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Bayesian Networks / 1. Basic Probability Calculus

Probability spaces

Definition 1. Let Ω be a finite set. We
call Ω the sample space and every sub-
set E ⊆ Ω an event; subsets containing
exactly one element, i.e.

E = {e}, e ∈ Ω

are called elementary events.

A function
p : P(Ω) → [0, 1]

with
1. p is additive, i.e. for disjunct E,F ⊆

Ω:
p(E ∪ F ) = p(E) + p(F )

2. p(Ω) = 1

is called probability function (axioms
of probability, Kolmogorov, 1933). A pair
(Ω, p) is called probability space.

Lemma 1.

p(E) =
∑
e∈E

p({e}), E ⊆ Ω

Example 1. Throwing a dice can be de-
scribed by

Ω := {1, 2, 3, 4, 5, 6}
For a fair dice we have

p({1}) = p({2} = . . . = p({6}) =
1

6

Then E = {2} is the event of dicing a 2,
F = {2, 4, 6} the event of dicing an even
number.

p({2, 4, 6}) = p({2})+p({4})+p({6}) =
1

2
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Conditional independent events (1/2)

Definition 2. Let E,F ⊆ Ω with p(F ) >
0. Then

p(E|F ) :=
p(E ∩ F )

p(F )

is called conditional probability of E
given F .

Two events E,F ⊆ Ω are called inde-
pendent, if

p(E ∩ F ) = p(E) · p(F )

i.e., if p(E|F ) = p(E) or p(E) = 0 or
p(F ) = 0.

Example 2. Let F := {2, 4, 6} be the
event of dicing an even number. Then
the conditional probability

p({2}|F ) =
1

6
/
1

2
=

1

3

describes the probability of dicing a 2
given we diced an even number.

Example 3. The events E := {2, 4, 6}
of dicing an even number and F :=
{1, 2, 3, 4} of dicing a number less than
5 are independent as

p(E ∩ F ) = p({2, 4}) =
1

3
!
= p(E) · p(F ) =

1

2
· 2

3
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Conditional independent events (2/2)

Definition 3. Let G ⊆ Ω be an event
with p(G) > 0. Two events E,F ⊆ Ω
are called conditionally independent
given G, if

p(E ∩F ∩G) = p(E ∩G) · p(F ∩G)/p(G)

i.e., if p(E|F∩G) = p(E|G) or p(E|G) = 0
or p(F |G) = 0.

Definition 4. A partition (Ei)i=1,...,m of Ω
is also called a set of mutually exclu-
sive and exhaustive events, i.e.

1. Ei 6= ∅,
2.

⋃m
i=1 Ei = Ω, and

3. Ei are pairwise disjunct (i.e., Ei ∩
Ej = ∅ for i 6= j).

Example 4. The events

• E := {2, 4, 6} of dicing an even num-
ber and

• F := {1, 2, 3, 4, 5} of dicing anything
but 6

are dependent as

p(E∩F ) = p({2, 4}) =
1

3

!

6= p(E)·p(F ) =
1

2
·5
6

But given the event

• G := {1, 2, 3, 4} of dicing a number
less than 5,

E and F are conditionally independent
given G as

p(E ∩ F ∩G) = p({2, 4}) =
1

3
!
= p(E ∩G) · p(F ∩G)/p(G) =

1

3
· 2

3
/
2

3
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Bayes’ Theorem

Theorem 1 (Bayes, 1763). Let E,F ⊆ Ω
be two events with p(E), p(F ) > 0. Then

p(E|F ) =
p(F |E) · p(E)

p(F )

Let (Ei)i=1,...,m be a partition of Ω with
p(Ei) > 0 for all i. Then

p(Ej|F ) =
p(F |Ej) · p(Ej)∑m
i=1 p(F |Ei) · p(Ei)

Example 5. Assign each object in fig. 1
an equal probability 1

13. Let E1 =
”label is one”, E2 = ”label is two”, and
F = ”color is black”. Then

p(E1|F ) =
p(F |E1)p(E1)

p(F |E1)p(E1) + p(F |E2)p(E2)

=
3
5 · 5

13
3
5 · 5

13 + 6
8 · 8

13

=
1

3

aaQQ
.........

Figure 1: 13 objects with different shape, color, and label [Nea03, p. 8].
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Random variables and probability distributions

Definition 5. Any function

X : Ω → X

is called a random variable (by abuse
of notation we label both, the map and
the target space with X).

We assign each value x ∈ X a probabil-
ity via

p(X = x) := p(X−1(x))

p is called the probability distribution
of X.

