Bayesian Networks

II. Probabilistic Independence and Separation in Graphs

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems
\& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Basic Probability Calculus

2. Tensor calculus for conditional probabilities

3. Separation in undirected graphs

2003

Definition 1. Let Ω be a finite set. We call Ω the sample space and every subset $E \subseteq \Omega$ an event; subsets containing exactly one element, i.e.

$$
E=\{e\}, \quad e \in \Omega
$$

are called elementary events.
A function

$$
p: \mathcal{P}(\Omega) \rightarrow[0,1]
$$

with

1. p is additive, i.e. for disjunct $E, F \subseteq$ Ω :

$$
p(E \cup F)=p(E)+p(F)
$$

2. $p(\Omega)=1$
is called probability function (axioms of probability, Kolmogorov, 1933). A pair (Ω, p) is called probability space.

Lemma 1.

$$
p(E)=\sum_{e \in E} p(\{e\}), \quad E \subseteq \Omega
$$

Example 1. Throwing a dice can be described by

$$
\Omega:=\{1,2,3,4,5,6\}
$$

For a fair dice we have

$$
p(\{1\})=p\left(\{2\}=\ldots=p(\{6\})=\frac{1}{6}\right.
$$

Then $E=\{2\}$ is the event of dicing a 2, $F=\{2,4,6\}$ the event of dicing an even number.
$p(\{2,4,6\})=p(\{2\})+p(\{4\})+p(\{6\})=\frac{1}{2}$

Bayesian Networks / 1. Basic Probability Calculus
Conditional independent events (1/2)

Definition 2. Let $E, F \subseteq \Omega$ with $p(F)>$ 0 . Then

$$
p(E \mid F):=\frac{p(E \cap F)}{p(F)}
$$

is called conditional probability of E given F.

Two events $E, F \subseteq \Omega$ are called independent, if

$$
p(E \cap F)=p(E) \cdot p(F)
$$

i.e., if $p(E \mid F)=p(E)$ or $p(E)=0$ or $p(F)=0$.

Example 2. Let $F:=\{2,4,6\}$ be the event of dicing an even number. Then the conditional probability

$$
p(\{2\} \mid F)=\frac{1}{6} / \frac{1}{2}=\frac{1}{3}
$$

describes the probability of dicing a 2 given we diced an even number.

Example 3. The events $E:=\{2,4,6\}$ of dicing an even number and F := $\{1,2,3,4\}$ of dicing a number less than 5 are independent as

$$
\begin{aligned}
p(E \cap F) & =p(\{2,4\})=\frac{1}{3} \\
& \stackrel{!}{=} p(E) \cdot p(F)=\frac{1}{2} \cdot \frac{2}{3}
\end{aligned}
$$

Definition 3. Let $G \subseteq \Omega$ be an event with $p(G)>0$. Two events $E, F \subseteq \Omega$ are called conditionally independent given G, if
$p(E \cap F \cap G)=p(E \cap G) \cdot p(F \cap G) / p(G)$
i.e., if $p(E \mid F \cap G)=p(E \mid G)$ or $p(E \mid G)=0$ or $p(F \mid G)=0$.

Definition 4. A partition $\left(E_{i}\right)_{i=1, \ldots, m}$ of Ω is also called a set of mutually exclusive and exhaustive events, i.e.

1. $E_{i} \neq \emptyset$,
2. $\bigcup_{i=1}^{m} E_{i}=\Omega$, and
3. E_{i} are pairwise disjunct (i.e., $E_{i} \cap$ $E_{j}=\emptyset$ for $i \neq j$).

