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Probability spaces

Definition 1. Let ) be a finite set. We
call 2 the sample space and every sub-
set £ C Q) an event; subsets containing
exactly one element, i.e.

E=A{e}, e€
are called elementary events.

A function
p:PQ)—[0,1]
with
1. p is additive, i.e. for disjunct E, ' C
Q:
p(EUF) =p(E)+p(F)
2.p(2) =1
is called probability function (axioms

of probability, Kolmogorov, 1933). A pair
(2, p) is called probability space.
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Lemma 1.

p(B)=3 pl{e}), ECQ

eel

Example 1. Throwing a dice can be de-
scribed by

Q= {1,2,3,4,5,6}

For a fair dice we have

p({1}) = p({2} = ... = p({6}) = %

Then E = {2} is the event of dicing a 2,
F ={2,4,6} the event of dicing an even
number.

p(12,4,6)) = p({23) +p({4)) +p({6}) = 5
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Conditional independent events (1/2)

Definition 2. Let £, F C Q with p(F) >
0. Then

p(ENF)
p(F)

is called conditional probability of £
given F.

p(E|F) =

Two events £, F C () are called inde-
pendent, if

p(ENF)=p(E)-p(F)

e., if p(E|F) =
p(F) =0.

p(E) or p(F) = 0 or
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Example 2. Let FF = {2,4,6} be the
event of dicing an even number. Then
the conditional probability

1.1 1
p({2}F) = 6/5 =3
describes the probability of dicing a 2
given we diced an even number.

Example 3. The events £ = {2,4,6}
of dicing an even number and F :=
{1,2,3,4} of dicing a number less than
5 are independent as

P(ENF) =p({2,4}) =

WLl —
N | —
Wl Do
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Conditional independent events (2/2)

Definition 3. Let G C () be an event
with p(G) > 0. Two events E, F C ()
are called conditionally independent
given G, if

p(ENFNG)=p(ENG) p(FNG)/p(G)

e, if p(F|FNG) = p(E|G)orp(E|G) =0
or p(F|G) = 0.

Definition 4. A partition (E;);—1.,, of
is also called a set of mutually exclu-
sive and exhaustive events, i.e.

1. E; # 0,
2., E; =9, and

3. E; are pairwise disjunct (i.e., E; N
E; =0 fori # j).

Example 4. The events
e I :={2,4,6} of dicing an even num-
ber and
o ' :={1,2,3,4,5} of dicing anything
but 6

are dependent as

|

£ p(E)-p(F) =

| Ot

Wl =
N | —

p(ENF) = p({2,4}) =
But given the event
o G = {1,2,3,4} of dicing a number
less than 5,

E and F' are conditionally independent
given GG as

Wl =

P(ENFNG)=p({2,4}) =

= p(ENG) - p(FNG)/p(G)
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Bayes’ Theorem

Theorem 1 (Bayes, 1763). Let E, F C ()
be two events with p(E),p(F) > 0. Then

p(F|E) - p(E)
E\F) =
Let (E))i-1...m be a partition of 2 with

p(E;) > 0 for all i. Then

p(F|Ej)) - p(E))
> i P(F|E) - p(E;)

p(Ej|F) =

Example 5. Assign each object in fig. 1
an equal probability ;. Let By =
"label is one”, E, = "label is two”, and
F ="color is black”. Then
p(F'|Ey)p(E1)
p(F|E1)p(Er) + p(F|E2)p(Es)

P(Er|F) =

22009

Figure 1: 13 objects with different shape, color, and label [Nea03, p. 8].
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Random variables and probability distributions

Definition 5. Any function
X:Q—-X
is called a random variable (by abuse

of notation we label both, the map and
the target space with X).

We assign each value =z € X a probabil-
ity via

p(X =) = p(X~'(x))
p is called the probability distribution
of X.

If X is numeric, e.g., X =R, we call

E(X) = Zx -p(x)

rzeX
the expected value of X.

2003
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Example 6. Let 2 contain the outcomes
of a throw of two (distinguishable) dice,
l.e.

Q={(1,1),(1,2),...,(1,6),
(2,1),(2,2),...,(6,5),(6,6)}
Then the sum of the two dice,
X: O — N
(i,J) = i+
is a random variable.

