

Bayesian Networks

II. Probabilistic Independence and Separation in Graphs

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 1/35

Bayesian Networks

1. Basic Probability Calculus

- 2. Tensor calculus for conditional probabilities
- 3. Separation in undirected graphs

Definition 1. Let Ω be a finite set. We | Lemma 1. call Ω the **sample space** and every subset $E \subseteq \Omega$ an **event**; subsets containing exactly one element, i.e.

 $E = \{e\}, \quad e \in \Omega$

are called elementary events.

A function

 $p: \mathcal{P}(\Omega) \to [0,1]$

with

1. p is additive, i.e. for disjunct $E, F \subseteq$ Ω :

$$p(E \cup F) = p(E) + p(F)$$

2. $p(\Omega) = 1$

is called probability function (axioms of probability, Kolmogorov, 1933). A pair (Ω, p) is called **probability space**.

$$p(E) = \sum_{e \in E} p(\{e\}), \quad E \subseteq \Omega$$

Example 1. Throwing a dice can be described by

$$\Omega := \{1, 2, 3, 4, 5, 6\}$$

For a fair dice we have

$$p(\{1\}) = p(\{2\} = \ldots = p(\{6\}) = \frac{1}{6}$$

Then $E = \{2\}$ is the event of dicing a 2, $F = \{2, 4, 6\}$ the event of dicing an even number.

$$p(\{2,4,6\}) = p(\{2\}) + p(\{4\}) + p(\{6\}) = \frac{1}{2}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 1/35

Bayesian Networks / 1. Basic Probability Calculus

Conditional independent events (1/2)

Definition 2. Let $E, F \subseteq \Omega$ with p(F) >0. Then

$$p(E|F) := \frac{p(E \cap F)}{p(F)}$$

is called **conditional probability** of E given F.

Two events $E, F \subseteq \Omega$ are called **inde**pendent, if

$$p(E \cap F) = p(E) \cdot p(F)$$

i.e., if p(E|F) = p(E) or p(E) = 0 or p(F) = 0.

Example 2. Let $F := \{2, 4, 6\}$ be the event of dicing an even number. Then the conditional probability

$$p(\{2\}|F) = \frac{1}{6}/\frac{1}{2} = \frac{1}{3}$$

describes the probability of dicing a 2 given we diced an even number.

Example 3. The events $E := \{2, 4, 6\}$ of dicing an even number and F := $\{1, 2, 3, 4\}$ of dicing a number less than 5 are independent as

$$p(E \cap F) = p(\{2, 4\}) = \frac{1}{3}$$
$$\stackrel{!}{=} p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{2}{3}$$

Conditional independent events (2/2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 3/35

Bayesian Networks / 1. Basic Probability Calculus

Theorem 1 (Bayes, 1763). Let $E, F \subseteq \Omega$ be two events with p(E), p(F) > 0. Then

$$p(E|F) = \frac{p(F|E) \cdot p(E)}{p(F)}$$

Let $(E_i)_{i=1,...,m}$ be a partition of Ω with $p(E_i) > 0$ for all *i*. Then

$$p(E_j|F) = \frac{p(F|E_j) \cdot p(E_j)}{\sum_{i=1}^m p(F|E_i) \cdot p(E_i)}$$

Example 5. Assign each object in fig. 1 an equal probability $\frac{1}{13}$. Let $E_1 =$ "label is one", $E_2 =$ "label is two", and F = "color is black". Then

$$p(E_1|F) = \frac{p(F|E_1)p(E_1)}{p(F|E_1)p(E_1) + p(F|E_2)p(E_2)}$$
$$= \frac{\frac{3}{5} \cdot \frac{5}{13}}{\frac{3}{5} \cdot \frac{5}{13} + \frac{6}{8} \cdot \frac{8}{13}}$$
$$= \frac{1}{3}$$

Figure 1: 13 objects with different shape, color, and label [Nea03, p. 8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 4/35

Random variables and probability distributions

Definition 5. Any function

$$X:\Omega\to X$$

is called a **random variable** (by abuse of notation we label both, the map and the target space with X).

We assign each value $x \in X$ a probability via

$$p(X = x) := p(X^{-1}(x))$$

p is called the **probability distribution** of X.