If X is numeric, e.g., X = R, we call

E(X) :=
∑
x∈X

x · p(x)

the expected value of X.

Example 6. Let Ω contain the outcomes
of a throw of two (distinguishable) dice,
i.e.

Ω := {(1, 1), (1, 2), . . . , (1, 6),

(2, 1), (2, 2), . . . , (6, 5), (6, 6)}
Then the sum of the two dice,

X : Ω → N
(i, j) 7→ i + j

is a random variable.

The value X = 3 then represents the
event X−1(3) = {(1, 2), (2, 1)} and thus
p(X = 3) = 2

36.

The expected value of X is E(X) = 7.
X 2 3 4 5 6 7 8 9 10 11 12

p(X) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Joint probability distributions

Definition 6. Let X and Y be two ran-
dom variables. Then their cartesian
product

X × Y : Ω → X × Y
e 7→ (X(e), Y (e))

is again a random variable; its distribu-
tion is called joint probability distribu-
tion of X and Y .

Example 7. Let Ω be the outcomes of
a throw of two dices and X the sum of
their numbers as before. Let Y be

Y (i, j) :=

{
odd, if i and j is odd
even, if i or j is even

Then the probability of

p(X = 4, Y = odd) = p({(1, 3), (3, 1)}) =
2

36

In general,

p(X = x, Y = y) 6= p(X = x) · p(Y = y)

as can be seen here:

p(X = 4) = p({(1, 3), (3, 1), (2, 2)}) =
3

36

p(Y = odd) =
9

36
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Marginal probability distributions

Definition 7. Let p be a the joint proba-
bility of two random variables X and Y ,

X × Y : Ω → X × Y

Then

p(X = x) := p↓X(x) :=
∑
y∈Y

p(X = x, Y = y)

is a probability distribution of X called
marginal probability distribution.

Example 8. Assume the joint probability
distribution of four random variables P
(pain), W (weightloss), V (vomiting) and
A (adeno) given in fig. 2.
Then the marginal distribution of V and
A is

Vomiting Y N
Adeno Y 0.350 0.350

N 0.090 0.210

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113

Figure 2: Joint probability distribution of four random variables P (pain), W (weightloss), V (vomit-
ing) and A (adeno).
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Marginal probability distributions / example
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Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].
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Independent variables

Definition 8. Let X ,Y be sets of vari-
ables. By abuse of notation we write
X = x for a tuple (xX)X∈X of values
xX ∈ X.
X ,Y are called independent sets of
variables, when all pairs of events X =
x and Y = y are independend, i.e.
p(X = x,Y = y) = p(X = x) · p(Y = y)

for all x and y or equivalently
p(X = x|Y = y) = p(X = x)

for y with p(Y = y) > 0.

Example 9. Let Ω be the cards in an or-
dinary deck and

• R be the variable that is true (Y), if a
card is royal,

• T be the variable that is true (Y), if a
card is a ten or a jack, and

• S be the variable that is true (Y), if a
card is spade.
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S R T p(R, T |S)

Y Y Y 1/13
N 2/13

N Y 1/13
N 9/13

N Y Y 3/39 = 1/13
N 6/39 = 2/13

N Y 3/39 = 1/13
N 27/39 = 9/13

R T p(R, T )

Y Y 4/52 = 1/13
N 8/52 = 2/13

N Y 4/52 = 1/13
N 36/52 = 9/13
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Conditionally independent variables

Definition 9. Let X ,Y be sets of variables. Let Z be a third set of variables.
X ,Y are called conditionally independent sets of variables given Z, when for
all events Z = z with p(Z = z) > 0 all pairs of events X = x and Y = y are
conditionally independend given Z = z, i.e.

p(X = x,Y = y,Z = z) = p(X = x,Z = z) · p(Y = y,Z = z)/p(Z = z)

for all x, y and z (with p(Z = z) > 0), or equivalently

p(X = x|Y = y,Z = z) = p(X = x|Z = z)

We write Ip(X ,Y|Z) for the statement, that X and Y are conditionally independent
given Z.
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Conditionally independent variables

Example 10. Assume S (shape), C (color), and L (label) be three random variables
that are distributed as shown in figure 4.

We show Ip({L}, {S}|{C}), i.e., that label and shape are conditionally independent
given the color.

C S L p(L|C, S)

black square 1 2/6 = 1/3
2 4/6 = 2/3

round 1 1/3
2 2/3

white square 1 1/2
2 1/2

round 1 1/2
2 1/2

C L p(L|C)

black 1 3/9 = 1/3
2 6/9 = 2/3

white 1 2/4 = 1/2
2 2/4 = 1/2

aaQQ
.........

