

Bayesian Networks

1. Basic Probability Calculus

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems
& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Joint probability distributions

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	Ν	Y	Ν	Y	Ν	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 1: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Events

Discrete JPDs are described by

- nested tables,
- multi-dimensional arrays,
- data cubes, or
- tensors

having entries in [0,1] and summing to 1.

Probability spaces

Definition 1. Let Ω be a finite set. We call Ω the **sample space** and every subset $E \subseteq \Omega$ an **event**; subsets containing exactly one element, i.e.

$$E = \{e\}, e \in \Omega$$

are called elementary events.

A function

$$p: \mathcal{P}(\Omega) \to [0,1]$$

with

1. p is additive, i.e. for disjunct $E, F \subseteq \Omega$:

$$p(E \cup F) = p(E) + p(F)$$

2.
$$p(\Omega) = 1$$

is called **probability function** (axioms of probability, Kolmogorov, 1933). A pair (Ω, p) is called **probability space**.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Events

Probability spaces

Lemma 1.

$$p(E) = \sum_{e \in E} p(\{e\}), \quad E \subseteq \Omega$$

Example 1. Throwing a dice can be described by

$$\Omega := \{1, 2, 3, 4, 5, 6\}$$

For a fair dice we have

$$p(\{1\}) = p(\{2\}) = \dots = p(\{6\}) = \frac{1}{6}$$

Then $E = \{2\}$ is the event of dicing a 2, $F = \{2, 4, 6\}$ the event of dicing an even number.

$$p({2,4,6}) = p({2}) + p({4}) + p({6}) = \frac{1}{2}$$

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 5/25

Bayesian Networks / 2. Independent Events

Independent events

Definition 2. Let $E, F \subseteq \Omega$ with p(F) > 0. Then

$$p(E|F) := p^{|F|} := \frac{p(E \cap F)}{p(F)}$$

is called **conditional probability** of E given F.

Two events $E, F \subseteq \Omega$ are called **independent**, if

$$p(E \cap F) = p(E) \cdot p(F)$$

i.e., if
$$p(E|F) = p(E)$$
 or $p(E) = 0$ or $p(F) = 0$.

Independent Events / Example

Example 2. Let $F := \{2,4,6\}$ be the event of dicing an even number. Then the conditional probability

$$p({2}|F) = \frac{1}{6}/\frac{1}{2} = \frac{1}{3}$$

describes the probability of dicing a 2 given we diced an even number.

Example 3. The events $E:=\{2,4,6\}$ of dicing an even number and $F:=\{1,2,3,4\}$ of dicing a number less than 5 are independent as

$$p(E \cap F) = p(\{2, 4\}) = \frac{1}{3}$$

 $\stackrel{!}{=} p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{2}{3}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 6/25

Bayesian Networks / 2. Independent Events

Definition 3. Let $G\subseteq \Omega$ be an event with p(G)>0. Two events $E,F\subseteq \Omega$ are called **conditionally independent** given G, if

$$p(E\cap F\cap G)=p(E\cap G)\cdot p(F\cap G)/p(G)$$
 i.e., if $p(E|F\cap G)=p(E|G)$ or $p(E|G)=0$ or $p(F|G)=0$.

Definition 4. A partition $(E_i)_{i=1,...,m}$ of Ω is also called a set of mutually exclusive and exhaustive events, i.e.

- 1. $E_i \neq \emptyset$,
- 2. $\bigcup_{i=1}^m E_i = \Omega$, and
- 3. E_i are pairwise disjunct (i.e., $E_i \cap E_j = \emptyset$ for $i \neq j$).

Conditional independent events / Example

Example 4. The events

- $E := \{2, 4, 6\}$ of dicing an even number and
- $F := \{1, 2, 3, 4, 5\}$ of dicing anything but 6

are dependent as

$$p(E \cap F) = p(\{2,4\}) = \frac{1}{3} \neq p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{5}{6}$$

But given the event

• $G := \{1, 2, 3, 4\}$ of dicing a number less than 5,

E and F are conditionally independent given G as

$$p(E \cap F \cap G) = p(\{2, 4\}) = \frac{1}{3}$$

$$\stackrel{!}{=} p(E \cap G) \cdot p(F \cap G) / p(G) = \frac{1}{3} \cdot \frac{2}{3} / \frac{2}{3}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 8/25

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Random variables and probability distributions

Definition 5. Any function

$$X:\Omega\to X$$

is called a **random variable** (by abuse of notation we label both, the map and the target space with X).

We assign each value $x \in X$ a probability via

$$p(X = x) := p(X^{-1}(x))$$

p is called the **probability distribution of** X.