Example 4. The events

- $E:=\{2,4,6\}$ of dicing an even number and
- $F:=\{1,2,3,4,5\}$ of dicing anything but 6
are dependent as

$$
p(E \cap F)=p(\{2,4\})=\frac{1}{3} \neq p(E) \cdot p(F)=\frac{1}{2} \cdot \frac{5}{6}
$$

But given the event

- $G:=\{1,2,3,4\}$ of dicing a number less than 5 ,
E and F are conditionally independent given G as

$$
\begin{aligned}
p(E \cap F \cap G) & =p(\{2,4\})=\frac{1}{3} \\
& \stackrel{!}{=} p(E \cap G) \cdot p(F \cap G) / p(G)
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 1. Basic Probability Calculus

Theorem 1 (Bayes, 1763). Let $E, F \subseteq \Omega$ be two events with $p(E), p(F)>0$. Then

$$
p(E \mid F)=\frac{p(F \mid E) \cdot p(E)}{p(F)}
$$

Let $\left(E_{i}\right)_{i=1, \ldots, m}$ be a partition of Ω with $p\left(E_{i}\right)>0$ for all i. Then

$$
p\left(E_{j} \mid F\right)=\frac{p\left(F \mid E_{j}\right) \cdot p\left(E_{j}\right)}{\sum_{i=1}^{m} p\left(F \mid E_{i}\right) \cdot p\left(E_{i}\right)}
$$

Example 5. Assign each object in fig. 1 an equal probability $\frac{1}{13}$. Let $E_{1}=$ "label is one", $E_{2}=$ "label is two", and $F=$ "color is black". Then

$$
\begin{aligned}
p\left(E_{1} \mid F\right) & =\frac{p\left(F \mid E_{1}\right) p\left(E_{1}\right)}{p\left(F \mid E_{1}\right) p\left(E_{1}\right)+p\left(F \mid E_{2}\right) p\left(E_{2}\right)} \\
& =\frac{\frac{3}{5} \cdot \frac{5}{13}}{\frac{3}{5} \cdot \frac{5}{13}+\frac{6}{8} \cdot \frac{8}{13}} \\
& =\frac{1}{3}
\end{aligned}
$$

Figure 1: 13 objects with different shape, color, and label [Nea03, p. 8].

Definition 5. Any function

$$
X: \Omega \rightarrow X
$$

is called a random variable (by abuse of notation we label both, the map and the target space with X).
We assign each value $x \in X$ a probability via

$$
p(X=x):=p\left(X^{-1}(x)\right)
$$

p is called the probability distribution of X.

If X is numeric, e.g., $X=\mathbb{R}$, we call

$$
E(X):=\sum_{x \in X} x \cdot p(x)
$$

the expected value of X.

Example 6. Let Ω contain the outcomes of a throw of two (distinguishable) dice, i.e.

$$
\begin{aligned}
\Omega:=\{ & (1,1),(1,2), \ldots,(1,6), \\
& (2,1),(2,2), \ldots,(6,5),(6,6)\}
\end{aligned}
$$

Then the sum of the two dice,

$$
\begin{aligned}
X: \quad & \rightarrow \mathbb{N} \\
(i, j) & \mapsto i+j
\end{aligned}
$$

is a random variable.
The value $X=3$ then represents the event $X^{-1}(3)=\{(1,2),(2,1)\}$ and thus $p(X=3)=\frac{2}{36}$.

The expected value of X is $E(X)=7$.

X	2	3	4	5	6	7	8	9	10	11	12
$p(X)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 1. Basic Probability Calculus Joint probability distributions

Definition 6. Let X and Y be two random variables. Then their cartesian product

$$
\begin{aligned}
X \times Y: \Omega & \rightarrow X \times Y \\
e & \mapsto(X(e), Y(e))
\end{aligned}
$$

is again a random variable; its distribution is called joint probability distribution of X and Y.

Example 7. Let Ω be the outcomes of a throw of two dices and X the sum of their numbers as before. Let Y be

$$
Y(i, j):= \begin{cases}\text { odd, } & \text { if } i \text { and } j \text { is odd } \\ \text { even, } & \text { if } i \text { or } j \text { is even }\end{cases}
$$

Then the probability of
$p(X=4, Y=$ odd $)=p(\{(1,3),(3,1)\})=\frac{2}{36}$
In general,

$$
p(X=x, Y=y) \neq p(X=x) \cdot p(Y=y)
$$

as can be seen here:

$$
\begin{aligned}
p(X=4) & =p(\{(1,3),(3,1),(2,2)\})=\frac{3}{36} \\
p(Y=\mathbf{o d d}) & =\frac{9}{36}
\end{aligned}
$$