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2008 12/35



Bayesian Networks / 1. Basic Probability Calculus

Chain rule

Lemma 2 (Chain rule). Let X1, X2, . . . , Xn be variables. Then

p(X1, X2, . . . , Xn) = p(Xn|X1, . . . , Xn−1) · · · p(X2|X1) · p(X1)
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Potentials

Let
X = {X1, . . . , Xn}

be a set of sets. We call any map
q : X1 × · · · ×Xn → R+

0

a potential on X and dom(q) := X its
set of domains.

A potential q can be described as n-
dimensional tensor indexed by the ele-
ments of the sets Xi.

Example 11. Let p be a joint probability
distribution of a set X of random vari-
ables, i.e.,

p : X1 × · · · ×Xn → [0, 1]

Then p is a potential with domain X .

X1 = P = Pain Y N
X2 = W =Weightloss Y N Y N

X3 = V =Vomiting Y N Y N Y N Y N
X4 = A = Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113

Figure 5: Joint probability distribution of four random variables X1 (pain), X2 (weightloss), X3 (vom-
iting) and X4 (adeno) as potential.
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Multiplication of potentials

Let p, q be two potentials. We define

(p · q) :
∏

X∈dom(p)∪dom(q)

X → R+
0

x 7→ p(π↓dom(p)(x)) · q(π↓dom(q)(x))

as the (outer) product of p and q,
where

π↓dom(p) :
∏

X∈dom(p)∪dom(q)

X →
∏

X∈dom(p)

X

is the canonical projection.

∏
X∈dom(p)∪dom(q)

X

π↓dom(p)

xxqqqqqqqqqqq π↓dom(q)

&&MMMMMMMMMMM∏
X∈dom(p)

X

p
((PPPPPPPPPPPPPPPPPPP

∏
X∈dom(q)

X

q
vvnnnnnnnnnnnnnnnnnnn

R+
0
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Multiplication of potentials / examples (1/2)

Example 12. Let

p :=

0.2
0.3
0.5

 , q :=


0.1
0.2
0.4
0.3


be two vectors ("one-dimensional potentials"). Then

p · q :=

0.2 · 0.1 0.2 · 0.2 0.2 · 0.4 0.2 · 0.3
0.3 · 0.1 0.3 · 0.2 0.3 · 0.4 0.3 · 0.3
0.5 · 0.1 0.5 · 0.2 0.5 · 0.4 0.5 · 0.3


is their usual outer product.

Let

r :=

0.1
0.2
0.4


be a third vector over the same domain as p, then

p · r :=

0.2 · 0.1
0.3 · 0.2
0.5 · 0.4


is their element-wise product.
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Multiplication of potentials / examples (1/2)

Example 13. Let

p :=

0.2 0.1
0.3 0.2
0.5 0.4

 , q :=

0.1 0.6
0.2 0.1
0.4 0.3


be two matrices ("two-dimensional potentials") over the same domains. Then

p · q :=

0.2 · 0.1 0.1 · 0.6
0.3 · 0.2 0.2 · 0.1
0.5 · 0.4 0.4 · 0.3


is their element-wise product.

Let
r :=

(
0.1 0.2 0.4 0.3
0.6 0.1 0.1 0.2

)
be a third matrix that has only one domain in common with p. Then p · r is a
three-dimensional potential, e.g.,

(p · r)3,2,4 = p3,2 · r2,4 = 0.4 · 0.2
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Marginalization of potentials

Definition 10. Let p be a potential and
Y ⊆ dom(p) a subset of its domain. We
define
p↓Y :

∏
X∈Y

X → R+
0

x 7→
∑

x′∈∏
X∈dom(p)\Y X

p(ι(x, x′))

as the projection of p down to Y (or
as marginalization p out of dom(p) \Y)
where
ι : (

∏
X∈Y

X)× (
∏

X∈dom(p)\Y
X) →

∏
X∈dom(p)

X

is the canonical bijection.

Example 14. Assume the joint probabil-
ity distribution of four random variables
P (pain), W (weightloss), V (vomiting)
and A (adeno) given in fig. 5 as poten-
tial p.
If we project p down to V and A, we get
the potential p↓V,A:

Vomiting Y N
Adeno Y 0.350 0.350

N 0.090 0.210

X1 = P = Pain Y N
X2 = W =Weightloss Y N Y N

X3 = V =Vomiting Y N Y N Y N Y N
X4 = A = Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113
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Conditioning of potentials

Definition 11. By p > 0 we mean

p(x) > 0, for all x ∈
∏

dom(p)

Then p is called non-extreme.

