

Bayesian Networks

I. Bayesian Networks / 3. Parameter Learning with Missing Values

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

Complete and incomplete cases

Let V be a set of variables. A **complete case** is a function

> $c: V \to \bigcup \operatorname{dom}(V)$ $v \in V$

with $c(v) \in dom(V)$ for all $v \in V$.

A incomplete case (or a case with **missing data**) is a complete case c for a subset $W \subseteq V$ of variables. We denote var(c) := W and say, the values of the variables $V \setminus W$ are **missing** or not observed.

A data set $D \in dom(V)^*$ that contains complete cases only, is called complete data; if it contains an incomplete case, it is called

8 0 0 0 0 9 0 1 10 0 Figure 1: Complete data for $V := \{F, L, B, D, H\}.$

case || F

3

5

В

0

0

1

0

0

0

0 0

0 0 1

0 0

1 1

0 0

0

0 0

0

D

0

0

1

1

0

0

1

Η

0

0

0

1

0

0

1

0

1

1

$$\begin{array}{c|cccccc} {\rm case} & {\rm F} & {\rm L} & {\rm B} & {\rm D} & {\rm H} \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & . & 0 & 0 & 0 & 0 \\ 2 & . & 0 & 0 & 0 & 0 \\ 3 & 1 & 1 & 1 & 1 & 0 \\ 4 & 0 & 0 & . & 1 & 1 \\ 4 & 0 & 0 & . & 1 & 1 \\ 5 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & . & 0 & . & 1 \\ 8 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 1 & 1 & 1 \\ 10 & 1 & 1 & . & 1 & 1 \end{array}$$

Figure 2: Incomplete data for

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISML), Wriversity of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

1/25

Missing value indicators

For each variable v, we can interpret its missing of values as new random variable M_v ,

$$M_v := \begin{cases} 1, & \text{if } v_{\text{obs}} = ., \\ 0, & \text{otherwise} \end{cases}$$

called missing value indicator of v.

case	F	M_F	L	M_L	В	M_B	D	M_D	H	M_H
1	0	0	0	0	0	0	0	0	0	0
2		1	0	0	0	0	0	0	0	0
3	1	0	1	0	1	0	1	0	0	0
4	0	0	0	0	-	1	1	0	1	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	-	1	0	0	-	1	1	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	1	0	1	0	1	0
10	1	0	1	0	-	1	1	0	1	0

Figure 3: Incomplete data for $V := \{F, L, B, D, H\}$ and missing value indicators.

Types of missingness / MCAR

A variable $v \in V$ is called **missing completely at random** (MCAR), if the probability of a missing value is (unconditionally) independent of the (true, unobserved) value of v, i.e, if

 $I(M_v, v_{\rm true})$

(MCAR is also called **missing unconditionally at random**).

Example: think of an apparatus measuring the velocity v of wind that has a loose contact c. When the contact is closed, the measurement is recorded, otherwise it is skipped. If the contact c being closed does not depend on the velocity v of wind, v is MCAR.

If a variable is MCAR, for each value the probability of missing is the same,

case	v _{true}	$v_{\sf observed}$
1	/1	•
2	2	2
3	2	•
4	4	4
5	3	3 2
6	2	2
7	1	1
8	4	
9	3	3
10	2	
11	1	1
12	ß	
13	4	4
14	2	4 2
15	2	2

Figure 4: Data with a variable v MCAR. Missing values are stroken through.

unbiased estimator for the expectation of $v_{\rm true}$; here

$$\begin{split} \hat{\mu}(v_{\text{obs}}) &= \frac{2 \cdot 4 + 4 \cdot 2 + 3 \cdot 2 + 1 \cdot 2}{10} \\ &= \frac{1 \cdot 3 + 2 \cdot 6 + 4 \cdot 3 + 3 \cdot 3}{15} = \hat{\mu}(v_{\text{true}}) \end{split}$$

Course on Bayesian Networks, winter term 2007

3/25

Types of missingness / MAR

A variable $v \in V$ is called **missing at** random (MAR), if the probability of a missing value is conditionally independent of the (true, unobserved) value of v, i.e, if

 $I(M_v, v_{\mathsf{true}} \,|\, W)$

for some set of variables $W \subseteq V \setminus \{v\}$ (MAR is also called **missing** conditionally at random).