Definition 7．Let p be a the joint proba－ bility of two random variables X and Y ，

$$
X \times Y: \Omega \rightarrow X \times Y
$$

Then
$p(X=x):=p^{L X}(x):=\sum_{y \in Y} p(X=x, Y=y$
is a probability distribution of X called marginal probability distribution．

Example 8．Assume the joint probability distribution of four random variables P （pain），W（weightloss），V（vomiting）and A（adeno）given in fig． 2.
Then the marginal distribution of V and A is

Vomiting	Y	N
Adeno Y	0.350	0.350
N	0.090	0.210

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 2：Joint probability distribution of four random variables P（pain），W（weightloss），V（vomit－ ing）and A（adeno）．

Lars Schmidt－Thieme，Information Systems and Machine Learning Lab（ISMLL），Institute BW／WI \＆Institute for Computer Science，University of Hildesheim Course on Bayesian Networks，winter term 2008

Bayesian Networks／1．Basic Probability Calculus
Marginal probability distributions／example

Figure 3：Joint probability distribution and all of its marginals［BK02，p．75］．

Definition 8. Let \mathcal{X}, \mathcal{Y} be sets of variables. By abuse of notation we write $\mathcal{X}=x$ for a tuple $\left(x_{X}\right)_{X \in \mathcal{X}}$ of values $x_{X} \in X$.
\mathcal{X}, \mathcal{Y} are called independent sets of variables, when all pairs of events $\mathcal{X}=$ x and $\mathcal{Y}=y$ are independend, i.e.

$$
p(\mathcal{X}=x, \mathcal{Y}=y)=p(\mathcal{X}=x) \cdot p(\mathcal{Y}=y)
$$

for all x and y or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y)=p(\mathcal{X}=x)
$$

for y with $p(\mathcal{Y}=y)>0$.

Example 9. Let Ω be the cards in an ordinary deck and

- R be the variable that is true (Y), if a card is royal,
- T be the variable that is true (Y), if a card is a ten or a jack, and
- S be the variable that is true (Y), if a card is spade.

Bayesian Networks / 1. Basic Probability Calculus

S	R	T	$p(R, T \mid S)$
\mathbf{Y}	Y	Y	$1 / 13$
		N	$2 / 13$
	N	Y	$1 / 13$
		N	$9 / 13$
N	Y	Y	$3 / 39=1 / 13$
		N	$6 / 39=2 / 13$
	N	Y	$3 / 39=1 / 13$
		N	$27 / 39=9 / 13$

R	T	$p(R, T)$
Y	Y	$4 / 52=1 / 13$
	N	$8 / 52=2 / 13$
N	Y	$4 / 52=1 / 13$
	N	$36 / 52=9 / 13$

Definition 9. Let \mathcal{X}, \mathcal{Y} be sets of variables. Let \mathcal{Z} be a third set of variables.
\mathcal{X}, \mathcal{Y} are called conditionally independent sets of variables given \mathcal{Z}, when for all events $\mathcal{Z}=z$ with $p(\mathcal{Z}=z)>0$ all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are conditionally independend given $\mathcal{Z}=z$, i.e.

$$
p(\mathcal{X}=x, \mathcal{Y}=y, \mathcal{Z}=z)=p(\mathcal{X}=x, \mathcal{Z}=z) \cdot p(\mathcal{Y}=y, \mathcal{Z}=z) / p(\mathcal{Z}=z)
$$

for all x, y and z (with $p(\mathcal{Z}=z)>0$), or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y, \mathcal{Z}=z)=p(\mathcal{X}=x \mid \mathcal{Z}=z)
$$

We write $I_{p}(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z}.

Bayesian Networks / 1. Basic Probability Calculus
Conditionally independent variables
Example 10. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 4.

