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Joint probability distributions

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y | 0.220 0.220|0.025 0.025|0.095 0.0950.010 0.010
N|0.004 0.009 0.005 0.012]0.031 0.076|0.050 0.113

Figure 1: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weight-
loss), V' (vomiting) and A (adeno).
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Joint probability distributions

Discrete JPDs are described by
e nested tables,
e multi-dimensional arrays,
e data cubes, or
e tensors

having entries in [0, 1] and summing to 1.
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Probability spaces

Definition 1. Let (2 be a finite set. We call 2 the sam-
ple space and every subset £ C () an event; subsets
containing exactly one element, i.e.

E={e}, e€

are called elementary events.

A function
p:P(2) — [0,1]

with

1. p is additive, i.e. for disjunct £, F' C Q:
p(EUF)=p(E)+p(F)

2.p(2) =1

is called probability function (axioms of probability, Kol-
mogorov, 1933). A pair (2, p) is called probability space.
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Lemma 1.

p(B) =3 p({e}), EcQ

eel

Example 1. Throwing a dice can be described by
Q= {1,2,3,4,5,6}
For a fair dice we have
1
p({1}) =p({2} =... =p({6}) = ¢

Then E = {2} is the event of dicing a 2, ' = {2,4,6} the
event of dicing an even number.

p({2,4,6}) = p({2) + p({4)) +p({6}) = 5
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Definition 2. Let £, F' C Q with p(F') > 0. Then
- p(F)
is called conditional probability of £ given F'.

p(E|F) =p

Two events E, I' C ) are called independent, if
p(ENF)=p(E) p(F)
l.e., if p(E|F) =p(E)orp(E)=0orp(F)=0.
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Example 2. Let F' := {2,4,6} be the event of dicing an
even number. Then the conditional probability
1,1 1
MF)==/===
P{2}F) = /5 =3

describes the probability of dicing a 2 given we diced an
even number.

Example 3. The events £ := {2,4,6} of dicing an even
number and F := {1,2,3,4} of dicing a number less than
5 are independent as

pENF) = pl{24)) =
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Definition 3. Let G C ) be an event with p(G) > 0. Two
events £, F C () are called conditionally independent
given G, if

p(ENFNG)=p(ENG)-p(FNG)/pG)
e, if p(E|FNG)=p(E|G)orp(E|G) =0orp(F|G) =0.

Definition 4. A partition (E;);—1...,, of Q is also called a set

of mutually exclusive and exhaustive events, i.e.
1. E; # 0,

2. U, E; =9, and

3. E; are pairwise disjunct (i.e., E; N E; = () for ¢ # j).
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Conditional independent events / Example ey

Example 4. The events
e I :={2,4,6} of dicing an even number and
o [':={1,2,3,4,5} of dicing anything but 6
are dependent as

|

#p(E) - p(F) =

N | —
| Ot

p(ENF)=p({2,4}) =
But given the event
e G :={1,2,3,4} of dicing a number less than 5,
E and F are conditionally independent given G as

Wl =

PENFNG) =p({21}) =

Wl =
W Do

= p(ENG) - p(FNG)/p(G) =
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Definition 5. Any function
X: Q- X

is called a random variable (by abuse of notation we la-
bel both, the map and the target space with X).

We assign each value x € X a probability via

p(X =) = p(X~}(z))
p is called the probability distribution of X.

If X is numeric, e.g., X =R, we call
E(X) = Zx - p(x)
reX
the expected value of X.
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Example 5. Let () contain the outcomes of a throw of two
(distinguishable) dice, i.e.
Q={(1,1),(1,2),...,(1,6),
(2,1),(2,2),...,(6,5),(6,6)}
Then the sum of the two dice,
X: Q — N
(4,7) = i+
is a random variable.

The value X = 3 then represents the event X 1(3) =
{(1,2),(2,1)} and thus p(X =3) = 2.

The expected value of X is E(X) =T.

X 2 3 4567 89 10|11 12
T

1l 273 4795 6 514 3 12 1
p(X) 3636136 36136 36 36136 36| 36 36
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Bayesian Networks / 3. Random Variables
Joint probability distributions

Definition 6. Let X and Y be two random variables. Then
their cartesian product
XxY:Q — XxY
e — (X(e),Y(e))
is again a random variable; its distribution is called joint
probability distribution of X and Y.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Example 6. Let €2 be the outcomes of a throw of two dices
and X the sum of their numbers as before. Let Y be

Y (i, j) odd, ifiandjis odd
1 =
' even, ifiorjiseven

Then the probability of
p(X =4,Y = odd) = p({(1,3), (3, 1)}) =
In general,
pX =z,Y =y)#pX =) p(Y =y)

as can be seen here:

p(X =4) =p({(1,3),(3,1),(2,2)}) = %
p(Y =odd) = %

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Definition 7. Let p be a the joint probability of the random vari-
ables X .= {Xy,..., X,,} and Y C X a subset thereof. Then

pY=y)=pY(y) = > pX\Y=1Y=y)
redom X\Y
is a probability distribution of Y called marginal probability dis-
tribution.
Example 7. Marginal p(V, A):