For two potentials p, q with q > 0, by p/q
we mean p · q−1 where

q−1(y) :=
1

q(y)
, for all y ∈

∏
dom(q)

For a potential p and a subset Y ⊆
dom(p) of its domains with p↓Y > 0 we
define

p|Y :=
p

p↓Y
as conditioning of p at Y.

A potential conditioned at Y sums to 1
for all fixed values of Y, i.e.,

(p|Y)↓Y ≡ 1

Example 15. Let p be the potential

p :=

(
0.4 0.1
0.2 0.3

)
on two variables R (rows) and C
(columns) with the domains dom(R) =
dom(C) = {1, 2}.
If we conditioning on C we get

p :=

(
2/3 1/4
1/3 3/4

)
i.e., if p is a joint probability distribution,
we get the conditional probability distri-
bution p(R|C).
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Conditioning of potentials / example

Example 16. If q is another potential

p :=

(
80 20
40 60

)
that is not a joint probability distribution, we can normalize q by conditioning on ∅.
Here

q|∅ = p =

(
0.4 0.1
0.2 0.3

)
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Chain rule revisited

Lemma 3 (chain rule). Let p be a poten-
tial and Y ⊆ dom(p) a subset of its do-
mains with p↓Y > 0. Then

p = p|Y · p↓Y

Let
Y1 ⊂ Y2 ⊂ · · · ⊂ Ym−1 ⊂ Ym = dom(p)

be a sequence of subsets of dom(p) with
p↓Yi > 0 for all i. Then

p = p↓Y1

m−1∏
i=1

p↓Yi+1|Yi

= p|Ym−1 · p↓Ym−1|Ym−2 · · · p↓Y2|Y1 · p↓Y1

Example 17. If p is a probability dis-
tribution over the variables dom(x) =
{X1, . . . , Xn},

Yi := {X1, . . . , Xi}
and all marginals p↓X1,...,Xi > 0 (e.g.,
p > 0).
We write

p(Xi|X1, . . . , Xi−1) :=p↓X1,...,Xi|X1,...Xi−1

=p↓Yi|Yi−1

Then the chain rule can be written as

p(X1, X2, . . . , Xn) = p(Xn|X1, . . . , Xn−1) · · · p(X2|X1) · p(X1)
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Variable independence revisited

Definition 12. Let p be a potential and
X ,Y ⊆ dom(p) be two subsets of its do-
mains. We call X and Y independent,
if

p↓X∪Y = p↓X · p↓Y

Let Z ⊆ dom(p) a third subset of its do-
mains. Then X and Y are called condi-
tionally independent given Z, if

p↓X∪Y∪Z · p↓Z = p↓X∪Z · p↓Y∪Z

or equivalently

p↓X∪Y∪Z|Y∪Z = p↓X∪Z|Z · 1Y
(for all x ∈ ∏X ∪ Y ∪ Z with
p↓Y∪Z(π↓Y∪Z(x)) > 0).
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Graphs

Definition 13. Let V be any set and
E ⊆ P2(V ) := {{x, y} |x, y ∈ V }

be a subset of sets of unordered pairs of
V . Then G := (V, E) is called an undi-
rected graph. The elements of V are
called vertices or nodes, the elements
of E edges.

Let e = {x, y} ∈ E be an edge, then
we call the vertices x, y incident to the
edge e. We call two vertices x, y ∈ V
adjacent, if there is an edge {x, y} ∈ E.

The set of all vertices adjacent with a
given vertex x ∈ V is called its fan:

fan(x) := {y ∈ V | {x, y} ∈ E}

A
B

C

D

E

F

G

H

ggggggggg
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Figure 7: Example graph.
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Paths on graphs

Definition 14. Let V be a set. We call
V ∗ :=

⋃
i∈N V i the set of finite se-

quences in V . The length of a se-
quence s ∈ V ∗ is denoted by |s|.

Let G = (V, E) be a graph. We call

G∗ := V ∗
|G := {p ∈ V ∗ | {pi, pi+1} ∈ E,

i = 1, . . . , |p| − 1}
the set of paths on G.

