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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Markov-equivalence

Definition 1. Let G, H be two graphs on a set V (undi-
rected or DAGs).
G and H are called markov-equivalent, if they have the
same independency model, i.e.

IG(X, Y |Z)⇔ IH(X, Y |Z), ∀X, Y, Z ⊆ V

The notion of markov-equivalence for undirected graphs
is uninteresting, as every undirected graph is markov-
equivalent only to itself (corollary of uniqueness of mini-
mal representation!).
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Markov-equivalence

Why is markov-equivalence important?

1. in structure learning, the set of all graphs over V is our search
space.
 if we can restrict searching to equivalence classes,
the search space becomes smaller.

2. if we interpret the edges of our graph as causal relationships
between variables, it is of interest,
• which edges are necessary

(i.e., occur in all instances of the equivalence class), and

• which edges are only possible
(i.e., occur in some instances of the equivalence class, but
not in some others; i.e., there are alternative explanations).
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Markov-equivalence

Definition 2. Let G be a directed graph. We call a chain

p1 − p2 − p3

uncoupled if there is no edge between p1 and p3.

Lemma 1 (markov-equivalence criterion, [PGV90]). Let G and H
be two DAGs on the vertices V .
G and H are markov-equivalent if and only if

(i) G and H have the same links (u(G) = u(H)) and

(ii) G and H have the same uncoupled head-to-head meetings.

The set of uncoupled head-to-head meetings is also denoted as
V-structure of G.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Markov-equivalence / examples
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Figure 1: Example for markov-equivalent DAGs.
,,-~~---

VTV
(!i}(A,B, C) (b) (A, C, B) (e) (B, A, C)

(B,C,A)
(d)(C,A, B) (e) (C, B, A)

---n~~ ~ ,.., ~"... 1 rI . -' T
. cl . h h cl cl Ymode

.-.~o 're>rt.PlI-maDS assoclate Wlt t e epen ene .

Figure 2: Which minimal DAG-representations of I are equivalent? [CGH97,
p. 240]
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Directed graph patterns

Definition 3. Let V be a set and
E ⊆ V 2 ∪ P2(V ) a set of ordered and
unordered pairs of elements of V with
(v, w), (w, v) 6∈ E for v, w ∈ V with
{v, w} ∈ E.
Then G := (V, E) is called a directed
graph pattern. The elements of V are
called vertices, the elemtents of E
edges: unordered pairs are called
undirected edges, ordered pairs
directed edges.

We say, a directed graph pattern H is a
pattern of the directed graph G, if
there is an orientation of the unoriented
edges of H that yields G, i.e.

(v, w) ∈ EG ⇒
{

(v, w) ∈ EH or
{v, w} ∈ EH

(v, w) ∈ EG ⇐ (v, w) ∈ EH

(v, w) ∈ EG or
(w, v) ∈ EG

}
⇐ {v, w} ∈ EH
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Figure 3: Directed graph pattern.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

DAG patterns

Definition 4. A directed graph pattern
H is called an acyclic directed graph
pattern (DAG pattern), if

• it is the directed graph pattern of a
DAG G

or equivalently

• H does not contain a completely
directed cycle, i.e. there is no
sequence v1, . . . , vn ∈ V with
(vi, vi+1) ∈ E for i = 1, . . . , n− 1 (i.e.
the directed graph got by dropping
undirected edges is a DAG).
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C

D
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G

Figure 4: DAG pattern.

A

B C D

Figure 5: Directed graph pattern that is not a
DAG pattern.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

DAG patterns represent markov equivalence classes

Lemma 2. Each markov equivalence class corresponds uniquely
to a DAG pattern G:

(i) The markov equivalence class consists of all DAGs that G is a
pattern of, i.e., that give G by dropping the directions of some
edges that are not part of an uncoupled head-to-head
meeting,

(ii) The DAG pattern contains a directed edge (v, w), if all
representatives of the markov equivalence class contain this
directed edge, otherwise (i.e. if some representatives have
(v, w), some others (w, v)) the DAG pattern contains the
undirected edge {v, w}.

The directed edges of the DAG pattern are also called
irreversible or compelled, the undirected edges are also called
reversible.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

DAG patterns represent markov equivalence classes / example
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Figure 6: DAG pattern and its markov equivalence class representatives.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

DAG patterns represent markov equivalence classes

But beware, not every DAG pattern represents a
Markov-equivalence class !
Example:

Y

X

Z

is not a DAG pattern of a Markov-equivalence class, but

Y

X

Z

is.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

DAG patterns represent markov equivalence classes

But just skeleton plus uncoupled head-to-head meetings do not
make a DAG pattern that represents a markov-equivalence class
either.
Example:

X Z

W

Y

is not a DAG pattern that represents a Markov-equivalence class,
as any of its represenatives also has Z → W . But

X Z

W

Y

is.
Prof. Dr. Lars Schmidt-Thieme, L. B. Marinho, K. Buza Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Bayesian Networks, winter term 2007 10/30