We show $I_{p}(\{L\},\{S\} \mid\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	$p(L \mid C, S)$
black	square	1	$2 / 6=1 / 3$
		2	$4 / 6=2 / 3$
	round	1	1/3
		2	2/3
white	square	1	1/2
		2	1/2
	round	1	1/2
		2	1/2

C	L	$p(L \mid C)$
black	1	$3 / 9=1 / 3$
	2	$6 / 9=2 / 3$
white	1	$2 / 4=1 / 2$
	2	$2 / 4=1 / 2$

 100 0

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

Lemma 2 (Chain rule). Let $X_{1}, X_{2}, \ldots, X_{n}$ be variables. Then

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \cdots p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

1. Basic Probability Calculus

2. Tensor calculus for conditional probabilities

3. Separation in undirected graphs

Let

$$
\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}
$$

be a set of sets. We call any map

$$
q: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{R}_{0}^{+}
$$

a potential on \mathcal{X} and $\operatorname{dom}(q):=\mathcal{X}$ its set of domains.

A potential q can be described as n dimensional tensor indexed by the elements of the sets X_{i}.

Example 11. Let p be a joint probability distribution of a set \mathcal{X} of random variables, i.e.,

$$
p: X_{1} \times \cdots \times X_{n} \rightarrow[0,1]
$$

Then p is a potential with domain \mathcal{X}.

$\begin{array}{r} X_{1}=P=\text { Pain } \\ X_{2}=W=\text { Weightloss } \\ X_{3}=V=\text { Vomiting } \end{array}$	Y				N			
	Y		N		Y		N	
	Y	N	Y	N	Y	N	Y	N
$X_{4}=A=$ Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 5: Joint probability distribution of four random variables X_{1} (pain), X_{2} (weightloss), X_{3} (vomiting) and X_{4} (adeno) as potential.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008

Bayesian Networks / 2. Tensor calculus for conditional probabilities

Multiplication of potentials

Let p, q be two potentials. We define

$$
\begin{aligned}
(p \cdot q): \prod_{X \in \operatorname{dom}(p) \cup \operatorname{dom}(q)} X & \rightarrow \mathbb{R}_{0}^{+} \\
x & \mapsto p\left(\pi^{\downarrow \operatorname{dom}(p)}(x)\right) \cdot q\left(\pi^{\downarrow \operatorname{dom}(q)}(x)\right)
\end{aligned}
$$

as the (outer) product of p and q, where

$$
\pi^{\downarrow \operatorname{dom}(p)}: \prod_{X \in \operatorname{dom}(p) \operatorname{Udom}(q)} X \rightarrow \prod_{X \in \operatorname{dom}(p)} X
$$

is the canonical projection.

Example 12. Let

$$
p:=\left(\begin{array}{l}
0.2 \\
0.3 \\
0.5
\end{array}\right), \quad q:=\left(\begin{array}{c}
0.1 \\
0.2 \\
0.4 \\
0.3
\end{array}\right)
$$

be two vectors ("one-dimensional potentials"). Then

$$
p \cdot q:=\left(\begin{array}{ccccc}
0.2 \cdot 0.1 & 0.2 \cdot 0.2 & 0.2 \cdot 0.4 & 0.2 \cdot 0.3 \\
0.3 \cdot 0.1 & 0.3 \cdot 0.2 & 0.3 \cdot 0.4 & 0.3 \cdot 0.3 \\
0.5 \cdot 0.1 & 0.5 \cdot 0.2 & 0.5 \cdot 0.4 & 0.5 \cdot 0.3
\end{array}\right)
$$

is their usual outer product.
Let

$$
r:=\left(\begin{array}{l}
0.1 \\
0.2 \\
0.4
\end{array}\right)
$$

be a third vector over the same domain as p, then

$$
p \cdot r:=\left(\begin{array}{c}
0.2 \cdot 0.1 \\
0.3 \cdot 0.2 \\
0.5 \cdot 0.4
\end{array}\right)
$$

is their element-wise product.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 2. Tensor calculus for conditional probabilities
Multiplication of potentials / examples (1/2)