Example: think of an apparatus measuring the velocity v of wind. If we measure wind velocities at three different heights h = 0, 1, 2 and say the apparatus has problems with height not recording

1/3 of cases at height 0,1/2 of cases at height 1,2/3 of cases at height 2,

										005
.0	2 6	oerred			20 6	erred		.0	2 6	oerred
3 ⁴⁰	000	h	case	1 22	00	h	case	1 32	~~°°	h
/ 1	-	0	10	ß	-	1	14	ß	-	2
2	2	0	11	4	4	1	15	4	4	2
B	-	0	12	4	-	1	16	4	-	2
3	3	0	13	3	3	1	17	5	5	2
1	1	0	l				18	ß	-	2
3	3	0					19	5	-	2
1	1	0					20	3	3	2
2	-	0					21	4	-	2
2	2	0					22	5	-	2
	1 2 8 3 1 3 1 3 1 2	1 . 2 2 B . 3 3 1 1 3 3 1 1 2 .	$\begin{array}{c cccc} 1 & . & 0 \\ 2 & 2 & 0 \\ \hline 3 & . & 0 \\ 3 & 3 & 0 \\ \hline 1 & 1 & 0 \\ 3 & 3 & 0 \\ \hline 1 & 1 & 0 \\ 2 & . & 0 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 . 0 2 2 0 3 . 0 3 3 0 11 4 4 4 12 4 13 3 1 1 3 3 1 1 2 . 1 1 2 . 1 1 2 . 1 1 1 1 1 1 2 . 0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Figure 5: Data with a variable v MAR (conditionally on h).

then v is missing at random (conditionally on h).

Types of missingness / MAR

If v depends on variables in W, then, e.g., the sample mean is not an unbiased estimator, but the weighted mean w.r.t. W has to be used; here:

$$\sum_{h=0}^{2} \hat{\mu}(v|H = h)p(H = h)$$

=2 \cdot \frac{9}{22} + 3.5 \cdot \frac{4}{22} + 4 \cdot \frac{9}{22}
\neq \frac{1}{11} \sum_{i=1,...,22} v_i
=2 \cdot \frac{6}{11} + 3.5 \cdot \frac{2}{11} + 4 \cdot \frac{3}{11}

Figure 5: Data with a variable v MAR (conditionally on h).

Bayesian Networks / 1. Incomplete Data

Types of missingness / missing systematically

A variable $v \in V$ is called **missing systematically** (or not at random), if the probability of a missing value does depend on its (unobserved, true) value.

Example: if the apparatus has problems measuring high velocities and say, e.g., misses

1/3 of all measurements of v = 1, 1/2 of all measurements of v = 2, 2/3 of all measurements of v = 3,

i.e., the probability of a missing value does depend on the velocity, v is missing systematically.

Figure 6: Data with a variable v missing systematically.

Again, the sample mean is not unbiased; expectation can only be estimated if we have background knowledge about the probabilities of a missing value dependend on its true value.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

Bayesian Networks / 1. Incomplete Data

Types of missingness / hidden variables

A variable $v \in V$ is called **hidden**, if the probability of a missing value is 1, i.e., it is missing in all cases.

Example: say we want to measure intelligence I of probands but cannot do this directly. We measure their level of education E and their income C instead. Then I is hidden.

0 2
2
-
1
2
2
0
2
1
2
1

Figure 7: Data with a hidden variable *I*.

Figure 8: Suggested dependency of variables I, E, and C.