If X is numeric, e.g., $X = \mathbb{R}$, we call

$$E(X) := \sum_{x \in X} x \cdot p(x)$$

the **expected value** of X.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 9/25

Bayesian Networks / 3. Random Variables

Random variables and probability distributions

Example 5. Let Ω contain the outcomes of a throw of two (distinguishable) dice, i.e.

$$\Omega := \{(1,1), (1,2), \dots, (1,6), (2,1), (2,2), \dots, (6,5), (6,6)\}$$

Then the sum of the two dice,

$$X: \Omega \to \mathbb{N}$$

 $(i,j) \mapsto i+j$

is a random variable.

The value X=3 then represents the event $X^{-1}(3)=\{(1,2),(2,1)\}$ and thus $p(X=3)=\frac{2}{36}$.

The expected value of X is E(X) = 7.

X	2	3	4	5	6	7	8	9	10	11	12
p(X)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Joint probability distributions

Definition 6. Let X and Y be two random variables. Then their cartesian product

$$X \times Y : \Omega \to X \times Y$$

 $e \mapsto (X(e), Y(e))$

is again a random variable; its distribution is called **joint probability distribution** of X and Y.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. Random Variables

Joint probability distributions

Example 6. Let Ω be the outcomes of a throw of two dices and X the sum of their numbers as before. Let Y be

$$Y(i,j) := \begin{cases} \mathsf{odd}, & \text{if } i \text{ and } j \text{ is odd} \\ \mathsf{even}, & \text{if } i \text{ or } j \text{ is even} \end{cases}$$

Then the probability of

$$p(X = 4, Y = \text{odd}) = p(\{(1, 3), (3, 1)\}) = \frac{2}{36}$$

In general,

$$p(X=x,Y=y) \neq p(X=x) \cdot p(Y=y)$$

as can be seen here:

$$p(X=4)=p(\{(1,3),(3,1),(2,2)\})=\frac{3}{36}$$

$$p(Y=\mathrm{odd})=\frac{9}{36}$$

Marginal probability distributions

Definition 7. Let p be a the joint probability of the random variables $\mathcal{X} := \{X_1, \dots, X_n\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$p(\mathcal{Y} = y) := p^{\downarrow \mathcal{Y}}(y) := \sum_{x \in \text{dom } \mathcal{X} \setminus \mathcal{Y}} p(\mathcal{X} \setminus \mathcal{Y} = x, \mathcal{Y} = y)$$

is a probability distribution of $\mathcal Y$ called **marginal probability distribution**.

Example 7. Marginal p(V, A):

Vomiting	Y	Ν
Adeno Y	0.350	0.350
N	0.090	0.210

Pain	Y				N			
Weightloss	Y		N		Υ		N	
Vomiting	Y	Ν	Y	Ν	Υ	Ν	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 2: Joint probability distribution p(P,W,V,A) of four random variables P (pain), W (weight-

loss), V (vomiting) and A (adeno).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. Random Variables

7 Sunting Social Property of the Property of t

Marginal probability distributions / example

Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].

Extreme and non-extreme probability distributions

Definition 8. By p > 0 we mean

$$p(x) > 0$$
, for all $x \in \prod dom(p)$

Then p is called **non-extreme**.

Example 8.

$$\begin{pmatrix} 0.4 & 0.0 \\ 0.3 & 0.3 \end{pmatrix}$$

$$\begin{pmatrix}
0.4 & 0.1 \\
0.2 & 0.3
\end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. Random Variables

Conditional probability distributions

Definition 9. For a JPD p and a subset $\mathcal{Y} \subseteq \text{dom}(p)$ of its variables with $p^{\downarrow \mathcal{Y}} > 0$ we define

$$p^{\mid \mathcal{Y}} := \frac{p}{p^{\downarrow \mathcal{Y}}}$$

as conditional probability distribution of p w.r.t. \mathcal{Y} .

A conditional probability distribution w.r.t. \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y} , i.e.,

$$(p^{|\mathcal{Y}})^{\downarrow\mathcal{Y}} \equiv 1$$

Conditional probability distributions / example

Example 9. Let p be the JPD

$$p := \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

on two variables R (rows) and C (columns) with the domains $dom(R) = dom(C) = \{1, 2\}$.

The conditional probability distribution w.r.t. C is

$$p^{|C} := \begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Chain rule

Lemma 2 (Chain rule). Let p be a JPD on variables X_1, X_2, \ldots, X_n with $p(X_1, \ldots, X_{n-1}) > 0$. Then

$$p(X_1, X_2, \dots, X_n) = p(X_n | X_1, \dots, X_{n-1}) \cdots p(X_2 | X_1) \cdot p(X_1)$$

The chain rule provides a **factorization** of the JPD in some of its conditional marginals.