The value X = 3 then represents the
event X1(3) = {(1,2),(2,1)} and thus
p(X =3) =5

The expected value of X is F(X) = 7.

X |2 3 6

/7 819 1011 12

4 5
3 4
36_36

1 2
3636

)

p(X) 36

b 514 312 1
363613636 | 36 36
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Joint probability distributions

Definition 6. Let X and Y be two ran-
dom variables. Then their cartesian
product

XxY:Q — XxY
e — (X(e),Y(e))

is again a random variable; its distribu-
tion is called joint probability distribu-
tion of X and Y.

2003
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Example 7. Let (2 be the outcomes of
a throw of two dices and X the sum of
their numbers as before. Let Y be

Y@?]) = {Odd’

even,
Then the probability of

if 2 and j is odd
if 2 or 7 is even

p(X =4,Y = odd) = p({(1,3), 3. 1)}) = =

36
In general,
pX=2Y=y #pX=2) pY =y)
as can be seen here:
3
p(X =4)=p({(1,3),(3,1),(2,2)}) = %
9
p(Y =odd) = 3%
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Marginal probabil

Definition 7. Let p be a the joint proba-
bility of two random variables X and Y,

XxY: QQ—=XxY

ity distributions

Example 8. Assume the joint probability
distribution of four random variables P
(pain), W (weightloss), V' (vomiting) and
A (adeno) given in fig. 2.

Then Then the marginal distribution of V and
pX =u)=p(x) =) p(X=a2Y=y)Als
ye¥ Vomiting Y N
is a probability distribution of X called Adeno Y 10.350 0.350
marginal probability distribution. N|0.090 0.210
Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y| 0.220 0.220/0.025 0.025|0.095 0.095|0.010 0.010
N|0.004 0.009 0.005 0.012/0.031 0.076|0.050 0.113

Figure 2: Joint probability distribution of four random variables P (pain), W (weightloss), V' (vomit-

ing) and A (adeno).
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Independent variables

Definition 8. Let X', ) be sets of vari-
ables. By abuse of notation we write
X = z for a tuple (zx)xexr Of values
rxy € X.

X,Y are called independent sets of
variables, when all pairs of events X =
x and Y = y are independend, i.e.

pX =2,Y=y)=pX =x) py=y)
for all  and y or equivalently
p(X =Y =y) =p(X =x)
for y with p(Y = y) > 0.
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Example 9. Let ) be the cards in an or-
dinary deck and

e 1? be the variable that is true (Y), if a
card is royal,

e T be the variable that is true (Y), if a
card is a ten or a jack, and

e S be the variable that is true (Y), if a
card is spade.
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SR T| p(R,T|S) % o ©
YYY 113
N 2/13 R T p(R,T)
N Y 1/13 Y Y| 4/52=1/13
N 9/13 N| 8/52=2/13
NI'Y Y| 339=1/13 N Y| 4/52=1/13
N| 6/39=2/13 N | 36/52 = 9/13
N Y| 339=1/13
N |27/39 = 9/13
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Conditionally independent variables

Definition 9. Let X', ) be sets of variables. Let Z be a third set of variables.

X,Y are called conditionally independent sets of variables given Z, when for
all events Z = z with p(Z = 2) > 0 all pairs of events X = z and ) = y are
conditionally independend given Z = z, i.e.

pX=2Y=yZ=z)=pX=x,Z=2)pV=y,Z=2)/p(Z=2)
for all x,y and z (with p(Z = z) > 0), or equivalently
PX =2y =y, Z=2)=pX = 2|2 = 2)

We write 1,(X, Y| Z) for the statement, that X and ) are conditionally independent
given Z.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Bayesian Networks, winter term 2008 11/35
. . . qerSitdy
Bayesian Networks / 1. Basic Probability Calculus N A’S’%

&

o

Conditionally independent variables '

2003

Example 10. Assume S (shape), C' (color), and L (label) be three random variables
that are distributed as shown in figure 4.

We show I,({L},{S}/{C}), i.e., that label and shape are conditionally independent
given the color.

