Bayesian Networks

1. Basic Probability Calculus

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems
\& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Events

2. Independent Events

3. Random Variables

4. Chain Rule and Bayes Formula

5. Independent Random Variables

PainWeightloss	Y				N			
	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 1: Joint probability distribution $p(P, W, V, A)$ of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Discrete JPDs are described by

- nested tables,
- multi-dimensional arrays,
- data cubes, or
- tensors
having entries in $[0,1]$ and summing to 1 .

Definition 1. Let Ω be a finite set. We call Ω the sample space and every subset $E \subseteq \Omega$ an event; subsets containing exactly one element, i.e.

$$
E=\{e\}, \quad e \in \Omega
$$

are called elementary events.
A function

$$
p: \mathcal{P}(\Omega) \rightarrow[0,1]
$$

with

1. p is additive, i.e. for disjunct $E, F \subseteq \Omega$:

$$
p(E \cup F)=p(E)+p(F)
$$

2. $p(\Omega)=1$
is called probability function (axioms of probability, Kolmogorov, 1933). A pair (Ω, p) is called probability space.

Lemma 1.

$$
p(E)=\sum_{e \in E} p(\{e\}), \quad E \subseteq \Omega
$$

Example 1. Throwing a dice can be described by

$$
\Omega:=\{1,2,3,4,5,6\}
$$

For a fair dice we have

$$
p(\{1\})=p\left(\{2\}=\ldots=p(\{6\})=\frac{1}{6}\right.
$$

Then $E=\{2\}$ is the event of dicing a 2, $F=\{2,4,6\}$ the event of dicing an even number.

$$
p(\{2,4,6\})=p(\{2\})+p(\{4\})+p(\{6\})=\frac{1}{2}
$$

1. Events

2. Independent Events

3. Random Variables

4. Chain Rule and Bayes Formula

5. Independent Random Variables

Definition 2. Let $E, F \subseteq \Omega$ with $p(F)>0$. Then

$$
p(E \mid F):=p^{\mid F}:=\frac{p(E \cap F)}{p(F)}
$$

is called conditional probability of E given F.

Two events $E, F \subseteq \Omega$ are called independent, if

$$
p(E \cap F)=p(E) \cdot p(F)
$$

i.e., if $p(E \mid F)=p(E)$ or $p(E)=0$ or $p(F)=0$.

Example 2. Let $F:=\{2,4,6\}$ be the event of dicing an even number. Then the conditional probability

$$
p(\{2\} \mid F)=\frac{1}{6} / \frac{1}{2}=\frac{1}{3}
$$

describes the probability of dicing a 2 given we diced an even number.

Example 3. The events $E:=\{2,4,6\}$ of dicing an even number and $F:=\{1,2,3,4\}$ of dicing a number less than 5 are independent as

$$
\begin{aligned}
p(E \cap F) & =p(\{2,4\})=\frac{1}{3} \\
& \stackrel{!}{=} p(E) \cdot p(F)=\frac{1}{2} \cdot \frac{2}{3}
\end{aligned}
$$

Definition 3. Let $G \subseteq \Omega$ be an event with $p(G)>0$. Two events $E, F \subseteq \Omega$ are called conditionally independent given G, if

$$
p(E \cap F \cap G)=p(E \cap G) \cdot p(F \cap G) / p(G)
$$

i.e., if $p(E \mid F \cap G)=p(E \mid G)$ or $p(E \mid G)=0$ or $p(F \mid G)=0$.

Definition 4. A partition $\left(E_{i}\right)_{i=1, \ldots, m}$ of Ω is also called a set of mutually exclusive and exhaustive events, i.e.

1. $E_{i} \neq \emptyset$,
2. $\bigcup_{i=1}^{m} E_{i}=\Omega$, and
3. E_{i} are pairwise disjunct (i.e., $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$).

Example 4. The events

- $E:=\{2,4,6\}$ of dicing an even number and
- $F:=\{1,2,3,4,5\}$ of dicing anything but 6
are dependent as

$$
p(E \cap F)=p(\{2,4\})=\frac{1}{3} \neq p(E) \cdot p(F)=\frac{1}{2} \cdot \frac{5}{6}
$$

But given the event

- $G:=\{1,2,3,4\}$ of dicing a number less than 5 ,
E and F are conditionally independent given G as

$$
\begin{aligned}
p(E \cap F \cap G) & =p(\{2,4\})=\frac{1}{3} \\
& \stackrel{!}{=} p(E \cap G) \cdot p(F \cap G) / p(G)=\frac{1}{3} \cdot \frac{2}{3} / \frac{2}{3}
\end{aligned}
$$

1. Events

2. Independent Events

3. Random Variables

4. Chain Rule and Bayes Formula

5. Independent Random Variables

2003

Definition 5. Any function

$$
X: \Omega \rightarrow X
$$

is called a random variable (by abuse of notation we label both, the map and the target space with X).

