorname{infer}_{\left(p_{v}\right)_{v \in V}}(d)
$$

for all $\bar{d} \in \bar{D}$ and s.t.
(ii) the probability, that the completed data \bar{D} has been generated from the bayesian network specified by $\left(p_{v}\right)_{v \in V}$, is maximal:

$$
p\left(\left(p_{v}\right)_{v \in V}, \bar{D}\right):=\prod_{\bar{d} \in \bar{D}} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))}\left(p_{v}(x)\right)^{\bar{d}^{\operatorname{tam}(v)}(x)}
$$

(with the usual constraints that $\operatorname{Im} p_{v} \subseteq[0,1]$ and

$$
\left.\sum_{y \in \operatorname{dom}(\operatorname{pa}(v))} p_{v}(x \mid y)=1 \text { for all } v \in V \text { and } x \in \operatorname{dom}(v)\right) .
$$

Unfortunately this is

- a non-linear,
- high-dimensional,
- for bayesian networks in general even non-convex optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent, Newton-Raphson, BFGS, etc.) could be used to search local maxima of this probability function.

Example

Let the following bayesian network structure and training data given.

case	A	B
1	0	0
2	0	1
3	0	1
4	.	1
5	.	0
6	.	0
7	1	0
8	1	0
9	1	1
10	1	.

$A \longrightarrow B$

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) Optimization Problem (1/3)

| case | A | B |
| ---: | :---: | :---: | weight

$$
\begin{aligned}
\theta & =p(A=1) \\
\eta_{1} & =p(B=1 \mid A=1) \\
\eta_{2} & =p(B=1 \mid A=0)
\end{aligned}
$$

$$
\begin{aligned}
p(D)= & \theta^{4+\alpha_{4}+2 \alpha_{5}}(1-\theta)^{3+\left(1-\alpha_{4}\right)+2\left(1-\alpha_{5}\right)} \eta_{1}^{1+\alpha_{4}+\beta_{10}}\left(1-\eta_{1}\right)^{2+2 \alpha_{5}+\left(1-\beta_{10}\right)} \\
& \cdot \eta_{2}^{2+\left(1-\alpha_{4}\right)}\left(1-\eta_{2}\right)^{1+2\left(1-\alpha_{5}\right)}
\end{aligned}
$$

From parameters

$$
\begin{aligned}
\theta & =p(A=1) \\
\eta_{1} & =p(B=1 \mid A=1) \\
\eta_{2} & =p(B=1 \mid A=0)
\end{aligned}
$$

we can compute distributions of completions:

$$
\begin{aligned}
& \alpha_{4}=p(A=1 \mid B=1)=\frac{p(B=1 \mid A=1) p(A=1)}{\sum_{a \in A} p(B=1 \mid A=a) p(A=a)}=\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}} \\
& \begin{aligned}
\alpha_{5}=p(A=1 \mid B=0)=\frac{p(B=0 \mid A=1) p(A=1)}{\sum_{a \in A} p(B=0 \mid A=a) p(A=a)} & =\frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)} \\
\beta_{10}=p(B=1 \mid A=1) & =\eta_{1}
\end{aligned}
\end{aligned}
$$

Substituting α_{4}, α_{5} and β_{10} in $p(D)$, finally yields:

$$
\begin{aligned}
p(D)= & \theta^{4+\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}+2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}} \\
& \cdot(1-\theta)^{6-\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}-2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}} \\
& \cdot \eta_{1}^{1+\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}+\eta_{1}} \\
& \cdot\left(1-\eta_{1}\right)^{3+2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}-\eta_{1}} \\
& \cdot \eta_{2}^{3-\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}} \\
& \cdot\left(1-\eta_{2}\right)^{3-2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}}
\end{aligned}
$$

For bayesian networks a widely used technique to search local maxima of the probability function p is Expectation-Maximization (EM, in essence a gradient descent).