Example 13. Let

$$
p:=\left(\begin{array}{ll}
0.2 & 0.1 \\
0.3 & 0.2 \\
0.5 & 0.4
\end{array}\right), \quad q:=\left(\begin{array}{cc}
0.1 & 0.6 \\
0.2 & 0.1 \\
0.4 & 0.3
\end{array}\right)
$$

be two matrices ("two-dimensional potentials") over the same domains. Then

$$
p \cdot q:=\left(\begin{array}{cc}
0.2 \cdot 0.1 & 0.1 \cdot 0.6 \\
0.3 \cdot 0.2 & 0.2 \cdot 0.1 \\
0.5 \cdot 0.4 & 0.4 \cdot 0.3
\end{array}\right)
$$

is their element-wise product.
Let

$$
r:=\left(\begin{array}{llll}
0.1 & 0.2 & 0.4 & 0.3 \\
0.6 & 0.1 & 0.1 & 0.2
\end{array}\right)
$$

be a third matrix that has only one domain in common with p. Then $p \cdot r$ is a three-dimensional potential, e.g.,

$$
(p \cdot r)_{3,2,4}=p_{3,2} \cdot r_{2,4}=0.4 \cdot 0.2
$$

Marginalization of potentials

Definition 10. Let p be a potential and $\mathcal{Y} \subseteq \operatorname{dom}(p)$ a subset of its domain. We define

$$
\begin{aligned}
p^{\mathfrak{Y}}: \prod_{X \in \mathcal{Y}} X & \rightarrow \mathbb{R}_{0}^{+} \\
x & \mapsto \sum_{x^{\prime} \in \prod_{X \in \operatorname{dom}(p) \backslash \mathcal{Y}} X} p\left(\iota\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

as the projection of p down to \mathcal{Y} (or as marginalization p out of $\operatorname{dom}(p) \backslash \mathcal{Y})$ where

$$
\iota:\left(\prod_{X \in \mathcal{Y}} X\right) \times\left(\prod_{X \in \operatorname{dom}(p) \backslash \mathcal{Y}} X\right) \rightarrow \prod_{X \in \operatorname{dom}(p)}
$$

is the canonical bijection.
Example 14. Assume the joint probability distribution of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno) given in fig. 5 as potential p.
If we project p down to V and A, we get the potential $p^{\downarrow V, A}$:

Vomiting	Y	N
Adeno Y	0.350	0.350
N	0.090	0.210

$\begin{array}{r} X_{1}=P=\text { Pain } \\ X_{2}=W=\text { Weightloss } \\ X_{3}=V=\text { Vomiting } \end{array}$	Y				N			
	Y		N		Y		N	
	Y	N	Y	N	Y	N	Y	N
$X_{4}=A=$ Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008

Bayesian Networks / 2. Tensor calculus for conditional probabilities
Conditioning of potentials

Definition 11. By $p>0$ we mean

$$
p(x)>0, \quad \text { for all } x \in \prod \operatorname{dom}(p)
$$

Then p is called non-extreme.
For two potentials p, q with $q>0$, by p / q we mean $p \cdot q^{-1}$ where

$$
q^{-1}(y):=\frac{1}{q(y)}, \quad \text { for all } y \in \prod \operatorname{dom}(q)
$$

For a potential p and a subset $\mathcal{Y} \subseteq$ $\operatorname{dom}(p)$ of its domains with $p^{\downarrow \mathcal{Y}}>0$ we define

$$
p^{\mid \mathcal{Y}}:=\frac{p}{p^{\mathfrak{V}}}
$$

as conditioning of p at \mathcal{Y}.
A potential conditioned at \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y}, i.e.,

$$
\left(p^{\mid \mathcal{Y}}\right)^{\downarrow \mathcal{Y}} \equiv 1
$$

Example 15. Let p be the potential

$$
p:=\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)
$$

on two variables R (rows) and C (columns) with the domains $\operatorname{dom}(R)=$ $\operatorname{dom}(C)=\{1,2\}$.
If we conditioning on C we get

$$
p:=\left(\begin{array}{ll}
2 / 3 & 1 / 4 \\
1 / 3 & 3 / 4
\end{array}\right)
$$

i.e., if p is a joint probability distribution, we get the conditional probability distribution $p(R \mid C)$.