We assign each value $x \in X$ a probability via

$$
p(X=x):=p\left(X^{-1}(x)\right)
$$

p is called the probability distribution of X.
If X is numeric, e.g., $X=\mathbb{R}$, we call

$$
E(X):=\sum_{x \in X} x \cdot p(x)
$$

the expected value of X.

Example 5. Let Ω contain the outcomes of a throw of two (distinguishable) dice, i.e.

$$
\begin{aligned}
\Omega:=\{ & (1,1),(1,2), \ldots,(1,6), \\
& (2,1),(2,2), \ldots,(6,5),(6,6)\}
\end{aligned}
$$

Then the sum of the two dice,

$$
\begin{aligned}
X: \quad & \rightarrow \mathbb{N} \\
(i, j) & \mapsto i+j
\end{aligned}
$$

is a random variable.
The value $X=3$ then represents the event $X^{-1}(3)=$ $\{(1,2),(2,1)\}$ and thus $p(X=3)=\frac{2}{36}$.

The expected value of X is $E(X)=7$.

X	2	3	4	5	6	7	8	9	10	11	12
$p(X)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

2003

Definition 6. Let X and Y be two random variables. Then their cartesian product

$$
\begin{aligned}
X \times Y: \Omega & \rightarrow X \times Y \\
e & \mapsto(X(e), Y(e))
\end{aligned}
$$

is again a random variable; its distribution is called joint probability distribution of X and Y.

Example 6. Let Ω be the outcomes of a throw of two dices and X the sum of their numbers as before. Let Y be

$$
Y(i, j):= \begin{cases}\text { odd, } & \text { if } i \text { and } j \text { is odd } \\ \text { even, } & \text { if } i \text { or } j \text { is even }\end{cases}
$$

Then the probability of

$$
p(X=4, Y=\text { odd })=p(\{(1,3),(3,1)\})=\frac{2}{36}
$$

In general,

$$
p(X=x, Y=y) \neq p(X=x) \cdot p(Y=y)
$$

as can be seen here:

$$
\begin{aligned}
p(X=4) & =p(\{(1,3),(3,1),(2,2)\})=\frac{3}{36} \\
p(Y=\text { odd }) & =\frac{9}{36}
\end{aligned}
$$

Definition 7. Let p be a the joint probability of the random variables $\mathcal{X}:=\left\{X_{1}, \ldots, X_{n}\right\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$
p(\mathcal{Y}=y):=p^{\downarrow \mathcal{Y}}(y):=\sum_{x \in \operatorname{dom} \mathcal{X} \backslash \mathcal{Y}} p(\mathcal{X} \backslash \mathcal{Y}=x, \mathcal{Y}=y)
$$

is a probability distribution of \mathcal{Y} called marginal probability distribution.

Example 7. Marginal $p(V, A)$:

Vomiting	Y	N
Adeno Y	0.350	0.350
N	0.090	0.210

Pain	Y			N			
Weightloss	Y		N		Y	N	
Vomiting	Y	N	Y	N	Y	N	Y
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010
N	0.010						
	0.004	0.009	0.005	0.012	0.031	0.076	0.050

Figure 2: Joint probability distribution $p(P, W, V, A)$ of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. Random Variables
Marginal probability distributions / example

Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].

Definition 8. By $p>0$ we mean

$$
p(x)>0, \quad \text { for all } x \in \prod \operatorname{dom}(p)
$$

Then p is called non-extreme.

Example 8.

$$
\left(\begin{array}{ll}
0.4 & 0.0 \\
0.3 & 0.3
\end{array}\right)
$$

$\left(\begin{array}{ll}0.4 & 0.1 \\ 0.2 & 0.3\end{array}\right)$

Definition 9. For a JPD p and a subset $\mathcal{Y} \subseteq \operatorname{dom}(p)$ of its variables with $p^{\perp \mathcal{V}}>0$ we define

$$
p^{\mid \mathcal{Y}}:=\frac{p}{p^{\mathfrak{V}}}
$$

as conditional probability distribution of p w.r.t. \mathcal{Y}.

A conditional probability distribution w.r.t. \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y}, i.e.,

$$
\left(p^{\mid \mathcal{Y}}\right)^{\downarrow \mathcal{Y}} \equiv 1
$$

Example 9. Let p be the JPD

$$
p:=\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)
$$

on two variables R (rows) and C (columns) with the domains $\operatorname{dom}(R)=\operatorname{dom}(C)=\{1,2\}$.

