Bayesian Networks

1. Basic Probability Calculus

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems
& Institute for Computer Science
University of Hildesheim
http://www.isml.uni-hildesheim.de

1. Events
2. Independent Events
3. Random Variables
4. Chain Rule and Bayes Formula
5. Independent Random Variables
Joint probability distributions

Discrete JPDs are described by

- nested tables,
- multi-dimensional arrays,
- data cubes, or
- tensors

having entries in \([0, 1]\) and summing to 1.

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Weightloss</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Adeno</td>
<td>0.220</td>
<td>0.220</td>
<td>0.025</td>
<td>0.025</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td>0.009</td>
<td>0.005</td>
<td>0.012</td>
<td>0.031</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>0.010</td>
<td>0.050</td>
<td>0.113</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Joint probability distribution \(p(P, W, V, A)\) of four random variables \(P\) (pain), \(W\) (weight-loss), \(V\) (vomiting) and \(A\) (adeno).
Probability spaces

Definition 1. Let Ω be a finite set. We call Ω the **sample space** and every subset $E \subseteq \Omega$ an **event**; subsets containing exactly one element, i.e.

$$E = \{e\}, \quad e \in \Omega$$

are called **elementary events**.

A function

$$p: \mathcal{P}(\Omega) \to [0, 1]$$

with

1. p is additive, i.e. for disjunct $E, F \subseteq \Omega$:

$$p(E \cup F) = p(E) + p(F)$$

2. $p(\Omega) = 1$

is called **probability function** (axioms of probability, Kolmogorov, 1933). A pair (Ω, p) is called **probability space**.

Lemma 1.

$$p(E) = \sum_{e \in E} p(\{e\}), \quad E \subseteq \Omega$$

Example 1. Throwing a dice can be described by

$$\Omega := \{1, 2, 3, 4, 5, 6\}$$

For a fair dice we have

$$p(\{1\}) = p(\{2\}) = \ldots = p(\{6\}) = \frac{1}{6}$$

Then $E = \{2\}$ is the event of dicing a 2, $F = \{2, 4, 6\}$ the event of dicing an even number.

$$p(\{2, 4, 6\}) = p(\{2\}) + p(\{4\}) + p(\{6\}) = \frac{1}{2}$$
1. Events

2. Independent Events

3. Random Variables

4. Chain Rule and Bayes Formula

5. Independent Random Variables

Independent events

Definition 2. Let $E, F \subseteq \Omega$ with $p(F) > 0$. Then

$$p(E|F) := p^F := \frac{p(E \cap F)}{p(F)}$$

is called **conditional probability** of E given F.

Two events $E, F \subseteq \Omega$ are called **independent**, if

$$p(E \cap F) = p(E) \cdot p(F)$$

i.e., if $p(E|F) = p(E)$ or $p(E) = 0$ or $p(F) = 0$.
Independent Events / Example

Example 2. Let $F := \{2, 4, 6\}$ be the event of dicing an even number. Then the conditional probability

$$p(\{2\}|F) = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{3}$$

describes the probability of dicing a 2 given we diced an even number.

Example 3. The events $E := \{2, 4, 6\}$ of dicing an even number and $F := \{1, 2, 3, 4\}$ of dicing a number less than 5 are independent as

$$p(E \cap F) = p(\{2, 4\}) = \frac{1}{3}$$

$$p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{2}{3}$$

Conditional independent events

Definition 3. Let $G \subseteq \Omega$ be an event with $p(G) > 0$. Two events $E, F \subseteq \Omega$ are called **conditionally independent** given G, if

$$p(E \cap F \cap G) = p(E \cap G) \cdot p(F \cap G)/p(G)$$

i.e., if $p(E|F \cap G) = p(E|G)$ or $p(E|G) = 0$ or $p(F|G) = 0$.

Definition 4. A partition $(E_i)_{i=1,...,m}$ of Ω is also called a set of mutually exclusive and exhaustive events, i.e.

1. $E_i \neq \emptyset$,
2. $\bigcup_{i=1}^{m} E_i = \Omega$, and
3. E_i are pairwise disjunct (i.e., $E_i \cap E_j = \emptyset$ for $i \neq j$).
Example 4. The events

- \(E := \{2, 4, 6\} \) of dicing an even number and
- \(F := \{1, 2, 3, 4, 5\} \) of dicing anything but 6

are dependent as

\[
p(E \cap F) = p(\{2, 4\}) = \frac{1}{3} \neq p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{5}{6}
\]

But given the event

- \(G := \{1, 2, 3, 4\} \) of dicing a number less than 5,

\(E \) and \(F \) are conditionally independent given \(G \) as

\[
p(E \cap F \cap G) = p(\{2, 4\}) = \frac{1}{3}
\]

\[
\Rightarrow p(E \cap G) \cdot p(F \cap G) / p(G) = \frac{1}{3} \cdot \frac{2}{3} / \frac{2}{3}
\]
Definition 5. Any function

\[X : \Omega \rightarrow X \]

is called a **random variable** (by abuse of notation we label both, the map and the target space with \(X \)).