Vomiting Y N
Adeno Y | 0.350 0.350

N 0.090 0.210
Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y| 0.220 0.2200.025 0.025|0.095 0.095|0.010 0.010
N 0.004 0.009 0.005 0.012/0.031 0.076/0.050 0.113

Figure 2: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weight-
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Extreme and non-extreme probability distributions
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Definition 8. By p > 0 we mean
p(z) >0, forallze Hdom(p)

Then p is called non-extreme.

Example 8.

0.4 0.0 04 0.1
(0_3 0_3) 0.2 0.3
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Definition 9. For a JPD p and a subset ) C dom(p) of its
variables with p* > 0 we define

y._ P
P =

as conditional probability distribution of p w.r.t. ).

A conditional probability distribution w.r.t. )V sums to 1 for
all fixed values of ), i.e.,

<p|y)ly =1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Example 9. Let p be the JPD

(0401
P=10203

on two variables R (rows) and C (columns) with the do-
mains dom(R) = dom(C) = {1, 2}.

The conditional probability distribution w.r.t. C' is

= ()
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Chain rule

Lemma 2 (Chain rule). Let p be a JPD on variables X, X,, ..., X,
with p(Xy,...,X,-1) > 0. Then

p<X17 X27 c v ,Xn) - p(Xn‘Xb AR 7X7l—1> o p<X2|X1> : p(X1>

The chain rule provides a factorization of the JPD in some of its
conditional marginals.

The factorizations stemming from the chain rule are trivial
as they have as many parameters as the original JPD:

#parameters = 2" 1+ 22 ... 42l 420 —9n g

(example computation for all binary variables)
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Lemma 3 (Bayes Formula). Let p be a JPD and X', be two dis-
joint sets of its variables. Letp(y) > 0. Then

Y[ X) - p(X)

p(X 1Y) =

p(Y)

Thomas Bayes (1701/2-1761)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayes formula / Example

Example 10. Assign each object in fig. 4 an equal probability 1—13
Let X be the label of the outcome (1 or 2) and
Y be the color of the outcome (black or white).

Then

p(X = 1]Y = black)
- p(Y =black| X =1)p(X =1)
~ p(Y =black| X =1)p(X =1) + p(Y = black| X = 2) p(X = 2)

3.5
__ 513 _1
3.5 4,68
st O

JIIITLYY
olajoYo

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].
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Definition 10. Two sets X', ) of variables are called inde-
pendent, when

pX=2Y=y)=pXx =x)py=y)
for all x and y or equivalently
p(X =z]Y =y) =p(X =z)
for y with p(Y = y) > 0.
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Example 11. Let Q2 be the cards in an ordinary deck and

e R =true, if a card is royal,
e T =true, if a card is a ten or a jack,
e S =true, if a card is spade.

Cards for a single color:

EEEEEEERREEE

L
ROYALS
SIR T p(R,T|S)
YYY 1/13
N 2/13 R T p(R,T)
N Y 1/13 Y Y| 4/52=1/13
N 9/13 N| 8/52=2/13
N|Y Y| 3/39=1/13 N Y| 4/52=1/13
N| 6/39=2/13 N |36/52 = 9/13
N Y 339=1/13
N|27/39 =9/13
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Conditionally independent variables

Definition 11. Let X', ), and Z be sets of variables.

X,Y are called conditionally independent given Z,

when for all events Z = z with p(Z = z) > 0 all pairs

of events X = x and Y = y are conditionally independend

given Z = z, i.e.

pX=2,Z=2)pY=y Z=2)
p(Z = z)

for all x,y and z (with p(Z = z) > 0), or equivalently
pX =2y =y, Z=2)=pX =z|Z=2)

pX=2,Y=yZ=2) =

We write I,(X, Y| Z) for the statement, that X and ) are
conditionally independent given Z.
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Example 12. Assume S (shape), C (color), and L (label) be three random variables
that are distributed as shown in figure 5.

We show I,({L},{S}/{C}), i.e., that label and shape are conditionally independent
given the color.

C S L |p(L|C,S)
black square |1 |2/6 =1/3
2| 4/6 =2/3 C |L| p(LlO)
round | 1 1/3 black | 1|3/9=1/3
2 2/3 2/6/9=2/3
white square | 1 1/2 white | 1 |2/4=1/2
2 1/2 2|2/4=1/2
round | 1 1/2
2 1/2

aaaaancee
olajoYo

Figure 5: 13 objects with different shape, color, and label [Nea03, p. 8].
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