If X is numeric, e.g., $X = \mathbb{R}$, we call

$$E(X) := \sum_{x \in X} x \cdot p(x)$$

the **expected value** of X.

Example 6. Let Ω contain the outcomes of a throw of two (distinguishable) dice, i.e.

$$\Omega := \{ (1,1), (1,2), \dots, (1,6), \\ (2,1), (2,2), \dots, (6,5), (6,6) \}$$

Then the sum of the two dice,

$$\begin{array}{rccc} X: & \Omega & \to & \mathbb{N} \\ & (i,j) & \mapsto & i+j \end{array}$$

is a random variable.

The value X = 3 then represents the event $X^{-1}(3) = \{(1,2), (2,1)\}$ and thus $p(X = 3) = \frac{2}{36}$.

The expected value of X is E(X) = 7.

X	2	3	4	5	6	7	8	9	10	11	12
p(X)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 5/35

Bayesian Networks / 1. Basic Probability Calculus

Joint probability distributions

Definition 6. Let X and Y be two random variables. Then their cartesian product

$$\begin{array}{rcl} X \times Y : \ \Omega \ \rightarrow \ X \times Y \\ e \ \mapsto \ (X(e), Y(e)) \end{array}$$

is again a random variable; its distribution is called **joint probability distribution** of X and Y. **Example 7.** Let Ω be the outcomes of a throw of two dices and *X* the sum of their numbers as before. Let *Y* be

$$Y(i,j) := \begin{cases} \mathsf{odd}, & \text{ if } i \text{ and } j \text{ is odd} \\ \mathsf{even}, & \text{ if } i \text{ or } j \text{ is even} \end{cases}$$

Then the probability of

 $p(X = 4, Y = \text{odd}) = p(\{(1, 3), (3, 1)\}) = \frac{2}{36}$ In general,

$$p(X=x,Y=y)\neq p(X=x)\cdot p(Y=y)$$

as can be seen here:

$$p(X = 4) = p(\{(1,3), (3,1), (2,2)\}) = \frac{3}{36}$$

$$p(Y = \text{odd}) = \frac{9}{36}$$

Marginal probability distributions

Definition 7. Let p be a the joint probability of two random variables X and Y,

$$X \times Y : \Omega \to X \times Y$$

Then

$$p(X=x) := p^{\downarrow X}(x) := \sum_{y \in Y} p(X=x, Y=y)$$

is a probability distribution of X called **marginal probability distribution**.

Example 8. Assume the joint probability distribution of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno) given in fig. 2.

Then the marginal distribution of \boldsymbol{V} and \boldsymbol{A} is

Vomiting	Y	Ν
Adeno Y	0.350	0.350
Ν	0.090	0.210

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	Ν	Y	Ν	Y	Ν	Y	Ν
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
Ν	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 2: Joint probability distribution of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 7/35

Bayesian Networks / 1. Basic Probability Calculus

Marginal probability distributions / example

Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 8/35

Independent variables

Definition 8. Let \mathcal{X}, \mathcal{Y} be sets of vari-By abuse of notation we write ables. $\mathcal{X} = x$ for a tuple $(x_X)_{X \in \mathcal{X}}$ of values $x_X \in X$.

 \mathcal{X}, \mathcal{Y} are called independent sets of **variables**, when all pairs of events $\mathcal{X} =$ x and $\mathcal{Y} = y$ are independend, i.e.

 $p(\mathcal{X} = x, \mathcal{Y} = y) = p(\mathcal{X} = x) \cdot p(\mathcal{Y} = y)$ for all x and y or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y) = p(\mathcal{X} = x)$$

for y with $p(\mathcal{Y} = y) > 0$.