The factorizations stemming from the chain rule are trivial as they have as many parameters as the original JPD:

#parameters =
$$2^{n-1} + 2^{n-2} + \cdots + 2^1 + 2^0 = 2^n - 1$$

(example computation for all binary variables)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 4. Chain Rule and Bayes Formula

7) Sunting 2003

Bayes formula

Lemma 3 (Bayes Formula). Let p be a JPD and \mathcal{X}, \mathcal{Y} be two disjoint sets of its variables. Let $p(\mathcal{Y}) > 0$. Then

$$p(\mathcal{X} \mid \mathcal{Y}) = \frac{p(\mathcal{Y} \mid \mathcal{X}) \cdot p(\mathcal{X})}{p(\mathcal{Y})}$$

Thomas Bayes (1701/2–1761)

Bayes formula / Example

Example 10. Assign each object in fig. 4 an equal probability $\frac{1}{13}$. Let X be the label of the outcome (1 or 2) and Y be the color of the outcome (black or white).

Then

$$\begin{split} p(X = 1 | Y = \mathsf{black}) \\ &= \frac{p(Y = \mathsf{black} | X = 1) \, p(X = 1)}{p(Y = \mathsf{black} | X = 1) \, p(X = 1) + p(Y = \mathsf{black} | X = 2) \, p(X = 2)} \\ &= \frac{\frac{3}{5} \cdot \frac{5}{13}}{\frac{3}{5} \cdot \frac{5}{13} + \frac{6}{8} \cdot \frac{8}{13}} = \frac{1}{3} \end{split}$$

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 20/25

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Independent variables

Definition 10. Two sets \mathcal{X}, \mathcal{Y} of variables are called **independent**, when

$$p(\mathcal{X} = x, \mathcal{Y} = y) = p(\mathcal{X} = x) \cdot p(\mathcal{Y} = y)$$

for all x and y or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y) = p(\mathcal{X} = x)$$

for y with $p(\mathcal{Y} = y) > 0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 5. Independent Random Variables

Independent variables / example

Example 11. Let Ω be the cards in an ordinary deck and

- R = true, if a card is royal,
- \bullet T = true, if a card is a ten or a jack,
- \bullet S =true, if a card is spade.

Cards for a single color:

$\mid S \mid$	R	T	p(R,T S)
Y	Υ	Υ	1/13
		Ν	2/13
	N	Υ	1/13
		Ν	9/13
N	Υ	Υ	3/39 = 1/13
		Ν	6/39 = 2/13
	N	Υ	3/39 = 1/13
		Ν	27/39 = 9/13

R	T	p(R,T)
Υ	Υ	4/52 = 1/13
	Ν	8/52 = 2/13
Ν	Υ	4/52 = 1/13
	N	36/52 = 9/13

Conditionally independent variables

Definition 11. Let \mathcal{X}, \mathcal{Y} , and \mathcal{Z} be sets of variables.

 \mathcal{X},\mathcal{Y} are called **conditionally independent given** \mathcal{Z} , when for all events $\mathcal{Z}=z$ with $p(\mathcal{Z}=z)>0$ all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are conditionally independend given $\mathcal{Z}=z$, i.e.

$$p(\mathcal{X}=x,\mathcal{Y}=y,\mathcal{Z}=z) = \frac{p(\mathcal{X}=x,\mathcal{Z}=z) \cdot p(\mathcal{Y}=y,\mathcal{Z}=z)}{p(\mathcal{Z}=z)}$$

for all x, y and z (with $p(\mathcal{Z} = z) > 0$), or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y, \mathcal{Z} = z) = p(\mathcal{X} = x | \mathcal{Z} = z)$$

We write $I_p(\mathcal{X}, \mathcal{Y}|\mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z} .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 23/25

Bayesian Networks / 5. Independent Random Variables

Conditionally independent variables / Example

Example 12. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 5.

We show $I_p(\{L\}, \{S\}|\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	p(L C,S)
black	square	1	2/6 = 1/3
		2	4/6 = 2/3
	round	1	1/3
		2	2/3
white	square	1	1/2
		2	1/2
	round	1	1/2
		2	1/2

C	L	p(L C)
black	1	3/9 = 1/3
	2	6/9 = 2/3
white	1	2/4 = 1/2
	2	2/4 = 1/2

Figure 5: 13 objects with different shape, color, and label [Nea03, p. 8].

References

[BK02] Christian Borgelt and Rudolf Kruse. *Graphical Models*. Wiley, New York, 2002. [Nea03] Richard E. Neapolitan. *Learning Bayesian Networks*. Prentice Hall, 2003.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010