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

complete case analysis

The simplest scheme to learn from incomplete data D, e.g., the vertex potentials $(p_v)_{v \in V}$ of a Bayesian network, is **complete case analysis** (also called **casewise deletion**): use only complete cases

 $D_{\mathsf{compl}} := \{ d \in D \, | \, d \text{ is complete} \}$

Figure 10: Incomplete data and data used in complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample D_{compl} are unbiased for D_{true} .

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

complete case analysis (2/2)

But for higher-dimensional data (i.e., with a larger number of variables), complete cases might become rare.

Let each variable have a probability for missing values of 0.05, then for 20 variables the probability of a case to be complete is

 $(1 - 0.05)^{20} \approx 0.36$

for 50 variables it is ≈ 0.08 , i.e., most cases are deleted.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 10/25

available case analysis

A higher case rate can be achieved by available case analysis. If a quantity has to be estimated based on a subset $W \subseteq V$ of variables, e.g., the vertext potential p_v of a specific vertex $v \in V$ of a Bayesian network (W = fam(v)), use only complete cases of $D|_W$

$$(D|_W)_{\text{compl}} = \{ d \in D|_W | d \text{ is complete} \}$$

Figure 11: Incomplete data and data used in available case analysis for estimating the potential $p_L(L | F)$ (highlighted).

If *D* is MCAR, estimations based on the subsample $(D_W)_{\text{compl}}$ are unbiased for $(D_W)_{\text{true}}$.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 11/25

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

completions

Let V be a set of variables and d be an incomplete case. A (complete) case \bar{d} with

 $\bar{d}(v) = d(v), \quad \forall v \in \text{var}(d)$

is called a completion of d.

A probability distribution

 $\bar{d}: \operatorname{dom}(V) \to [0,1]$

with

 $\bar{d}^{\downarrow \operatorname{var}(d)} = \mathsf{epd}_d$

is called a distribution of completions of d (or a fuzzy completion of d).

Example If $V := \{F, L, B, D, H\}$ and d := (2, ., 0, 1, .)

an incomplete case, then

 $\bar{d}_1 := (2, 1, 0, 1, 1)$ $\bar{d}_2 := (2, 2, 0, 1, 0)$

etc. are possible completions, but

$$e := (1, 1, 0, 1, 1)$$

is not.

Assume $dom(v) := \{0, 1, 2\}$ for all $v \in V$. The potential $\overline{d}: dom(V) \rightarrow [0, 1]$ $(x_v)_{v \in V} \mapsto \begin{cases} \frac{1}{9}, & \text{if } x_F = 2, x_B = 0, \\ & \text{and } x_D = 1 \\ 0, & \text{otherwise} \end{cases}$

is the uniform distribution of

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

learning from "fuzzy cases"

Given a bayesian network structure G := (V, E) on a set of variables V and a "fuzzy data set" $D \in pdf(V)^*$ of "fuzzy cases" (pdfs q on V). Learning the parameters of the bayesian network from "fuzzy cases" D means to find vertex potentials $(p_v)_{v \in V}$ s.t. the maximum likelihood criterion, i.e., the probability of the data given the bayesian network is maximal:

find $(p_v)_{v \in V} s.t. p(D)$ is maximal, where p denotes the JPD build from $(p_v)_{v \in V}$. Here,

$$p(D) := \prod_{q \in D} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))} (p_v(x))^{q^{\downarrow \operatorname{fam}(v)}(x)}$$

Lemma 1. p(D) is maximal iff

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\downarrow \operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\downarrow \operatorname{pa}(v)}(y)}$$

(if there is a $q \in D$ with $q^{\downarrow pa(v)} > 0$, otherwise $p_v(x|y)$ can be choosen arbitrarily -p(D) does not depend on it). Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Maximum likelihood estimates

- If D is incomplete data, in general we are looking for
- (i) distributions of completions \bar{D} and
- (ii) vertex potentials $(p_v)_{v \in V}$,

that are

(i) compatible, i.e.,

$$\bar{d} = \mathsf{infer}_{(p_v)_{v \in V}}(d)$$

for all $\bar{d} \in \bar{D}$ and s.t.

