Tutorial Bayesian Network WS 2007/08 Wirtschaftsinformatik und Maschinelles Lernen (ISMLL)
Prof. Dr. Dr. Lars Schmidt-Thieme , Leandro Marinho , Krisztian Buza

## Tutorial 13 - Solutions

## Exercise 1 Types of missingness ( 20 points)

Show examples for missing data, where
a) [5 pts.] a variable $V$ is missing completely at random (MCAR)

| No | A | B | C(observed) | C(true value) |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | - | 0 |
| 4 | 1 | 1 | - | 0 |
| 5 | 1 | 0 | 1 | 1 |
| 6 | 1 | 0 | 0 | 0 |
| 7 | 0 | 1 | - | 1 |
| 8 | 0 | 1 | - | 1 |

$\mathrm{I}\left(\mathrm{M}_{\mathrm{C}}, \mathrm{C}(\right.$ true value $)$ )
The probability of missing is independent from the true value of C .
$\mathrm{P}\left(\mathrm{M}_{\mathrm{C}}\right)=\mathrm{P}\left(\mathrm{M}_{\mathrm{C}} \mid \mathrm{C}(\right.$ true value $\left.)\right)$
i.e.: $\quad \mathrm{P}(C$ is missing $)=4 / 8$
$\mathrm{P}(C$ is missing $\mid \mathrm{C}($ true value $)=0)=2 / 4$ (cases 3,4 out of $1,3,4,6)$
$\mathrm{P}(C$ is missing $\mid \mathrm{C}($ true value $)=1)=2 / 4 \quad$ (cases 7,8 out of $2,5,7,8)$
$2 / 4=2 / 4=4 / 8$
b) [5 pts.] a variable $V$ is missing at random (MAR),

| No | A | B | C(observed) | C(true value) |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 0 |
| 4 | 1 | 1 | - | 0 |
| 5 | 1 | 0 | 1 | 1 |
| 6 | 1 | 0 | 0 | 0 |
| 7 | 0 | 1 | 1 | 1 |
| 8 | 0 | 1 | - | 1 |

I( $\mathrm{M}_{\mathrm{C}}, \mathrm{C}($ true value $) \mid \mathrm{B}$ )
The probability of missing is conditionally independent from the true value of C given B :
$\mathrm{P}\left(\mathrm{M}_{\mathrm{C}} \mid \mathrm{C}(\right.$ true value $\left.), \mathrm{B}\right)=\mathrm{P}\left(\mathrm{M}_{\mathrm{C}} \mid \mathrm{B}\right)$
i.e.: $\mathrm{P}(C$ is missing $\mid \mathrm{C}($ true value $)=1, \mathrm{~B}=1)=1 / 3$
$B=1 \& C$ (true value) $=1$ in cases: $2,7,8$, among these cases $C$ is missing once: 8
$\mathrm{P}(C$ is missing $\mid \mathrm{C}($ true value $)=0, \mathrm{~B}=1)=1 / 3$
$\mathrm{B}=1 \& \mathrm{C}($ true value $)=0$ in cases: $1,3,4$, among these cases C is missing once: 4
$\mathrm{P}(C$ is missing $\mid \mathrm{B}=1)=2 / 6$
$B=1$ in cases: $1,2,3,4,7,8$ among these cases $C$ is missing twice: 4,8
$1 / 3=1 / 3=2 / 6$
and
$\mathrm{P}(C$ is missing $\mid \mathrm{C}($ true value $)=1, \mathrm{~B}=0)=0 / 1=0$
$\mathrm{B}=0 \& \mathrm{C}($ true value $)=1$ in case $5, \mathrm{C}$ is not missing in this case
$\mathrm{P}(C$ is missing $\mid \mathrm{C}($ true value $)=0, \mathrm{~B}=0)=0 / 1=0$
$\mathrm{B}=0 \& \mathrm{C}($ true value $)=0$ in case $6, \mathrm{C}$ is not missing in this case
$\mathrm{P}(C$ is missing $\mid \mathrm{B}=0)=0 / 2=0$
$B=0$ in cases: 5,6 among these cases $C$ is never missing.
c) [5 pts.] a variable $V$ is missing systematically

| No | A | B | C(observed) | C(true value) |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | - | 0 |
| 2 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 0 |
| 4 | 1 | 1 | - | 0 |
| 5 | 1 | 0 | 1 | 1 |
| 6 | 1 | 0 | - | 0 |
| 7 | 0 | 1 | 1 | 1 |
| 8 | 0 | 1 | - | 1 |

The probability of missing depends on the true value of C : if the true value of C is 0 , it is missing with the probability of $3 / 4$, but if the true value of C is 1 , it is missing with the probability of $1 / 4$.
d) [5 pts.] a variable $V$ is hidden.

| No | A | B | C(observed) | C(true value) |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | - | 0 |
| 2 | 0 | 1 | - | 1 |
| 3 | 0 | 1 | - | 0 |
| 4 | 1 | 1 | - | 0 |
| 5 | 1 | 0 | - | 1 |
| 6 | 1 | 0 | - | 0 |
| 7 | 0 | 1 | - | 1 |
| 8 | 0 | 1 | - | 1 |

C is hidden (it is missing everywhere ).

## Exercise 2 Types of missingness: MCAR vs. MAR (8 points)

The following statements are given:
(1) If a set of variables $V$ in a dataset $D$ is MCAR, then $V$ is also MAR in the same dataset
(2) If a set of variables $V$ in a dataset $D$ is MAR, then $V$ is also MCAR in the same dataset Which of the statements are true? Justify your answer!

Statement (1) is true, because independence is "stronger" then conditional independence (i.e. if the variables X and Y are independent, they are also conditionally independent given any set of the other variables).

## Exercise 3 Distribution of completion (7 points)

Suppose we are given the following instance: ( $A=1, B=2, C=$ missing, $D=$ missing $)$.
The distribution of completion should be the uniform distribution. Fill up the missing cells of the probability distribution table above.

| $A$ | $B$ | $C$ | $D$ | $p(A, B, C, D)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | $1 / 4$ |
| 1 | 0 | 0 | 1 | $1 / 4$ |
| 1 | 0 | 1 | 0 | $1 / 4$ |
| 1 | 0 | 1 | 1 | $1 / 4$ |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
|  |  |  |  |  |