Example 9. Let Ω be the cards in an ordinary deck and

- R be the variable that is true (Y), if a card is royal,
- T be the variable that is true (Y), if a card is a ten or a jack, and
- S be the variable that is true (Y), if a card is spade.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 9/35

T

Ν

Ν

R

Y Y

Ν Y

Ν Y

Ν

3/39 = 1/13

27/39 = 9/13

p(R,T)	
4/52 = 1/13	
8/52 = 2/13	
4/52 = 1/13	

36/52 = 9/13

10/35

Conditionally independent variables

Definition 9. Let \mathcal{X}, \mathcal{Y} be sets of variables. Let \mathcal{Z} be a third set of variables. \mathcal{X}, \mathcal{Y} are called **conditionally independent sets of variables given** \mathcal{Z} , when for all events $\mathcal{Z} = z$ with $p(\mathcal{Z} = z) > 0$ all pairs of events $\mathcal{X} = x$ and $\mathcal{Y} = y$ are conditionally independend given $\mathcal{Z} = z$, i.e.

$$p(\mathcal{X}=x,\mathcal{Y}=y,\mathcal{Z}=z)=p(\mathcal{X}=x,\mathcal{Z}=z)\cdot p(\mathcal{Y}=y,\mathcal{Z}=z)/p(\mathcal{Z}=z)$$

for all x, y and z (with $p(\mathcal{Z} = z) > 0)$, or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y, \mathcal{Z} = z) = p(\mathcal{X} = x | \mathcal{Z} = z)$$

We write $I_p(\mathcal{X}, \mathcal{Y}|\mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z} .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008

Bayesian Networks / 1. Basic Probability Calculus

Conditionally independent variables

Example 10. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 4.

We show $I_p(\{L\}, \{S\}|\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	p(L C,S)			
black	square	1	2/6 = 1/3			
		2	4/6 = 2/3	C	L	p(L C)
	round	1	1/3	black	1	3/9 = 1/3
		2	2/3		2	6/9 = 2/3
white	square	1	1/2	white	1	2/4 = 1/2
		2	1/2		2	2/4 = 1/2
	round	1	1/2			
		2	1/2			

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 12/35

Chain rule

Lemma 2 (Chain rule). Let X_1, X_2, \ldots, X_n be variables. Then

 $p(X_1, X_2, \dots, X_n) = p(X_n | X_1, \dots, X_{n-1}) \cdots p(X_2 | X_1) \cdot p(X_1)$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 13/35

Bayesian Networks

1. Basic Probability Calculus

2. Tensor calculus for conditional probabilities

3. Separation in undirected graphs

Potentials

Let

 $\mathcal{X} = \{X_1, \dots, X_n\}$

be a set of sets. We call any map

$$q: X_1 \times \cdots \times X_n \to \mathbb{R}_0^+$$

a potential on \mathcal{X} and $\operatorname{dom}(q) := \mathcal{X}$ its set of domains.

A potential q can be described as ndimensional tensor indexed by the elements of the sets X_i . **Example 11.** Let p be a joint probability distribution of a set \mathcal{X} of random variables, i.e.,

$$p: X_1 \times \cdots \times X_n \to [0, 1]$$

Then p is a potential with domain \mathcal{X} .

$X_1 = P = Pain$	Y				N			
$X_2 = W = Weightloss$	Y		N		Y		N	
$X_3 = V = Vomiting$	Y	Ν	Y	Ν	Y	Ν	Y	N
$X_4 = A = $ Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
Ν	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 5: Joint probability distribution of four random variables X_1 (pain), X_2 (weightloss), X_3 (vomiting) and X_4 (adeno) as potential.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 14/35

Bayesian Networks / 2. Tensor calculus for conditional probabilities

Multiplication of potentials

Let p, q be two potentials. We define

$$\begin{array}{ccc} (p \cdot q) : & \prod_{X \in \mathrm{dom}(p) \cup \mathrm{dom}(q)} X \to \mathbb{R}^+_0 \\ & x & \mapsto \ p(\pi^{\downarrow \mathrm{dom}(p)}(x)) \cdot q(\pi^{\downarrow \mathrm{dom}(q)}(x)) \end{array}$$

Bayesian Networks / 2. Tensor calculus for conditional probabilities

Multiplication of potentials / examples (1/2)

Example 12. Let

$$p := \begin{pmatrix} 0.2\\ 0.3\\ 0.5 \end{pmatrix}, \quad q := \begin{pmatrix} 0.1\\ 0.2\\ 0.4\\ 0.3 \end{pmatrix}$$

be two vectors ("one-dimensional potentials"). Then

$$p \cdot q := \begin{pmatrix} 0.2 \cdot 0.1 & 0.2 \cdot 0.2 & 0.2 \cdot 0.4 & 0.2 \cdot 0.3 \\ 0.3 \cdot 0.1 & 0.3 \cdot 0.2 & 0.3 \cdot 0.4 & 0.3 \cdot 0.3 \\ 0.5 \cdot 0.1 & 0.5 \cdot 0.2 & 0.5 \cdot 0.4 & 0.5 \cdot 0.3 \end{pmatrix}$$

is their usual outer product.