C S L|p(L|C,S)
black square |1 |2/6 =1/3
2| 4/6 =2/3 C |L| p(LlO)
round | 1 1/3 black | 1 | 3/9 =1/3
2 2/3 2|6/9=2/3
white square | 1 1/2 white | 1 | 2/4 =1/2
2 1/2 2|2/4=1/2
round | 1 1/2
2 1/2

JI11I1LYY
2209

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].
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Course on Bayesian Networks, winter term 2008 12/35




Bayesian Networks / 1. Basic Probability Calculus Sprt
Chain rule ® 2008

Lemma 2 (Chain rule). Let X, X5, ..., X,, be variables. Then
p<X17 X27 <. 7Xn) = p(Xn‘Xla S 7Xn—1> T p<X2|X1> : p(Xl)
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Potentials s
Let
X ={Xy,..., Xu} Example 11. Let p be a joint probability
be a set of sets. We call any map distribution of a set X of random vari-
q: X1 x - x X, > R{ ables, i.e.,
a potential on X and dom(q) = X its pr Xy X x X, —[0,1]

set of domains. h . ential with d oy
en p is a potential with domain X',
A potential ¢ can be described as n- b P

dimensional tensor indexed by the ele-
ments of the sets X;.

X; = P =Pain Y N

Xy = W =Weightloss Y N Y N
X3 =V =Vomiting Y N Y N Y N Y N
X, =A=Adeno Y 0.220 0.220|0.025 0.025/0.095 0.0950.010 0.010
N|0.004 0.009 0.005 0.012|0.031 0.076/0.050 0.113

Figure 5: Joint probability distribution of four random variables X; (pain), X, (weightloss), X3 (vom-
iting) and X, (adeno) as potential.
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Multiplication of potentials 5 a0 ¥
Let p, ¢ be two potentials. We define
(p-q): II xX-r
X edom(p)udom(q)
x = p(m o (z)) - g(mtom D (z))
as the (outer) product of p and g, H X
where
X edom(p)Udom(q)
7ridom(p) ldom(q)
ldom(p) .
X edom(p)udom(q) X edom(p) Xedom(p) Xedom(q)
is the canonical projection. Rt
0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2008 15/35
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Multiplication of potentials / examples (1/2)

Example 12. Let

0.9 0.1
0.2
p=103], q:=
0.5 0.4
' 0.3

be two vectors ("one-dimensional potentials"). Then
0.2-0.102-0202-04 0.2-0.3
p-q:=103-0103-0203-0403-0.3
0.5-0.1 0.5-0.2 0.5-04 0.5-0.3

is their usual outer product.
Let
0.1
r.=102
0.4
be a third vector over the same domain as p, then
0.2-0.1
p-r:=103-0.2
0.5-0.4
is their element-wise product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Tensor calculus for conditional probabilities gi’,’s’%
Multiplication of potentials / examples (1/2) ® a0 ¥
Example 13. Let
0.2 0.1 0.1 0.6
p=10302}|, ¢q:=1020.1
0.5 0.4 0.4 0.3
be two matrices ("two-dimensional potentials") over the same domains. Then
0.2-0.1 0.1-0.6
p-q:=103-020.2-0.1
0.5-04 0.4-0.3

is their element-wise product.

Let
(010204 0.3
"= 106 010102
be a third matrix that has only one domain in common with p. Then p - r is a

three-dimensional potential, e.g.,

(p- 7’)372,4 =p32-1T24=04-0.2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2008 17/35
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Marginalization of potentials

Definition 10. Let p be a potential and
Y C dom(p) a subset of its domain. We
define
ptY H X — Ry

Xe)y

x p(uz,2))

—

2.

:L’/EHXedom(p)\y X

as the projection of p down to ) (or
as marginalization p out of dom(p) \ ))

2003
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Example 14. Assume the joint probabil-
ity distribution of four random variables
P (pain), W (weightloss), V' (vomiting)
and A (adeno) given in fig. 5 as poten-
tial p.

If we project p down to V and A, we get
the potential p'"4:

where
L (H X) x ( H X) — H N Vomiting Y N
Xey Xedom(p)\y Xedom(p) Adeno Y | 0.350 0.350
is the canonical bijection. N10.090 0.210
X; =P =Pain Y N
X, = W =Weightloss Y N Y N
X3 =V =Vomiting Y N Y N Y N Y N
X, =A=AdenoY | 0.220 0.220 | 0.025 0.025|0.095 0.095|0.010 0.010
N|0.004 0.0090.005 0.012|0.031 0.076|0.050 0.113
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Conditioning of potentials

Definition 11. By p > 0 we mean
plx) >0, forallz e |[dom(p)
Then p is called non-extreme.