2003
Example 16. If q is another potential

$$
p:=\left(\begin{array}{ll}
80 & 20 \\
40 & 60
\end{array}\right)
$$

that is not a joint probability distribution, we can normalize q by conditioning on \emptyset. Here

$$
q^{\mid \emptyset}=p=\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 2. Tensor calculus for conditional probabilities
Chain rule revisited

Lemma 3 (chain rule). Let p be a potential and $\mathcal{Y} \subseteq \operatorname{dom}(p)$ a subset of its domains with $p^{\downarrow \mathcal{V}}>0$. Then

$$
p=p^{\mid \mathcal{Y}} \cdot p^{\perp \mathcal{Y}}
$$

Let
$\mathcal{Y}_{1} \subset \mathcal{Y}_{2} \subset \cdots \subset \mathcal{Y}_{m-1} \subset \mathcal{Y}_{m}=\operatorname{dom}(p)$ be a sequence of subsets of $\operatorname{dom}(p)$ with $p^{\downarrow \mathcal{Y}_{i}}>0$ for all i. Then

$$
\begin{aligned}
p & =p^{\downarrow \mathcal{Y}_{1}} \prod_{i=1}^{m-1} p^{\downarrow \mathcal{Y}_{i+1} \mid \mathcal{Y}_{i}} \\
& =p^{\mid \mathcal{Y}_{m-1}} \cdot p^{\downarrow \mathcal{Y}_{m-1} \mid \mathcal{Y}_{m-2}} \cdots p^{\downarrow \mathcal{Y}_{2} \mid \mathcal{Y}_{1}} \cdot p^{\downarrow \mathcal{Y}_{1}}
\end{aligned}
$$

Example 17. If p is a probability distribution over the variables $\operatorname{dom}(x)=$ $\left\{X_{1}, \ldots, X_{n}\right\}$,

$$
\mathcal{Y}_{i}:=\left\{X_{1}, \ldots, X_{i}\right\}
$$

and all marginals $p^{\downarrow X_{1}, \ldots, X_{i}}>0$ (e.g., $p>0$).
We write

$$
\begin{aligned}
p\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) & :=p^{\left\lfloor X_{1}, \ldots, X_{i} \mid X_{1}, \ldots X_{i-1}\right.} \\
& =p^{\left|\mathcal{V}_{i}\right| y_{i-1}}
\end{aligned}
$$

Then the chain rule can be written as

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \cdots p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

Definition 12. Let p be a potential and $\mathcal{X}, \mathcal{Y} \subseteq \operatorname{dom}(p)$ be two subsets of its domains. We call \mathcal{X} and \mathcal{Y} independent, if

$$
p^{\downarrow \mathcal{X} \cup \mathcal{Y}}=p^{\downarrow \mathcal{X}} \cdot p^{\downarrow \mathcal{Y}}
$$

Let $\mathcal{Z} \subseteq \operatorname{dom}(p)$ a third subset of its domains. Then \mathcal{X} and \mathcal{Y} are called conditionally independent given \mathcal{Z}, if

$$
p^{\downarrow \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}} \cdot p^{\downarrow \mathcal{Z}}=p^{\downarrow \mathcal{X} \cup \mathcal{Z}} \cdot p^{\downarrow \mathcal{Y} \cup \mathcal{Z}}
$$

or equivalently

$$
p^{\downarrow \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \mid \mathcal{Y} \cup \mathcal{Z}}=p^{\downarrow \mathcal{X} \cup \mathcal{Z} \mid \mathcal{Z}} \cdot 1_{\mathcal{Y}}
$$

(for all $x \in \prod \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}$ with $\left.p^{\downarrow \mathcal{Y} \cup \mathcal{Z}}\left(\pi^{\downarrow \mathcal{Y} \cup \mathcal{Z}}(x)\right)>0\right)$.