Let

$$r := \begin{pmatrix} 0.1\\ 0.2\\ 0.4 \end{pmatrix}$$

be a third vector over the same domain as p, then

$$p \cdot r := \begin{pmatrix} 0.2 \cdot 0.1 \\ 0.3 \cdot 0.2 \\ 0.5 \cdot 0.4 \end{pmatrix}$$

is their element-wise product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008

Bayesian Networks / 2. Tensor calculus for conditional probabilities

Multiplication of potentials / examples (1/2)

Example 13. Let

$$p := \begin{pmatrix} 0.2 & 0.1 \\ 0.3 & 0.2 \\ 0.5 & 0.4 \end{pmatrix}, \quad q := \begin{pmatrix} 0.1 & 0.6 \\ 0.2 & 0.1 \\ 0.4 & 0.3 \end{pmatrix}$$

be two matrices ("two-dimensional potentials") over the same domains. Then

$$p \cdot q := \begin{pmatrix} 0.2 \cdot 0.1 & 0.1 \cdot 0.6 \\ 0.3 \cdot 0.2 & 0.2 \cdot 0.1 \\ 0.5 \cdot 0.4 & 0.4 \cdot 0.3 \end{pmatrix}$$

is their element-wise product.

Let

$$r := \begin{pmatrix} 0.1 & 0.2 & 0.4 & 0.3 \\ 0.6 & 0.1 & 0.1 & 0.2 \end{pmatrix}$$

be a third matrix that has only one domain in common with p. Then $p \cdot r$ is a three-dimensional potential, e.g.,

$$(p \cdot r)_{3,2,4} = p_{3,2} \cdot r_{2,4} = 0.4 \cdot 0.2$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 17/35

Marginalization of potentials

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 18/35

Bayesian Networks / 2. Tensor calculus for conditional probabilities

Conditioning of potentials

Definition 11. By p > 0 we mean p(x) > 0, for all $x \in \prod \text{dom}(p)$

Then p is called **non-extreme**.

For two potentials p, q with q > 0, by p/q we mean $p \cdot q^{-1}$ where

$$q^{-1}(y) := \frac{1}{q(y)}, \quad \text{for all } y \in \prod \operatorname{dom}(q)$$

For a potential p and a subset $\mathcal{Y} \subseteq dom(p)$ of its domains with $p^{\downarrow \mathcal{Y}} > 0$ we define

$$p^{|\mathcal{Y}} := \frac{p}{p^{\downarrow \mathcal{Y}}}$$

as conditioning of p at \mathcal{Y} .

A potential conditioned at \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y} , i.e., $(p^{|\mathcal{Y})}^{\downarrow \mathcal{Y}} \equiv 1$

Example 15. Let *p* be the potential

$$p := \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

on two variables R (rows) and C(columns) with the domains $dom(R) = dom(C) = \{1, 2\}.$

If we conditioning on ${\cal C}$ we get

$$p := \begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix}$$

i.e., if p is a joint probability distribution, we get the conditional probability distribution p(R|C).

Conditioning of potentials / example

Example 16. If q is another potential

$$p := \begin{pmatrix} 80 & 20\\ 40 & 60 \end{pmatrix}$$

that is not a joint probability distribution, we can **normalize** q by conditioning on \emptyset . Here

$$q^{|\emptyset} = p = \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008

Bayesian Networks / 2. Tensor calculus for conditional probabilities

Let

Chain rule revisited

Then the chain rule can be written as

 $p(X_1, X_2, \dots, X_n) = p(X_n | X_1, \dots, X_{n-1}) \cdots p(X_2 | X_1) \cdot p(X_1)$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 21/35

