Tutorial 4

Markov Networks (1.)

Solutions should be given till 19th November 2007, 16:00

Exercise 1 Topological order (5 points + 10 bonus points)

a) [3 pts.] Does the graph in Figure 1 have a topological order? If yes, is this unique? (Does it have only one topological order or more?)
b) [2 pts.] Show an example for a graph, which has several topological orders!
c) [optional, 10 bonus pts.] Is it possible to choose directions for the edges of the Petersen graph (Fig. 2.) so that it has a unique topological order?

Exercise 2 Graphical representation of independence (15 Points)

d) [4 pts.] Is the graph in Fig. 3 a representation of the following independence model? $\mathrm{I}=\{\mathrm{I}(\mathrm{A}, \mathrm{C} \mid\{\mathrm{E}, \mathrm{F}, \mathrm{B}\}), \mathrm{I}(\mathrm{C}, \mathrm{A} \mid\{\mathrm{E}, \mathrm{F}, \mathrm{B}\}), \mathrm{I}(\mathrm{A}, \mathrm{C} \mid\{\mathrm{D}, \mathrm{F}, \mathrm{B}\}), \mathrm{I}(\mathrm{C}, \mathrm{A} \mid\{\mathrm{D}, \mathrm{F}, \mathrm{B}\}), \mathrm{I}(\mathrm{A}, \mathrm{D} \mid\{\mathrm{E}, \mathrm{F}, \mathrm{B}\})$, I(D,A|\{E,F,B $\}), \mathrm{I}(\mathrm{A}, \mathrm{D} \mid\{\mathrm{E}, \mathrm{F}, \mathrm{C}\}), \mathrm{I}(\mathrm{D}, \mathrm{A} \mid\{\mathrm{E}, \mathrm{F}, \mathrm{C}\})\}$
e) [3 pts.] Is the graph in Fig. 3 a faithful representation of the indep. relation above?
f) [3 pts.] Construct (another) graph, which represents the independence relation above! (This graph should not necessary be a faithful representation.)
g) [5 pts.] For which independence relation is the graph in Fig. 3 a faithful representation?

Exercise 3 Properties of independency models, graphical representation (10 Points)

Suppose we are given the following independence model:
$\mathrm{I}(\mathrm{A}, \mathrm{B} \mid\{\mathrm{C}, \mathrm{D}\}), \mathrm{I}(\mathrm{B}, \mathrm{A} \mid\{\mathrm{C}, \mathrm{D}\}), \mathrm{I}(\mathrm{A}, \mathrm{C} \mid\{\mathrm{D}, \mathrm{E}\})$
a) [3 pts.] Which of the properties (symmetric, decomposable and intersectable) hold for this model?
b) [2 pts.] Modify the model so that all of the properties above hold for the model!
c) [5 pts.] Construct the minimal undirected graph representation of the model. Is it trivial? Is it unique? Is it faithful?

Exercise 4 Potentials, Markov Networks (15 Points)
Given that the potentials ψ_{1}, ψ_{2} represented in Table 1 and Table 2 factorize the JPD p, solve the following tasks:
a) [4 pts.] Multiply ψ_{1} and ψ_{2} and depict the graph associated with these potentials.
b) [2 pts.] Reconstruct p.
c) [3 pts.] Does this graph represent the independency model of p ? Justify your answer.
d) [3 pts.] Are B and C conditionally independent given D in p ?
e) [3 pts.] Does this graph represent the independency model of p faithfully?

Fig. 1

Fig. 2 (Petersen Graph)

Fig.3.

A	B	$\mathrm{P}(\mathrm{A}, \mathrm{B})$
0	0	0.2
0	1	0.2
1	0	0.3
1	1	0.3

Table 1.

B	C	D	P(A,B,C)
0	0	0	0.225
0	0	1	$0.0666 \ldots$
0	1	0	0.075
0	1	1	$0.0333 \ldots$
1	0	0	0.075
1	0	1	$0.3333 \ldots$
1	1	0	0.025
1	1	1	$0.1666 \ldots$

Table 2.