1. Basic Probability Calculus

2. Tensor calculus for conditional probabilities

3. Separation in undirected graphs

Definition 13. Let V be any set and $E \subseteq \mathcal{P}^{2}(V):=\{\{x, y\} \mid x, y \in V\}$ be a subset of sets of unordered pairs of V. Then $G:=(V, E)$ is called an undirected graph. The elements of V are called vertices or nodes, the elements of E edges.

Let $e=\{x, y\} \in E$ be an edge, then we call the vertices x, y incident to the edge e. We call two vertices $x, y \in V$ adjacent, if there is an edge $\{x, y\} \in E$.

The set of all vertices adjacent with a given vertex $x \in V$ is called its fan:

$$
\operatorname{fan}(x):=\{y \in V \mid\{x, y\} \in E\}
$$

Figure 7: Example graph.

Bayesian Networks / 3. Separation in undirected graphs
Paths on graphs
Definition 14. Let V be a set. We call $V^{*}:=\bigcup_{i \in \mathbb{N}} V^{i}$ the set of finite sequences in V. The length of a sequence $s \in V^{*}$ is denoted by $|s|$.

Let $G=(V, E)$ be a graph. We call

$$
\begin{aligned}
G^{*}:=V_{\mid G}^{*}:=\left\{p \in V^{*} \mid\right. & \left\{p_{i}, p_{i+1}\right\} \in E, \\
& i=1, \ldots,|p|-1\}
\end{aligned}
$$

the set of paths on G.

Any contiguous subsequence of a path $p \in G^{*}$ is called a subpath of p, i.e. any path $\left(p_{i}, p_{i+1}, \ldots, p_{j}\right)$ with $1 \leq i \leq j \leq n$. The subpath $\left(p_{2}, p_{3}, \ldots, p_{n-1}\right)$ is called the interior of p. A path of length $|p| \geq 2$ is called proper.

Figure 8: Example graph. The sequences
(A, D, G, H)
(C, E, B, D)
(F)
are paths on G, but the sequences
(A, D, E, C)
($A, H, C, F)$

Definition 15. Let $G:=(V, E)$ be a graph. Let $Z \subseteq V$ be a subset of vertices. We say, two vertices $x, y \in V$ are separated by Z in G, if every path from x to y contains some vertex of Z $\left(\forall p \in G^{*}: p_{1}=x, p_{|p|}=y \Rightarrow \exists i \in\right.$ $\left.\{1, \ldots, n\}: p_{i} \in Z\right)$.

Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices X and Y are separated by Z in G, if every path from any vertex from X to any vertex from Y is separated by Z, i.e., contains some vertex of Z.

We write $I_{G}(X, Y \mid Z)$ for the statement, that X and Y are separated by Z in G. I_{G} is an example for a ternary relation on $\mathcal{P}(V)$. We call I_{G} the u-separation relation in G.

Figure 9: Example for u-separation [CGH97, p. 179].

Bayesian Networks / 3. Separation in undirected graphs
Separation in graphs (u-separation)

Figure 10: More examples for u-separation [CGH97, p. 179].

Definition 16. Let V be any set and I a ternary relation on $\mathcal{P}(V)$, i.e., $I \subseteq(\mathcal{P}(V))^{3}$. I is called symmetric, if

$$
I(X, Y \mid Z) \Rightarrow I(Y, X \mid Z)
$$

I is called (right-)decomposable, if

$$
I(X, Y \mid Z) \Rightarrow I\left(X, Y^{\prime} \mid Z\right) \quad \text { for any } Y^{\prime} \subseteq Y
$$

I is called (right-)composable, if

$$
I(X, Y \mid Z) \text { and } I\left(X, Y^{\prime} \mid Z\right) \Rightarrow I\left(X, Y \cup Y^{\prime} \mid Z\right)
$$

Figure 11: Examples for a) symmetry and b) decomposition [CGH97, p. 186].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 3. Separation in undirected graphs
Properties of ternary relations
Definition 17. I is called strongly unionable, if

$$
I(X, Y \mid Z) \Rightarrow I\left(X, Y \mid Z \cup Z^{\prime}\right) \quad \text { for all } Z^{\prime} \text { disjunct with } X, Y
$$

I is called (right-)weakly unionable, if

$$
I(X, Y \mid Z) \Rightarrow I\left(X, Y^{\prime} \mid\left(Y \backslash Y^{\prime}\right) \cup Z\right) \quad \text { for any } Y^{\prime} \subseteq Y
$$

Figure 12: Examples for a) strong union and b) weak union [CGH97, p. 186,189].