At the beginning, $\left(p_{v}\right)_{v \in V}$ are initialized, e.g., by complete, by available case analysis, or at random.

Then one computes alternating expectation or E-step:

$$
\bar{d}:=\operatorname{infer}_{\left(p_{v}\right)_{v \in V}}(d), \quad \forall d \in D
$$

(forcing the compatibility constraint) and maximization or M-step:

$$
\left(p_{v}\right)_{v \in V} \text { with maximal } p\left(\left(p_{v}\right)_{v \in V}, \bar{D}\right)
$$

keeping \bar{D} fixed.

The E-step is implemented using an inference algorithm, e.g., clustering [Lau95]. The variables with observed values are used as evidence, the variables with missing values form the target domain.

The M-step is implemented using lemma 2 :

$$
p_{v}(x \mid y):=\frac{\sum_{q \in D} q^{\operatorname{lfam}(v)}(x, y)}{\sum_{q \in D} q^{\operatorname{Lpa}(v)}(y)}
$$

See [BKS97] and [FK03] for further optimizations aiming at faster convergence.

2003

Let the following bayesian network structure and training data given.

Using complete case analysis we estimate (1st M-step)

$$
p(A)=(0.5,0.5)
$$

and

$$
p(B \mid A)=\begin{array}{l|ll|}
A & 0 & 1 \\
\hline B=0 & 0.333 & 0.667 \\
1 & 0.667 & 0.333
\end{array}
$$

Then we estimate the distributions of completions (1st E-step)

case	B	$p(A=0)$	$p(A=1)$
4	1	0.667	0.333
5,6	0	0.333	0.667
case	A	$p(B=0)$	$p(B=1)$
10	1	0.667	0.333

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) example / second \& third step

2003

From that we estimate (2nd M-step)

$$
p(A)=(0.433,0.567)
$$

and

$$
p(B \mid A)=\begin{array}{l|ll|}
A & 0 & 1 \\
\hline B= & 0.385 & 0.706 \\
1 & 0.615 & 0.294 \\
\hline
\end{array}
$$

Then we estimate the distributions of completions (2nd E-step)

case	B	$p(A=0)$	$p(A=1)$
4	1	0.615	0.385
5,6	0	0.294	0.706
case	A	$p(B=0)$	$p(B=1)$
10	1	0.706	0.294

From that we estimate (3rd M-step)

$$
p(A)=(0.420,0.580)
$$

and

$$
p(B \mid A)=\begin{array}{l|ll|}
A & 0 & 1 \\
\hline B=0 & 0.378 & 0.710 \\
1 & 0.622 & 0.290 \\
\hline
\end{array}
$$

etc.

Figure 12: Convergence ${ }^{\text {sieg }}$ f the EM algorithm (black $p(A=1)$, red $p(B=1 \mid A=0)$, green

2003

- To learn parameters from data with missing values, sometimes simple heuristics as complete or available case analysis can be used.
- Alternatively, one can define a joint likelihood for distributions of completions and parameters.
- In general, this gives rise to a nonlinear optimization problem.
But for given distributions of completions, maximum likelihood estimates can be computed analytically.
- To solve the ML optimization problem, one can employ the expectation maximization (EM) algorithm:
- parameters \rightarrow completions (expectation; inference)
- completions \rightarrow parameters (maximization; parameter learning)

References

[BKS97] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian networks. In Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI), 1997.
[FK03] J. Fischer and K. Kersting. Scaled cgem: A fast accelerated em. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, editors, Proceedings of the Fourteenth European Conference on Machine Learning (ECML-2003), pages 133-144, Cavtat, Croatia, 2003.
[Lau95] S. L. Lauritzen. The em algorithm for graphical association models with missing data. Computational Statistics \& Data Analysis, 19:191-201, 1995.
[LR87] R. J. A. Little and D. B. Rubin. Statistical analysis with missing data. Wiley, New York, 1987.

