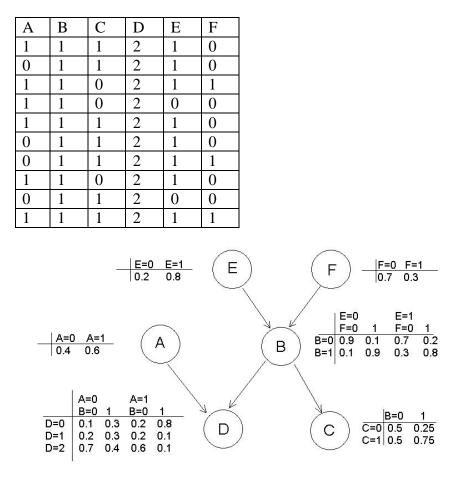
Tutorial 11

Solutions should be given till 21th January 2008, 16:00

Exercise 1 Inference using generated data (15 points)

Suppose, we are given the following sample instances (we have generated them via acceptance-rejection sampling). Suppose, we are also given the evidence $E = \{C=1, A=0\}$


- a) [5 pts] Which of the instances will be rejected?
- b) [10 pts] What is the marginal distribution of *B* under the given evidence? [I.e. we want to infer the P(B|C=1, A=0)]

Α	В	С	D
A 0	1	1	
1	1	0	1 0 0
0	1	0	
0	1	1	1 0
1	0	0	0
0	0	1	0 0
0	0	0	0
0	0	1	1
1	1	0	1
0	0	1	1 0
1	0	0	1 0
0	1	0	
0	1	1	1

Exercise 2 Importance sampling (25 points)

Suppose we have generated the following sample instances via importance sampling conditioned by the evidence $Ev = \{D=2, B=1\}$ The Bayesian network shown in the figure above was sampled

The Bayesian network shown in the figure above was sampled.

- a) [10 pts] What are the weights of each instance?
- b) [5 pts] Infer the the marginal distribution of *A* under the given evidence! (P(A|Ev) = ?)
- c) [5 pts] Infer the the common probablility distribution of *A* and *E* under the given evidence! (P(A, E|Ev) = ?)
- d) [5 pts] Infer the conditioned probability distribution of *A* conditioned by *E* under the given evidence! (P(A|E|Ev) = ?)