(ii) the probability, that the completed data \overline{D} has been generated from the bayesian network specified by $(p_v)_{v \in V}$, is maximal:

$$p((p_v)_{v \in V}, \bar{D}) := \prod_{\bar{d} \in \bar{D}} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))} (p_v(x))^{\bar{d}^{\downarrow \operatorname{fam}(v)}(x)}$$

(with the usual constraints that $\operatorname{Im} p_v \subseteq [0, 1]$ and $\sum_{y \in \operatorname{dom}(\operatorname{pa}(v))} p_v(x|y) = 1$ for all $v \in V$ and $x \in \operatorname{dom}(v)$).

Maximum likelihood estimates

Unfortunately this is

- a non-linear,
- high-dimensional,

 for bayesian networks in general even non-convex optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent, Newton-Raphson, BFGS, etc.) could be used to search local maxima of this probability function.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

Example

Let the following bayesian network structure and training data given.

Optimization Problem (1/3)

A)----≻(B

$$\theta = p(A = 1) \eta_1 = p(B = 1 | A = 1) \eta_2 = p(B = 1 | A = 0)$$

$$p(D) = \theta^{4+\alpha_4+2\alpha_5} (1-\theta)^{3+(1-\alpha_4)+2(1-\alpha_5)} \eta_1^{1+\alpha_4+\beta_{10}} (1-\eta_1)^{2+2\alpha_5+(1-\beta_{10})} \\ \cdot \eta_2^{2+(1-\alpha_4)} (1-\eta_2)^{1+2(1-\alpha_5)}$$

Optimization Problem (2/3)

From parameters

$$\theta = p(A = 1)$$

 $\eta_1 = p(B = 1 | A = 1)$
 $\eta_2 = p(B = 1 | A = 0)$

we can compute distributions of completions:

$$\alpha_4 = p(A = 1 \mid B = 1) = \frac{p(B = 1 \mid A = 1) p(A = 1)}{\sum_{a \in A} p(B = 1 \mid A = a) p(A = a)} = \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2}$$

$$\alpha_5 = p(A = 1 \mid B = 0) = \frac{p(B = 0 \mid A = 1) p(A = 1)}{\sum_{a \in A} p(B = 0 \mid A = a) p(A = a)} = \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}$$

 $\beta_{10} = p(B = 1 \mid A = 1) = \eta_1$

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 18/25

Optimization Problem (3/3)

Substituting α_4, α_5 and β_{10} in p(D), finally yields:

$$\begin{split} p(D) = & \theta^{4 + \frac{\theta \eta_1}{\theta \eta_1 + (1-\theta)\eta_2} + 2 \frac{\theta (1-\eta_1)}{\theta (1-\eta_1) + (1-\theta)(1-\eta_2)}} \\ & \cdot (1-\theta)^{6 - \frac{\theta \eta_1}{\theta \eta_1 + (1-\theta)\eta_2} - 2 \frac{\theta (1-\eta_1)}{\theta (1-\eta_1) + (1-\theta)(1-\eta_2)}} \\ & \cdot \eta_1^{1 + \frac{\theta \eta_1}{\theta \eta_1 + (1-\theta)\eta_2} + \eta_1} \\ & \cdot (1-\eta_1)^{3 + 2 \frac{\theta (1-\eta_1)}{\theta (1-\eta_1) + (1-\theta)(1-\eta_2)} - \eta_1} \\ & \cdot \eta_2^{3 - \frac{\theta \eta_1}{\theta \eta_1 + (1-\theta)\eta_2}} \\ & \cdot (1-\eta_2)^{3 - 2 \frac{\theta (1-\eta_1)}{\theta (1-\eta_1) + (1-\theta)(1-\eta_2)}} \end{split}$$

EM algorithm

For bayesian networks a widely used technique to search local maxima of the probability function *p* is **Expectation-Maximization** (EM, in essence a gradient descent).