For two potentials p, ¢ with ¢ > 0, by p/q
we mean p - ¢! where

1
——, forally € | | dom(q
q(y) ve]Jdomia)
For a potential p and a subset ) C

dom(p) of its domains with p!Y > 0 we
define

q (y) =

y._ P
P =0

as conditioning of p at ).

A potential conditioned at Y sums to 1
for all fixed values of ), i.e.,

<p|y>ly =1

gy &,
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Example 15. Let p be the potential

{04 0.1
b= (0.2 0.3)
on two variables R (rows) and ('
(columns) with the domains dom(R)
dom(C) = {1, 2}.
If we conditioning on C' we get

(33 51)

i.e., if p is a joint probability distribution,
we get the conditional probability distri-
bution p(R|C).
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Conditioning of potentials / example
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Example 16. If ¢ is another potential

(80 20
P=1 40 60

that is not a joint probability distribution, we can normalize ¢ by conditioning on (.

Here
o (0401
T =P~ 10203

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Bayesian Networks, winter term 2008 20/35
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Chain rule revisited s

Lemma 3 (chain rule). Let p be a poten-
tial and Y C dom(p) a subset of its do-

Example 17.If p is a probability dis-
mains with p'¥ > 0. Then P p P y

tribution over the variables dom(z) =

p=pY-p" {X1,..., X},
Let Vi=A{X1,...,Xi}
V1 CHC- CVn1 CYn=dom(p) |and all marginals pX--Xi > 0 (e.g.,
be a sequence of subsets of dom(p) with | p > 0).
pi >0 for alli. Then We write

m—1
p=p H pWiildi (XX, .., X)) =pt K Xl K
pali :plyiD)i—I
— pD}mfl . plymfl'yme .. ply2|yl . plyl . .
Then the chain rule can be written as
p(X1, Xo, ..., X)) = p(Xo| Xu, .o, Xom1) -+ p(Xo| X)) - p(XG)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2008 21/35
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Variable independence revisited

Definition 12. Let p be a potential and
X,Y C dom(p) be two subsets of its do-
mains. We call X and ) independent,

if

P — plX LY

p- P

Let Z C dom(p) a third subset of its do-
mains. Then X and ) are called condi-
tionally independent given Z, if

pLXUJJUZ ) plZ _ plXUZ _ plyuz
or equivalently
pLXuyuzwuz _ pycuz‘z 1y
(for all x € J[X U Y U Z with

pRUE (e @) > 0).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Bayesian Networks, winter term 2008 22/35
H .\‘lefsile}'? ]
Bayesian Networks S Pfs«,%
= g
P, &
2003

1. Basic Probability Calculus

2. Tensor calculus for conditional probabilities

3. Separation in undirected graphs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Bayesian Networks, winter term 2008

23/35



Bayesian Networks / 3. Separation in undirected graphs

TS )
RS
o s

Graphs

Definition 13. Let IV be any set and
ECP(V)={{z,y}|z,y eV}

be a subset of sets of unordered pairs of

V. Then G := (V, E) is called an undi-

rected graph. The elements of V' are

called vertices or nodes, the elements

of £ edges.

Let ¢ = {z,y} € F be an edge, then
we call the vertices x, y incident to the
edge e. We call two vertices z,y € V
adjacent, if there is an edge {z,y} € E.

The set of all vertices adjacent with a
given vertex x € V' is called its fan:

fan(z) == {y € V |{z,y} € FE}

g
&
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Figure 7: Example graph.
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Paths on graphs 2008 °

Definition 14. Let V be a set. We call
V* = Uy V' the set of finite se-
quences in V. The length of a se-
quence s € V* is denoted by |s|.

Let G = (V, F) be a graph. We call

G =V ={pe V"' |{pipir1} € E,
i=1,...,|p| -1}

the set of paths on G.