Definition 18. I is called (right-)contractable, if

$$
I(X, Y \mid Z) \text { and } I\left(X, Y^{\prime} \mid Y \cup Z\right) \Rightarrow I\left(X, Y \cup Y^{\prime} \mid Z\right)
$$

I is called (right-)intersectable, if

$$
I\left(X, Y \mid Y^{\prime} \cup Z\right) \text { and } I\left(X, Y^{\prime} \mid Y \cup Z\right) \Rightarrow I\left(X, Y \cup Y^{\prime} \mid Z\right)
$$

Figure 13: Examples for a) contraction and b) intersection [CGH97, p. 186].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 3. Separation in undirected graphs

Properties of ternary relations

Definition 19. I is called strongly transitive, if

$$
I(X, Y \mid Z) \Rightarrow I(X,\{v\} \mid Z) \text { or } I(\{v\}, Y \mid Z) \quad \forall v \in V \backslash Z
$$

I is called weakly transitive, if

$$
I(X, Y \mid Z) \text { and } I(X, Y \mid Z \cup\{v\}) \Rightarrow I(X,\{v\} \mid Z) \text { or } I(\{v\}, Y \mid Z) \quad \forall v \in V \backslash Z
$$

Figure 14: Examples for a) strong transitivity and b) weak transitivity. [CGH97, p. 189]

Definition 20. I is called chordal, if

$$
I(\{a\},\{c\} \mid\{b, d\}) \text { and } I(\{b\},\{d\} \mid\{a, c\}) \Rightarrow I(\{a\},\{c\} \mid\{b\}) \text { or } I(\{a\},\{c\} \mid\{d\})
$$

Figure 15: Example for chordality.

Bayesian Networks / 3. Separation in undirected graphs

Properties of u-separation / no chardality

For u-separation the chordality property does not hold (in general).

Figure 16: Counterexample for chordality in undirected graphs (u-separation) [CGH97, p. 189].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008
Bayesian Networks / 3. Separation in undirected graphs

To test, if for a given graph $G=(V, E)$ two given sets $X, Y \subseteq V$ of vertices are u-separated by a third given set $Z \subseteq V$ of vertices, we may use standard breadth-first search to compute all vertices that can be reached from X (see, e.g., [OW02], [CLR90]).

```
breadth-first search(G,X) :
border := X
reached :=\emptyset
while border }\not=\emptyset\underline{\mathrm{ do}
    reached := reached }\cup\mathrm{ border
    border := fan}\mp@subsup{G}{(}{(border) \ reached
od
return reached
```

Figure 17: Breadth-first search algorithm for enumerating all vertices reachable from X.

For checking u-separation we have to tweak the algorithm

1. not to add vertices from Z to the border and
2. to stop if a vertex of Y has been reached.
```
check-u-separation \((G, X, Y, Z)\) :
border :=X
reached := \(\emptyset\)
while border \(\neq \emptyset\) do
\(5 \quad\) reached \(:=\) reached \(\cup\) border
\(6 \quad\) border \(:=\operatorname{fan}_{G}\) (border) \(\backslash\) reached \(\backslash Z\)
    if border \(\cap Y \neq \emptyset\)
        return false
    fi
    od
return true
```

Figure 18: Breadth-first search algorithm for checking u-separation of X and Y by Z.

References

[BK02] Christian Borgelt and Rudolf Kruse. Graphical Models. Wiley, New York, 2002.
[CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. Expert Systems and Probabilistic Network Models. Springer, New York, 1997.
[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.
[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
[OW02] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. Spektrum Verlag, Heidelberg, 2002.