At the beginning, $(p_v)_{v \in V}$ are initialized, e.g., by complete, by available case analysis, or at random.

Then one computes alternating expectation or E-step:

 $\bar{d}:= \mathrm{infer}_{(p_v)_{v\in V}}(d), \quad \forall d\in D$

(forcing the compatibility constraint) and **maximization or M-step:**

```
(p_v)_{v \in V} with maximal p((p_v)_{v \in V}, \overline{D})
```

keeping \overline{D} fixed.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 20/25

EM algorithm

The E-step is implemented using an inference algorithm, e.g., clustering [Lau95]. The variables with observed values are used as evidence, the variables with missing values form the target domain.

The M-step is implemented using lemma 2:

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\downarrow \operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\downarrow \operatorname{pa}(v)}(y)}$$

See [BKS97] and [FK03] for further optimizations aiming at faster convergence.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007 21/25

Example

Let the following bayesian network structure and training data given.

A)	\rightarrow	B	
case	A	B	
1	0	0	
2	0 0 0	1	
3	0	1	
4	-	1	
5	-	0	
6	-	0 0 0 0	
7	1	0	
8	1	0	
2 3 4 5 6 7 8 9	1	1	
10	1	-	

Using complete case analysis we estimate (1st M-step)

$$p(A) = (0.5, 0.5)$$

and

$$p(B|A) = \frac{A \mid 0 \quad 1}{B = 0 \mid 0.333 \mid 0.667}$$
$$1 \mid 0.667 \mid 0.333 \mid 0.667 \mid 0.$$

Then we estimate the distributions of completions (1st E-step)

case	В	p(A=0)	p(A=1)
4	1	0.667	0.333
5,6	0	0.333	0.667
case	A	p(B=0)	p(B=1)
10	1	0.667	0.333

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

example / second & third step

From that we estimate (2nd M-step)

p(A) = (0.433, 0.567)

and

$$p(B|A) = \frac{A \mid 0 \quad 1}{B = 0 \mid 0.385 \mid 0.706}$$
$$1 \mid 0.615 \mid 0.294$$

Then we estimate the distributions of completions (2nd E-step)

			p(A=1)
4	1	0.615 0.294	0.385
5,6	0	0.294	0.706
case	Α	p(B=0)	p(B=1)
10	1	0.706	0.294

From that we estimate (3rd M-step) p(A) = (0.420, 0.580)and $p(B|A) = \frac{A \mid 0 \quad 1}{B = 0 \mid 0.378 \mid 0.710}$ $1 \mid 0.622 \mid 0.290$

etc.

Figure 12: Convergence^{step} of the EM algorithm (black p(A=1), red p(B=1|A=0), green

Summary

- To learn parameters from data with missing values, sometimes simple heuristics as complete or available case analysis can be used.
- Alternatively, one can define a joint likelihood for distributions of completions and parameters.
- In general, this gives rise to a nonlinear optimization problem. But for given distributions of completions, maximum likelihood estimates can be computed analytically.
- To solve the ML optimization problem, one can employ the expectation maximization (EM) algorithm:
 - parameters \rightarrow completions (expectation; inference)
 - completions \rightarrow parameters (maximization; parameter learning)

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007

References

- [BKS97] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian networks. In Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI), 1997.
- J. Fischer and K. Kersting. Scaled cgem: A fast accelerated em. In N. Lavrac, [FK03] D. Gamberger, H. Blockeel, and L. Todorovski, editors, Proceedings of the Fourteenth European Conference on Machine Learning (ECML-2003), pages 133–144, Cavtat, Croatia, 2003.
- [Lau95] S. L. Lauritzen. The em algorithm for graphical association models with missing data. Computational Statistics & Data Analysis, 19:191–201, 1995.
- R. J. A. Little and D. B. Rubin. *Statistical analysis with missing data*. Wiley, New York, [LR87] 1987.

Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Bayesian Networks, winter term 2007