Bayesian Networks / 1. Markov Equivalence and DAG patterns

Computing DAG patterns

So, to compute the DAG pattern that represents the equivalence
class of a given DAG,

1. start with the skeleton plus all head-to-head-meetings,

2. add entailed edges successively (saturating).
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Saturating DAG patterns

rule 1:

path
any

Z

X

Y
 

path
any

Z

X

Y

rule 2:

Y

X

Z
 

Y

X

Z

rule 3:

X Z

W

Y

 

X Z

W

Y

rule 4:

W

Y

Z

X

 W

Y

Z

X

Dashed link can be W → Z, W ← Z, or W–Z
(so rule 4 is actually a compact notation for 3 rules).
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Computing DAG patterns

1 saturate(graph pattern G = (V, E)) :
2 apply rules 1–4 to G until no more rule matches
3 return G

1 dag-pattern(graph G = (V, E)) :
2 H := (V, F ) with F := {{x, y} | (x, y) ∈ E}
3 for X → Z ← Y uncoupled head-to-head-meeting in G do
4 orient X → Z ← Y in H
5 od
6 saturate(H)
7 return H

Figure 7: Algorithm for computing the DAG pattern of the Markov-equivalence
class of a given DAG.

Lemma 3. For a given graph G, algorithm 7 computes correctly
the DAG pattern that represents its Markov-equivalence class.
Furthermore, here, even the rule set 1–3 will do and is
non-redundant.

See [Mee95] for a proof.
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Bayesian Networks / 1. Markov Equivalence and DAG patterns

Summary

• Some DAGs encode the same independency relation (Markov
equivalence).

• A Markov equivalence class can be represented by a DAG
pattern.
(but not all DAG patterns represent a Markov equivalence
class!)

• For a given DAG, its DAG pattern can be computed by
1. start from the undirected skeleton,

2. add all directions of uncoupled head-to-head meetings,

3. saturate infered directions (using 3 rules).
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Bayesian Networks

1. Markov Equivalence and DAG patterns

2. PC Algorithm
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Bayesian Networks / 2. PC Algorithm

Types of Methods for Structure Learning

There are three types of structure learning algorithms for
Bayesian networks:

1. constrained-based learning (e.g., PC),

2. searching with a target function (e.g., K2),

3. hybrid methods (e.g., sparse candidate).
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Bayesian Networks / 2. PC Algorithm

Computing the Skeleton

Lemma 4 (Edge Criterion). Let G := (V, E) be a DAG and
X, Y ∈ V . Then it is equivalent:

(i) X and Y cannot be separated by any Z, i.e.,

¬IG(X, Y | Z) ∀Z ⊆ V \ {X, Y }

(ii) There is an edge between X and Y , i.e.,

(X, Y ) ∈ E or (Y, X) ∈ E

Definition 5. Any Z ⊆ V \ {X, Y } with IG(X, Y | Z) is
called a separator of X and Y .

Sep(X, Y ) := {Z ⊆ V \ {X, Y } | IG(X, Y | Z)}
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Bayesian Networks / 2. PC Algorithm

Computing the Skeleton / Separators

1 separators-basic(set of variables V, independency relation I) :
2 Allocate S : P2(V ) → P(V ) ∪ {none}
3 for {X, Y } ⊆ V do
4 S({X, Y }) := none
5 for T ⊆ V \ {X, Y } do
6 if I(X, Y |T )
7 S({X, Y }) := T
8 break
9 fi

10 od
11 od
12 return S

Figure 8: Compute a separator for each pair of variables.
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Bayesian Networks / 2. PC Algorithm

Example / 1/3 – Computing the Skeleton

Let I be the following independency structure:

I(A, D |C), I(A, D | {C, B}), I(B, D)

Then we can compute the following
separators:

S(A, B) := none
S(A, C) := none
S(A, D) := {C}
S(B, C) := none
S(B, D) := ∅
S(C, D) := none

Thus, the skeleton of the Bayesian
Network representing I looks like

D

B

A

C
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Bayesian Networks / 2. PC Algorithm

Computing the V-structure

Lemma 5 (Uncoupled Head-to-head Meeting Criterion). Let
G := (V, E) be a DAG, X, Y, Z ∈ V with

x

Z

YX

Then it is equivalent:

(i) X → Z ← Y is an uncoupled head-to-head meeting, i.e.,

(X, Z), (Y, Z) ∈ E, (X, Y ), (Y, X) 6∈ E

(ii) Z is not contained in any separator of X and Y , i.e.,

Z 6∈ S ∀S ∈ Sep(X, Y )

(iii) Z is not contained in at least one separator of X and Y , i.e.,

Z 6∈ S ∃S ∈ Sep(X, Y )
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Bayesian Networks / 2. PC Algorithm

Computing Skeleton and V-structure

1 vstructure(set of variables V, independency relation I) :
2 S := separators(V, I)
3 G := (V, E) with E := {{X, Y } |S({X, Y }) = none}
4 for X, Y, Z ∈ V with X − Z − Y, X−6 −Y do
5 if Z 6∈ S(X, Y )
6 orient X − Z − Y as X → Z ← Y
7 fi
8 od
9 return G

Figure 9: Compute skeleton and v-structure.