Variable independence revisited

Definition 12. Let p be a potential and | Let $\mathcal{Z} \subseteq \text{dom}(p)$ a third subset of its do- $\mathcal{X}, \mathcal{Y} \subseteq \operatorname{dom}(p)$ be two subsets of its domains. We call \mathcal{X} and \mathcal{Y} independent, if

$$p^{\downarrow \mathcal{X} \cup \mathcal{Y}} = p^{\downarrow \mathcal{X}} \cdot p^{\downarrow \mathcal{Y}}$$

mains. Then \mathcal{X} and \mathcal{Y} are called **condi**tionally independent given \mathcal{Z} , if

$$p^{\downarrow \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}} \cdot p^{\downarrow \mathcal{Z}} = p^{\downarrow \mathcal{X} \cup \mathcal{Z}} \cdot p^{\downarrow \mathcal{Y} \cup \mathcal{Z}}$$

or equivalently

$$p^{\downarrow \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z} \mid \mathcal{Y} \cup \mathcal{Z}} = p^{\downarrow \mathcal{X} \cup \mathcal{Z} \mid \mathcal{Z}} \cdot 1_{\mathcal{V}}$$

(for all $x \in \prod \mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}$ with $p^{\downarrow \mathcal{Y} \cup \mathcal{Z}}(\pi^{\downarrow \mathcal{Y} \cup \mathcal{Z}}(x)) > 0$).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 22/35

Bayesian Networks

1. Basic Probability Calculus

2. Tensor calculus for conditional probabilities

3. Separation in undirected graphs

Graphs

Definition 13. Let V be any set and

 $E \subseteq \mathcal{P}^2(V) := \{\{x, y\} \mid x, y \in V\}$

be a subset of sets of unordered pairs of V. Then G := (V, E) is called an **undirected graph**. The elements of V are called **vertices** or **nodes**, the elements of E edges.

Let $e = \{x, y\} \in E$ be an edge, then we call the vertices x, y **incident** to the edge e. We call two vertices $x, y \in V$ **adjacent**, if there is an edge $\{x, y\} \in E$.

The set of all vertices adjacent with a given vertex $x \in V$ is called its **fan**:

$$fan(x) := \{ y \in V \mid \{x, y\} \in E \}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 23/35

Bayesian Networks / 3. Separation in undirected graphs

Paths on graphs

Definition 14. Let V be a set. We call $V^* := \bigcup_{i \in \mathbb{N}} V^i$ the set of finite sequences in V. The length of a sequence $s \in V^*$ is denoted by |s|. Let G = (V, E) be a graph. We call $G^* := V^*_{|G} := \{ p \in V^* \mid \{ p_i, p_{i+1} \} \in E,$ Ħ $i = 1, \ldots, |p| - 1$ Figure 8: Example graph. The sequences the set of paths on G. (A, D, G, H)(C, E, B, D)Any contiguous subsequence of a path (F) $p \in G^*$ is called a **subpath of** p, i.e. any path $(p_i, p_{i+1}, \ldots, p_i)$ with $1 \le i \le j \le n$. are paths on G, but the sequences The subpath $(p_2, p_3, \ldots, p_{n-1})$ is called (A, D, E, C)the interior of p. A path of length $|p| \ge 2$ (A, H, C, F)is called **proper**.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 24/35

Separation in graphs (u-separation)

Definition 15. Let G := (V, E) be a | We write $I_G(X, Y|Z)$ for the statement, graph. Let $Z \subseteq V$ be a subset of vertices. We say, two vertices $x, y \in V$ are **separated by** Z in G, if every path from x to y contains some vertex of Z $(\forall p \in G^* : p_1 = x, p_{|p|} = y \Rightarrow \exists i \in$ $\{1, \ldots, n\} : p_i \in Z$).

Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices Xand Y are separated by Z in G, if every path from any vertex from X to any vertex from Y is separated by Z, i.e., contains some vertex of Z.

that X and Y are separated by Z in G. I_G is an example for a ternary relation on $\mathcal{P}(V)$. We call I_G the **u-separation** relation in G.

