Tutorial 12

Solutions should be given till 28th January 2008, 16:00

Exercise 1 Importance sampling (20 points)

Suppose we apply
(1) self importance sampling
(2) adaptive sampling
on the following Bayesian network conditioned by the evidence $E v=\{D=2, B=1\}$.
In the first step we generated the sample instances above.

A	B	C	D	E	F
1	1	1	2	1	0
0	1	1	2	1	0
1	1	0	2	1	1
1	1	0	2	0	0
1	1	1	2	1	0
0	1	1	2	1	0
0	1	1	2	1	1
1	1	0	2	1	0
0	1	1	2	0	0
1	1	1	2	1	1

a) [5 pts] Which conditional probability distributions will be changed?
b) [5 pts] What are the new conditional probability distributions for the second step in case of self importance sampling?
c) [5 pts] What are the new conditional probability distributions for the second step in case of adaptive sampling?
d) [5 pts] What is the most important difference between self importance samling and adaptive sampling (based on slide 4 in bayes-10-approxinference-
propagation.pdf)?

Exercise 2 Loopy propagation (10 points)

Suppose we are given the cluster graph above. (Each of the nodes, X, Y, Z, V correspond to a set of variables, however the concrete mapping of variables to nodes in not interesting now.) The link potentials are calculated using loopy propagation in the following order: $q(Z, X)$, $q(X, Y), q(Y, Z), q(Z, V), q(V, Z), q(Z, Y), q(Y, X), q(X, Z), q(Z, Y)$ Can this order be a random walk? Justify your answer please!

Exercise 3 Basics of parameter learning (15 points + 5 bonus points)

a) [5 pts] Suppose, we observe the following values of a discrete probabilistic variable $V: 0,3,0,1,2,1,1,2,2,2,2,1,0,1,2,2,1,0,2,1,3,3,1,2,2,1,1,3$. Which distribution can be learned via maximum likelihood principle?
b) [5 pts] Suppose we are interested in families with 3 children.

Suppose V denotes the amount of daughters in the family. What is the "theoretical" distribution of V ?
c) [bonus 5 pts] Which distribution is the theoretical distribution of V "similar" to? (Hint: $V=V_{1}+V_{2}+V_{3}$ where: $V_{1}=1$ if the first child is a girl, $V_{1}=0$ else. $V_{2}=1$ if the second child is a girl, $V_{2}=0$ else. $V_{3}=1$ if the third child is a girl, $V_{3}=0$ else.)
d) [5 pts] Suppose we express our certainty in the "theoretical" distribution the following way: we belief the theoretical distribution as much as if we would have observed this distribution on a sample of size 1000 . What is the learned distribution in this case?