/

F
N

Figure 8: Example graph.
The sequences

(A,D,G,H)
Any contiguous subsequence of a path (C,E, B, D)
p € G* is called a subpath of p, i.e. any (F)
path (pi, piv1, ..., pj) With 1 <4 < j < n. | are paths on G, but the sequences
The. sub!oath (p2,p3,---,0n1) is called (A.D,E,C)
the interior of p. A path of length |p| > 2 AHCF
is called proper. (4,H,C, F)

ara not

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL),"I‘r;s?ﬁu’('eI BW/WI & Institute for Computer Science, University of Hildesheim
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Separation in graphs (u-separation)

Definition 15. Let G = (V,F) be a
graph. Let Z C V be a subset of ver-
tices. We say, two vertices z,y € V
are separated by 7 in G, if every path
from x to y contains some vertex of Z
(Vp € G* - pr = 2,pp =y = Fi €
{1,....,n} :p; € 2).

Let X,Y,Z C V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are separated by 7 in G, if every
path from any vertex from X to any ver-
tex from Y is separated by ~7, i.e., con-
tains some vertex of Z.
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We write I;(X,Y|Z) for the statement,
that X and Y are separated by Z in G.
I is an example for a ternary relation
on P(V). We call I; the u-separation
relation in G.

Figure 9: Example for u-separation [CGH97,
p. 179].
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Figure 10: More examples for u-separation [CGH97, p. 179].
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Properties of ternary relations
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Definition 16. Let V' be any set and I a ternary relation on P(V), i.e., I C (P(V))3.

I is called symmetric, if
I(X,Y|Z) = I(Y,X|2)

I is called (right-)decomposable, if
I(X,Y|Z)= I(X,Y'|Z) foranyY' CY

I is called (right-)composable, if
I(X,Y|Z)and I(X,Y'|Z) = (X, Y UY'|Z)
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Properties of ternary relations

Definition 17. ] is called strongly unionable, if
I(X,Y|Z)= 1(X,Y|ZuZ") forall Z'disjunct with X,Y

I is called (right-)weakly unionable, if
I(X,Y|Z2)= I(X,Y|(Y\Y)uZ) foranyY' CY

Figure 12: Examples for a) strong union and b) weak union [CGH97, p. 186,189].
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Definition 18. / is called (right-)contractable, if
I(X,)Y|Z)and I(X,Y'|Y U Z) = (X, Y UY'|Z)

I is called (right-)intersectable, if
I(X,)YYUZ)and I(X,Y'|Y U Z) = I(X,Y UY'|2)
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Figure 13: Examples for a) contraction and b) intersection [CGH97, p. 186].
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Definition 19. / is called strongly transitive, if
I(X,Y|Z)=I(X,{v}|Z)or I{v},Y|Z) YveV\Z

I is called weakly transitive, if
I(X,)Y|Z)and I(X,Y|ZUA{v}) = I(X,{v}|Z)or I{v},Y|Z) YveV\Z
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> B o

O OB

Y - 6] - B &
O &3 B [® O

Figure 14: Examples for a) strong transitivity and b) weak transitivity. [CGH97, p. 189]
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Definition 20. ! is called chordal, if

[({a},{c}|{b,d}) and I({b}, {d}{a; c}) = [({a}, {c}[{b}) or I({a}, {c}[{d})

o

Figure 15: Example for chordality.
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Properties of u-separation / no chardality

For u-separation the chordality property does not hold (in general).
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Figure 16: Counterexample for chordality in undirected graphs (u-separation) [CGH97, p. 189].
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Properties of u-separation
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u-separation
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Checking u-separation

To test, if for a given graph G = (V, E)
two given sets X,Y C V of vertices
are u-separated by a third given set
Z C V of vertices, we may use standard
breadth-first search to compute all ver-
tices that can be reached from X (see,
e.g., [OW02], [CLR90]).

breadth-first sear¢ly, X) :

border := X

reached = ()

while border # () do
reached := reached U border
border := fan;(border) \ reached

od

return reached

Figure 17: Breadth-first search algorithm for
enumerating all vertices reachable from X.

2003
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For checking u-separation we have to
tweak the algorithm

1. not to add vertices from Z to the bor-
der and

.to stop if a vertex of Y has been
reached.

check-u-separatiqty, X, Y, 7) :
border .= X
reached := ()
while border # () do
reached := reached U border
border := fan;(border) \ reached \ Z
if border Y # 0
return false
fi

1
2
3
4

5
6
;
8
9
o od

return true

1
11

Figure 18: Breadth-first search algorithm for
checking u-separation of X and Y by Z.
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