1 learn-structure-pc(set of variables V, independency relation I) :
2 G := vstructure(V, I)
3 saturate(G)
4 return G

Figure 10: Learn structure of a Bayesian Network (SGS/PC
algorithm, [?]).
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Bayesian Networks / 2. PC Algorithm

Example / 2/3 – Computing the V-Structure

Separators:
S(A, B) := none
S(A, C) := none
S(A, D) := {C}
S(B, C) := none
S(B, D) := ∅
S(C, D) := none

Skeleton:

D

B

A

C

Checking A–C–D:

D

B

A

C

Checking B–C–D:

D

B

A

C
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Bayesian Networks / 2. PC Algorithm

Example / 3/3 – Saturating

Skeleton and v-structure:

C

A

B

D

Saturating:

rule 1 rule 2

C

A

B

D
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Bayesian Networks / 2. PC Algorithm

Number of Independency Tests

Let there be n variables.
For each of the

(
n
2

)
pairs of variables, there are 2n−2

candidates for possible separators.

number of I-tests =

(
n

2

)
2n−2

Example: n = 4:(
n

2

)
2n−2 =

(
4

2

)
22 = 6 · 4 = 24

If we start with small separators and stop once a
separator has been found, we still have to check

4 · (1 + 2 + 1) + 1 · (1 + 2) + 1 · 1 = 20
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Bayesian Networks / 2. PC Algorithm

Number of Independency Tests

Can we reduce the number of tests for a given pair of
variable by reusing results for other pairs of variables?

Lemma 6. Let G := (V, E) be a DAG and X, Y ∈ V
separated. Then

I(X, Y | pa(X)) or I(X, Y | pa(Y ))

As we do not know directions of edges at the skeleton
recovery step, we use the weaker result:

I(X, Y | fan(X)) or I(X, Y | fan(Y ))
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Bayesian Networks / 2. PC Algorithm

Computing the Skeleton / Separators
1 separators-remove-edges(separator map S, skeleton graph G, independency relation I) :
2 i := 0
3 while ∃X ∈ V : | fanG(X)| > i do
4 for {X, Y } ∈ E with fanG(X)| > i or fanG(Y )| > i do
5 for T ∈ P i(fanG(X) \ {Y }) ∪ P i(fanG(Y ) \ {X}) do
6 if I(X, Y |T )
7 S({X, Y }) := T
8 E := E \ {{X, Y }}
9 break

10 fi
11 od
12 od
13 i := i + 1
14 od
15 return S

1 separators-interlaced(set of variables V, independency relation I) :
2 Allocate S : P2(V ) → P(V ) ∪ {none}
3 S({X, Y }) := none ∀{X, Y } ⊆ V
4 G := (V, E) with E := P2(V )
5 separators-remove-edges(S, G, I)
6 return S

Figure 11: Compute a separator for each pair of variables.
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Bayesian Networks / 2. PC Algorithm

Example / Computing the Separators (1/3)

I(A, D |C), I(A, D | {C, B}), I(B, D)

i = 0 :
A, B, T = ∅: —

C, T = ∅: —
D, T = ∅: —

B, C, T = ∅: —
D, T = ∅: D({B, D}) = ∅

C, D, T = ∅: —

initial graph:

D

B

A

C

after update for B, D:

D

B

A

C
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Bayesian Networks / 2. PC Algorithm

Example / Computing the Separators (2/3)

I(A, D |C), I(A, D | {C, B}), I(B, D)

i = 1 :
A, B, T = {C}, {D}: —

C, T = {B}, {D}: —
D, T = {B}, {C}: S({A, D}) = {C}

B, C, T = {A}, {D}: —
C, D, T = {A}, {B}: —

after update for B, D:

D

B

A

C

after update for A, D:

C

A

B

D
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Bayesian Networks / 2. PC Algorithm

Example / Computing the Separators (3/3)

I(A, D |C), I(A, D | {C, B}), I(B, D)

i = 2 :
A, C, T = {B, D}: —
B, C, T = {A, D}: —
C, D, T = {A, B}: —

total: 19 I-tests.

after update for A, D:

C

A

B

D
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Bayesian Networks / 2. PC Algorithm

Algorithms – SGS vs. PC

SGS/PC with separators-basic is called SGS
algorithm ([?], 1990).

SGS/PC with separators-interlaced is called PC
algorithm ([?], 1991).

Implementations are available:

• in Tetrad
http://www.phil.cmu.edu/projects/tetrad/
(class files & javadocs, no sources)

• in Hugin (commercial).
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Bayesian Networks / 2. PC Algorithm
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