Figure 9: Example for u-separation [CGH97, p. 179].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 25/35

Bayesian Networks / 3. Separation in undirected graphs

Figure 10: More examples for u-separation [CGH97, p. 179].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 26/35 Properties of ternary relations

Definition 16. Let *V* be any set and *I* a ternary relation on $\mathcal{P}(V)$, i.e., $I \subseteq (\mathcal{P}(V))^3$.

I is called **symmetric**, if

 $I(X, Y|Z) \Rightarrow I(Y, X|Z)$

I is called (right-)decomposable, if

$$I(X,Y|Z) \Rightarrow I(X,Y'|Z) \quad \text{for any } Y' \subseteq Y$$

I is called (right-)composable, if

 $I(X,Y|Z) \text{ and } I(X,Y'|Z) \Rightarrow I(X,Y\cup Y'|Z)$

Figure 11: Examples for a) symmetry and b) decomposition [CGH97, p. 186]. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 27/35

Bayesian Networks / 3. Separation in undirected graphs

Properties of ternary relations

Definition 17. *I* is called **strongly unionable**, if

 $I(X,Y|Z) \Rightarrow I(X,Y|Z \cup Z') \quad \text{ for all } Z' \text{ disjunct with } X,Y$

I is called (right-)weakly unionable, if

 $I(X,Y|Z) \Rightarrow I(X,Y'|(Y \setminus Y') \cup Z) \quad \text{for any } Y' \subseteq Y$

Figure 12: Examples for a) strong union and b) weak union [CGH97, p. 186,189].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 28/35

Properties of ternary relations

Definition 18. I is called (right-)contractable, if

 $I(X,Y|Z) \text{ and } I(X,Y'|Y\cup Z) \Rightarrow I(X,Y\cup Y'|Z)$

I is called (right-)intersectable, if

 $I(X,Y|Y'\cup Z)$ and $I(X,Y'|Y\cup Z) \Rightarrow I(X,Y\cup Y'|Z)$

Figure 13: Examples for a) contraction and b) intersection [CGH97, p. 186].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 29/35

Bayesian Networks / 3. Separation in undirected graphs

Properties of ternary relations

Definition 19. *I* is called **strongly transitive**, if

 $I(X,Y|Z) \Rightarrow I(X,\{v\}|Z) \text{ or } I(\{v\},Y|Z) \quad \forall v \in V \setminus Z$

I is called weakly transitive, if

 $I(X,Y|Z) \text{ and } I(X,Y|Z\cup\{v\}) \Rightarrow I(X,\{v\}|Z) \text{ or } I(\{v\},Y|Z) \quad \forall v \in V \setminus Z$

Figure 14: Examples for a) strong transitivity and b) weak transitivity. [CGH97, p. 189]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 30/35

Properties of ternary relations

Definition 20. I is called chordal, if

 $I(\{a\},\{c\}|\{b,d\}) \text{ and } I(\{b\},\{d\}|\{a,c\}) \Rightarrow I(\{a\},\{c\}|\{b\}) \text{ or } I(\{a\},\{c\}|\{d\})$

Figure 15: Example for chordality.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 31/35

Bayesian Networks / 3. Separation in undirected graphs

Properties of u-separation / no chardality

For u-separation the chordality property does not hold (in general).

Figure 16: Counterexample for chordality in undirected graphs (u-separation) [CGH97, p. 189].

reached := reached \cup border

Figure 17: Breadth-first search algorithm for

enumerating all vertices reachable from X.

border := $fan_G(border) \setminus reached$

5

6

7 **od**

8 return reached

Properties of u-separation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 34/35

6

7

8

9

10 **od**

border := $fan_G(border) \setminus reached \setminus Z$

<u>if</u> border $\cap Y \neq \emptyset$

Figure 18: Breadth-first search algorithm for

return false

checking u-separation of X and Y by Z.

fi

11 return true

References

- [BK02] Christian Borgelt and Rudolf Kruse. Graphical Models. Wiley, New York, 2002.
- [CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. *Expert Systems and Probabilistic Network Models*. Springer, New York, 1997.
- [CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. *Introduction to Algorithms*. MIT Press, Cambridge, Massachusetts, 1990.
- [Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
- [OW02] Thomas Ottmann and Peter Widmayer. *Algorithmen und Datenstrukturen*. Spektrum Verlag, Heidelberg, 2002.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2008 35/35