We assign each value \(x \in X \) a probability via

\[p(X = x) := p(X^{-1}(x)) \]

\(p \) is called the **probability distribution of** \(X \).

If \(X \) is numeric, e.g., \(X = \mathbb{R} \), we call

\[E(X) := \sum_{x \in X} x \cdot p(x) \]

the **expected value** of \(X \).

Example 5. Let \(\Omega \) contain the outcomes of a throw of two (distinguishable) dice, i.e.

\[\Omega := \{(1,1), (1,2), \ldots, (1,6), \\
(2,1), (2,2), \ldots, (6,5), (6,6)\} \]

Then the sum of the two dice,

\[X : \Omega \rightarrow \mathbb{N} \\
(i,j) \mapsto i + j \]

is a random variable.

The value \(X = 3 \) then represents the event \(X^{-1}(3) = \{(1,2), (2,1)\} \) and thus \(p(X = 3) = \frac{2}{36} \).

The expected value of \(X \) is \(E(X) = 7 \).
Joint probability distributions

Definition 6. Let X and Y be two random variables. Then their cartesian product

$$X \times Y : \Omega \rightarrow X \times Y$$

$$e \mapsto (X(e), Y(e))$$

is again a random variable; its distribution is called **joint probability distribution** of X and Y.

Example 6. Let Ω be the outcomes of a throw of two dices and X the sum of their numbers as before. Let Y be

$$Y(i, j) := \begin{cases}
\text{odd,} & \text{if } i \text{ and } j \text{ is odd} \\
\text{even,} & \text{if } i \text{ or } j \text{ is even}
\end{cases}$$

Then the probability of

$$p(X = 4, Y = \text{odd}) = p(\{(1, 3), (3, 1)\}) = \frac{2}{36}$$

In general,

$$p(X = x, Y = y) \neq p(X = x) \cdot p(Y = y)$$

as can be seen here:

$$p(X = 4) = p(\{(1, 3), (3, 1), (2, 2)\}) = \frac{3}{36}$$

$$p(Y = \text{odd}) = \frac{9}{36}$$
Marginal probability distributions

Definition 7. Let p be the joint probability of the random variables $\mathcal{X} := \{X_1, \ldots, X_n\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$p(\mathcal{Y} = y) := p^{\downarrow \mathcal{Y}}(y) := \sum_{x \in \text{dom} \mathcal{X} \setminus \mathcal{Y}} p(\mathcal{X} \setminus \mathcal{Y} = x, \mathcal{Y} = y)$$

is a probability distribution of \mathcal{Y} called marginal probability distribution.

Example 7. Marginal $p(V, A)$:

<table>
<thead>
<tr>
<th>Vomiting</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adeno</td>
<td>0.350</td>
<td>0.350</td>
</tr>
<tr>
<td>N</td>
<td>0.090</td>
<td>0.210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pain</th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.220</td>
<td>0.220</td>
<td>0.025</td>
<td>0.025</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td>N</td>
<td>0.004</td>
<td>0.009</td>
<td>0.005</td>
<td>0.012</td>
<td>0.031</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Figure 2: Joint probability distribution $p(P, W, V, A)$ of four random variables P (pain), W (weight-loss), V (vomiting) and A (adeno).

Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].
Extreme and non-extreme probability distributions

Definition 8. By \(p > 0 \) we mean

\[
p(x) > 0, \quad \text{for all } x \in \prod \text{dom}(p)
\]

Then \(p \) is called **non-extreme**.

Example 8.

\[
\begin{pmatrix}
0.4 & 0.0 \\
0.3 & 0.3
\end{pmatrix}
\quad \quad \quad \quad \quad \quad
\begin{pmatrix}
0.4 & 0.1 \\
0.2 & 0.3
\end{pmatrix}
\]

Conditional probability distributions

Definition 9. For a JPD \(p \) and a subset \(\mathcal{Y} \subseteq \text{dom}(p) \) of its variables with \(p|_{\mathcal{Y}} > 0 \) we define

\[
p|_{\mathcal{Y}} := \frac{p}{p|_{\mathcal{Y}}}
\]

as **conditional probability distribution of** \(p \) w.r.t. \(\mathcal{Y} \).

A conditional probability distribution w.r.t. \(\mathcal{Y} \) sums to 1 for all fixed values of \(\mathcal{Y} \), i.e.,

\[
(p|_{\mathcal{Y}})|_{\mathcal{Y}} \equiv 1
\]
Example 9. Let p be the JPD

$$p := \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

on two variables R (rows) and C (columns) with the domains $\text{dom}(R) = \text{dom}(C) = \{1, 2\}$.