Any contiguous subsequence of a path
p ∈ G∗ is called a subpath of p, i.e. any
path (pi, pi+1, . . . , pj) with 1 ≤ i ≤ j ≤ n.
The subpath (p2, p3, . . . , pn−1) is called
the interior of p. A path of length |p| ≥ 2
is called proper.
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Figure 8: Example graph.
The sequences

(A, D, G, H)

(C, E,B,D)

(F )

are paths on G, but the sequences
(A, D, E, C)

(A, H,C, F )

are not.
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Separation in graphs (u-separation)

Definition 15. Let G := (V, E) be a
graph. Let Z ⊆ V be a subset of ver-
tices. We say, two vertices x, y ∈ V
are separated by Z in G, if every path
from x to y contains some vertex of Z
(∀p ∈ G∗ : p1 = x, p|p| = y ⇒ ∃i ∈
{1, . . . , n} : pi ∈ Z).

Let X, Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are separated by Z in G, if every
path from any vertex from X to any ver-
tex from Y is separated by Z, i.e., con-
tains some vertex of Z.

We write IG(X, Y |Z) for the statement,
that X and Y are separated by Z in G.
IG is an example for a ternary relation
on P(V ). We call IG the u-separation
relation in G.

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 9: Example for u-separation [CGH97,
p. 179].
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Separation in graphs (u-separation)

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 10: More examples for u-separation [CGH97, p. 179].
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Properties of ternary relations

Definition 16. Let V be any set and I a ternary relation on P(V ), i.e., I ⊆ (P(V ))3.

I is called symmetric, if
I(X, Y |Z) ⇒ I(Y, X|Z)

I is called (right-)decomposable, if

I(X, Y |Z) ⇒ I(X, Y ′|Z) for any Y ′ ⊆ Y

I is called (right-)composable, if

I(X, Y |Z) and I(X, Y ′|Z) ⇒ I(X, Y ∪ Y ′|Z)186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 11: Examples for a) symmetry and b) decomposition [CGH97, p. 186].
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Properties of ternary relations

Definition 17. I is called strongly unionable, if

I(X, Y |Z) ⇒ I(X, Y |Z ∪ Z ′) for all Z ′ disjunct with X, Y

I is called (right-)weakly unionable, if

I(X, Y |Z) ⇒ I(X, Y ′|(Y \ Y ′) ∪ Z) for any Y ′ ⊆ Y

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 12: Examples for a) strong union and b) weak union [CGH97, p. 186,189].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2008 28/35



Bayesian Networks / 3. Separation in undirected graphs

Properties of ternary relations

Definition 18. I is called (right-)contractable, if

I(X, Y |Z) and I(X, Y ′|Y ∪ Z) ⇒ I(X, Y ∪ Y ′|Z)

I is called (right-)intersectable, if

I(X, Y |Y ′ ∪ Z) and I(X, Y ′|Y ∪ Z) ⇒ I(X, Y ∪ Y ′|Z)

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 13: Examples for a) contraction and b) intersection [CGH97, p. 186].
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Properties of ternary relations

Definition 19. I is called strongly transitive, if

I(X, Y |Z) ⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

I is called weakly transitive, if

I(X, Y |Z) and I(X, Y |Z ∪ {v}) ⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 14: Examples for a) strong transitivity and b) weak transitivity. [CGH97, p. 189]
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Properties of ternary relations

Definition 20. I is called chordal, if

I({a}, {c}|{b, d}) and I({b}, {d}|{a, c}) ⇒ I({a}, {c}|{b}) or I({a}, {c}|{d})

a

b d

c

&

a

b d

c

⇒

a

b d

c

or

a

b d

c

Figure 15: Example for chordality.
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Properties of u-separation / no chardality

For u-separation the chordality property does not hold (in general).

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 16: Counterexample for chordality in undirected graphs (u-separation) [CGH97, p. 189].
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Properties of u-separation
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Checking u-separation

To test, if for a given graph G = (V, E)
two given sets X, Y ⊆ V of vertices
are u-separated by a third given set
Z ⊆ V of vertices, we may use standard
breadth-first search to compute all ver-
tices that can be reached from X (see,
e.g., [OW02], [CLR90]).

1 breadth-first search(G, X) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached
7 od
8 return reached

Figure 17: Breadth-first search algorithm for
enumerating all vertices reachable from X.

For checking u-separation we have to
tweak the algorithm

1. not to add vertices from Z to the bor-
der and

2. to stop if a vertex of Y has been
reached.

1 check-u-separation(G, X, Y, Z) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached \ Z
7 if border ∩ Y 6= ∅
8 return false
9 fi

10 od
11 return true

Figure 18: Breadth-first search algorithm for
checking u-separation of X and Y by Z.
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