Tutorial 5

Solutions should be given till 26th November 2007, 16:00

In several practical cases joint probability distributions (JDP) are useful for inference (either direct, or indirect i.e. by building a model based on JDP). Some such inference tasks may be the prediction of the risk of an illness, or the prediction of the credit score of a customer of a bank. If we have lot of variables and we just want to store the JDP in a "naive" way, we need to much space. For the efficiency we want to factorise the JDP. According to [lemma 6 at slide 25 in bayes-04-independence-markov.pdf] we can factorise a JDP if we find a chain of cliques [slide 20] in the graph representation [slides 6-19] of the independence model. If we have a perfect ordering [slide 22] we can easily find a chain of cliques. But how can we find a perfect ordering? We have an algorithm [slide 23-24] for this task, if we have a triangulated graph [slide 21].
Although we can factorise a JDP according to the cliques of the graphical representation (Markov network) of the independence model, the potentials used for this factorisation are not intuitive (when the graph is not triangulated): unfortunately the potentials do not have natural (human "understandable") interpretation. Thus we began studying another graphical representation of the independence model, called Bayesian Networks [bayes05 -independence-bayesian.pdf].

Exercise 1 Topological order (10 points)

a) [5 pts.] Modify the graph in Figure 2 with addition of some edges so that it will be chordal (triangulated)!
b) [5 pts.] Does the modified graph have a chain of cliques? And the original graph?

Exercise 2 Perfect ordering (10 points + 5 bonus points)

a) [5 pts.] Let G denote a complete graph with n vertexes. How many different perfect orderings does G have?
b) [5 pts.] Does the graph in
a. Figure 1
b. Figure 2
have a perfect ordering? If yes, show a perfect ordering. If not, prove why it does not have any perfect ordering.
c) [optional, 5 bonus pts.] The algorithm in slide 23 of bayes-04-independence-markov.pdf finds a perfect ordering if the input graph G has any. However, if the input graph G does not have any perfect ordering, this algorithm will just output some non-perfect ordering, without any error message or throwing an exception. Modify the algorithm so that it stops (throws an exception/writes an error message/terminates) if G does not have any perfect ordering!

Exercise 3 Bayesian Networks (10 Points)

Suppose we are given the following independence model:

$I=\{$	$i(A, B \mid C)$,	$i(B, A \mid C)$,	$i(A, B \mid D)$,	$i(B, A \mid D)$,
$i(A,\{B C\} \mid D)$,	$i(\{B, C\}, A \mid D)$,	$i(A, C \mid D)$,	$i(C, A \mid D)$,	
$i(A, B \mid\{C, D\})$,	$i(B, A \mid\{C, D\})$,	$i(A, C \mid\{B, D\})$,	$i(C, A \mid\{B, D\})$	
$i(A,\{B, C\} \mid D)$,	$i(\{B, C\}, A \mid D)$	$\}$		

a) [6 pts.] What is the minimal directed representation (Bayesian network) of this independence model, if the ordering of the vertexes is
a. A, B, C, D
b. $\mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$?

Is it unique?
b) [4 pts.] Factorize the $\operatorname{JDP} p(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$ according to the Bayesian networks constructed in the previous task.

Fig.1. (Petersen Graph)
Fig. 2.