The conditional probability distribution w.r.t. C is

$$p|C := \begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix}$$
Lemma 2 (Chain rule). Let p be a JPD on variables X_1, X_2, \ldots, X_n with $p(X_1, \ldots, X_{n-1}) > 0$. Then

$$p(X_1, X_2, \ldots, X_n) = p(X_n|X_1, \ldots, X_{n-1}) \cdot \cdots \cdot p(X_2|X_1) \cdot p(X_1)$$

The chain rule provides a **factorization** of the JPD in some of its conditional marginals.

The factorizations stemming from the chain rule are trivial as they have as many parameters as the original JPD:

$$\# \text{parameters} = 2^{n-1} + 2^{n-2} + \cdots + 2^1 + 2^0 = 2^n - 1$$

(example computation for all binary variables)

Lemma 3 (Bayes Formula). Let p be a JPD and \mathcal{X}, \mathcal{Y} be two disjoint sets of its variables. Let $p(\mathcal{Y}) > 0$. Then

$$p(\mathcal{X} | \mathcal{Y}) = \frac{p(\mathcal{Y} | \mathcal{X}) \cdot p(\mathcal{X})}{p(\mathcal{Y})}$$

Thomas Bayes (1701/2–1761)
Example 10. Assign each object in fig. 4 an equal probability $\frac{1}{13}$. Let X be the label of the outcome (1 or 2) and Y be the color of the outcome (black or white).

Then

$$p(X = 1 | Y = \text{black}) = \frac{p(Y = \text{black} | X = 1) p(X = 1)}{p(Y = \text{black} | X = 1) p(X = 1) + p(Y = \text{black} | X = 2) p(X = 2)}$$

$$= \frac{\frac{3}{5} \cdot \frac{5}{13}}{\frac{3}{5} \cdot \frac{5}{13} + \frac{6}{8} \cdot \frac{8}{13}} = \frac{1}{3}$$

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].
Definition 10. Two sets \mathcal{X}, \mathcal{Y} of variables are called independent, when

$$p(\mathcal{X} = x, \mathcal{Y} = y) = p(\mathcal{X} = x) \cdot p(\mathcal{Y} = y)$$

for all x and y or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y) = p(\mathcal{X} = x)$$

for y with $p(\mathcal{Y} = y) > 0$.

Example 11. Let Ω be the cards in an ordinary deck and

- $R = \text{true}$, if a card is royal,
- $T = \text{true}$, if a card is a ten or a jack,
- $S = \text{true}$, if a card is spade.

Cards for a single color:

2 3 4 5 6 7 8 9 10 J Q K A

| S | R | T | $p(R, T | S)$ |
|-----|-----|-----|-------------|
| Y | Y | Y | 1/13 |
| | N | | 2/13 |
| N | Y | | 1/13 |
| | N | | 9/13 |
| N | Y | Y | 3/39 = 1/13 |
| | N | | 6/39 = 2/13 |
| N | Y | | 3/39 = 1/13 |
| | N | | 27/39 = 9/13 |

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$p(R, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>4/52 = 1/13</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>8/52 = 2/13</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>4/52 = 1/13</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>36/52 = 9/13</td>
</tr>
</tbody>
</table>
Definition 11. Let X, Y, and Z be sets of variables.

X, Y are called **conditionally independent given** Z, when for all events $Z = z$ with $p(Z = z) > 0$ all pairs of events $X = x$ and $Y = y$ are conditionally independent given $Z = z$, i.e.

$$p(X = x, Y = y, Z = z) = \frac{p(X = x, Z = z) \cdot p(Y = y, Z = z)}{p(Z = z)}$$

for all x, y and z (with $p(Z = z) > 0$), or equivalently

$$p(X = x|Y = y, Z = z) = p(X = x|Z = z)$$

We write $I_p(X, Y|Z)$ for the statement, that X and Y are conditionally independent given Z.

Example 12. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 5.

We show $I_p(\{L\}, \{S\}|\{C\})$, i.e., that label and shape are conditionally independent given the color.

| C | S | L | $p(L|C, S)$ |
|---------|---------|-----|-------------|
| black | square | 1 | 2/6 = 1/3 |
| | | 2 | 4/6 = 2/3 |
| round | 1 | | 1/3 |
| | 2 | | 2/3 |
| white | square | 1 | 1/2 |
| | | 2 | 1/2 |
| round | 1 | | 1/2 |
| | 2 | | 1/2 |

| C | L | $p(L|C)$ |
|-----|-----|----------|
| black | 1 | 3/9 = 1/3 |
| | 2 | 6/9 = 2/3 |
| white | 1 | 2/4 = 1/2 |
| | 2 | 2/4 = 1/2 |

Figure 5: 13 objects with different shape, color, and label [Nea03, p. 8].
References