The conditional probability distribution w.r.t. C is

$$
p^{\mid C}:=\left(\begin{array}{ll}
2 / 3 & 1 / 4 \\
1 / 3 & 3 / 4
\end{array}\right)
$$

1. Events

2. Independent Events

3. Random Variables

4. Chain Rule and Bayes Formula

5. Independent Random Variables

Lemma 2 (Chain rule). Let p be a JPD on variables $X_{1}, X_{2}, \ldots, X_{n}$ with $p\left(X_{1}, \ldots, X_{n-1}\right)>0$. Then

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \cdots p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

The chain rule provides a factorization of the JPD in some of its conditional marginals.

The factorizations stemming from the chain rule are trivial as they have as many parameters as the original JPD:

$$
\text { \#parameters }=2^{n-1}+2^{n-2}+\cdots+2^{1}+2^{0}=2^{n}-1
$$

(example computation for all binary variables)

Lemma 3 (Bayes Formula). Let p be a JPD and \mathcal{X}, \mathcal{Y} be two disjoint sets of its variables. Let $p(\mathcal{Y})>0$. Then

$$
p(\mathcal{X} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathcal{X}) \cdot p(\mathcal{X})}{p(\mathcal{Y})}
$$

Thomas Bayes (1701/2-1761)

Example 10. Assign each object in fig. 4 an equal probability $\frac{1}{13}$.
Let X be the label of the outcome (1 or 2) and Y be the color of the outcome (black or white).

Then

$$
\begin{array}{rl}
p(X=1 \mid Y & =\text { black }) \\
& =\frac{p(Y=\text { black } \mid X=1) p(X=1)}{p(Y=\text { black } \mid X=1) p(X=1)+p(Y=\text { black } \mid X=2) p(X=2)} \\
& =\frac{\frac{3}{5} \cdot \frac{5}{13}}{\frac{3}{5} \cdot \frac{5}{13}+\frac{6}{8} \cdot \frac{8}{13}}=\frac{1}{3} \\
1 & 1
\end{array}
$$

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

1. Events

2. Independent Events

3. Random Variables

4. Chain Rule and Bayes Formula

5. Independent Random Variables

Definition 10. Two sets \mathcal{X}, \mathcal{Y} of variables are called independent, when

$$
p(\mathcal{X}=x, \mathcal{Y}=y)=p(\mathcal{X}=x) \cdot p(\mathcal{Y}=y)
$$

for all x and y or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y)=p(\mathcal{X}=x)
$$

for y with $p(\mathcal{Y}=y)>0$.

Example 11. Let Ω be the cards in an ordinary deck and

- $R=$ true, if a card is royal,
- $T=$ true, if a card is a ten or a jack,
- $S=$ true, if a card is spade.

Cards for a single color:

2	3	4	5	6	7	8	9	10

S	R	T	$p(R, T \mid S)$
\mathbf{Y}	Y	Y	$1 / 13$
		N	$2 / 13$
	N	Y	$1 / 13$
		N	$9 / 13$
N	Y	Y	$3 / 39=1 / 13$
		N	$6 / 39=2 / 13$
	N	Y	$3 / 39=1 / 13$
		N	$27 / 39=9 / 13$

R	T	$p(R, T)$
Y	Y	$4 / 52=1 / 13$
	N	$8 / 52=2 / 13$
N	Y	$4 / 52=1 / 13$
	N	$36 / 52=9 / 13$

$$
N \quad 27 / 39=9 / 13
$$

Definition 11. Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be sets of variables.
\mathcal{X}, \mathcal{Y} are called conditionally independent given \mathcal{Z}, when for all events $\mathcal{Z}=z$ with $p(\mathcal{Z}=z)>0$ all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are conditionally independend given $\mathcal{Z}=z$, i.e.
$p(\mathcal{X}=x, \mathcal{Y}=y, \mathcal{Z}=z)=\frac{p(\mathcal{X}=x, \mathcal{Z}=z) \cdot p(\mathcal{Y}=y, \mathcal{Z}=z)}{p(\mathcal{Z}=z)}$
for all x, y and z (with $p(\mathcal{Z}=z)>0$), or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y, \mathcal{Z}=z)=p(\mathcal{X}=x \mid \mathcal{Z}=z)
$$

We write $I_{p}(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z}.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 5. Independent Random Variables

Conditionally independent variables / Example

Example 12. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 5.

We show $I_{p}(\{L\},\{S\} \mid\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	$p(L \mid C, S)$
black	square	1	$2 / 6=1 / 3$
		2	$4 / 6=2 / 3$
	round	1	$1 / 3$
		2	$2 / 3$
white	square	1	$1 / 2$
		2	$1 / 2$
	round	1	$1 / 2$
		2	$1 / 2$

C	L	$p(L \mid C)$
black	1	$3 / 9=1 / 3$
	2	$6 / 9=2 / 3$
white	1	$2 / 4=1 / 2$
	2	$2 / 4=1 / 2$

Figure 5: 13 objects with different shape, color, and label [Nea03, p. 8].

References

[BK02] Christian Borgelt and Rudolf Kruse. Graphical Models. Wiley, New York, 2002.
[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

