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Bayesian Networks / 1. Complete Graphs, DAGs and Topological Orderings

Complete (undirected) graphs

Definition 1. An undirected graph G := (V,E) is called
complete, if it contains all possible edges (i.e. if E =
P2(V )).
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Figure 1: Undirected complete graph with 6 vertices.
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Bayesian Networks / 1. Complete Graphs, DAGs and Topological Orderings

Orderings (of a directed graph)

Definition 2. Let G := (V,E) be a directed graph.
A bijective map

σ : {1, . . . , |V |} → V

is called an ordering of (the vertices of) G.

We can write an ordering as enumeration of V , i.e. as
v1, v2, . . . , vn with V = {v1, . . . , vn} and vi 6= vj for i 6= j.
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C

1 3

2

Figure 2: Ordering of a directed graph.
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Bayesian Networks / 1. Complete Graphs, DAGs and Topological Orderings

Topological orderings

Definition 3. An ordering σ =
(v1, . . . , vn) is called topological order-
ing if

(i) all parents of a vertex have smaller
numbers, i.e.
fanin(vi) ⊆ {v1, . . . , vi−1}, ∀i = 1, . . . , n

or equivalently

(ii) all edges point from smaller to
larger numbers
(v, w) ∈ E ⇒ σ−1(v) < σ−1(w), ∀v, w ∈ V

The reverse of a topological ordering –
e.g. got by using the fanout instead of
the fanin – is called ancestral number-
ing.

In general there are several topological
orderings of a DAG.
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Figure 3: DAG with different topological order-
ings: σ1 = (A,B,C) and σ2 = (B,A,C). The
ordering σ3 = (A,C,B) is not topological.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 3/38

Bayesian Networks / 1. Complete Graphs, DAGs and Topological Orderings

Topological orderings and DAGs

Lemma 1. Let G be a directed graph. Then

G is acyclic (a DAG)⇔ G has a topological ordering

1 topological-ordering(G = (V, E)) :
2 choose v ∈ V with fanout(v) = ∅
3 σ(|V |) := v
4 σ|{1,...,|V |−1} := topological-ordering(G \ {v})
5 return σ

Figure 4: Algorithm to compute a topologcial or-
dering of a DAG.

Exercise: write an algorithm for check-
ing if a given directed graph is acyclic.
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Bayesian Networks / 1. Complete Graphs, DAGs and Topological Orderings

Complete DAGs

Definition 4. A DAG G := (V,E) is
called complete, if

(i) it has a topological ordering σ =
(v1, . . . , vn) with
fanin(vi) = {v1, . . . , vi−1}, ∀i = 1, . . . , n

or equivalently

(ii) it has exactly one topological order-
ing
or equivalently

(iii) every additional edge introduces a
cycle.

A B

F C

E D

Figure 5: Complete DAG with 6 vertices. Its
topological ordering is σ = (A,B,C,D,E, F ).
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Graph representations of ternary relations on P(V )

Definition 5. Let V be a set and I a
ternary relation on P(V ) (i.e. I ⊆
P(V )3). In our context I is often called
an independency model.

Let G be a graph on V (undirected or
DAG).
G is called a representation of I, if

IG(X, Y |Z)⇒ I(X, Y |Z) ∀X, Y, Z ⊆ V

A representation G of I is called faith-
ful, if

IG(X, Y |Z)⇔ I(X, Y |Z) ∀X, Y, Z ⊆ V

Representations are also called in-
dependency maps of I or markov
w.r.t. I, faithful representations are also
called perfect maps of I.

A

B C

D

Figure 6: Non-faithful representation of

I := {(A,B|{C,D}), (B,C|{A,D}),
(B,A|{C,D}), (C,B|{A,D})}

A

B C

D

Figure 7: Faithful representation of I. Which I?
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Faithful representations

In G also holds
IG(B, {A,C}|D), IG(B,A|D), IG(B,C|D), . . .

so G is not a representation of
I := {(A,B|{C,D}), (B,C|{A,D}),

(B,A|{C,D}), (C,B|{A,D})}
at all. It is a representation of

A

B C

D

Figure 8: Faithful representation of J .

J := {(A,B|{C,D}), (B,C|{A,D}), (B, {A,C}|D), (B,A|D), (B,C|D),

(B,A|{C,D}), (C,B|{A,D}), ({A,C}, B|D), (A,B|D), (C,B|D)}

and as all independency statements of
J hold in G, it is faithful.
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Trivial representations

For a complete undirected graph or a
complete DAG G := (V,E) there is

IG ≡ false,
i.e. there are no triples X, Y, Z ⊆ V
with IG(X, Y |Z). Therefore G repre-
sents any independency model I on V
and is called trivial representation.

There are independency models without
faithful representation.

A
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D
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D

Figure 9: Independency model

I := {(A,B|{C,D})}

without faithful representation.
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Minimal representations

Definition 6. A representation G of I is called minimal, if
none of its subgraphs omitting an edge is a representation
of I.

A

B C

D

A

B C

D

Figure 10: Different minimal undirected representations of the inde-
pendency model

I := {(A,B|{C,D}), (A,C|{B,D}),
(B,A|{C,D}), (C,A|{B,D})}
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Minimal representations

Lemma 2 (uniqueness of minimal undirected representation). An
independency model I has exactly one minimal undirected repre-
sentation, if and only if it is

(i) symmetric: I(X, Y |Z)⇒ I(Y,X|Z).

(ii) decomposable: I(X, Y |Z)⇒ I(X, Y ′|Z) for any Y ′ ⊆ Y

(iii) intersectable: I(X, Y |Y ′ ∪ Z) and I(X, Y ′|Y ∪ Z) ⇒ I(X, Y ∪
Y ′|Z)

Then this representation is G = (V,E) with

E := {{x, y} ∈ P2(V ) |not I(x, y|V \ {x, y}}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 10/38

Bayesian Networks / 2. Graph Representations of Ternary Relations

Minimal representations (2/2)

Example 1.

I := {(A,B|{C,D}), (A,C|{B,D}), (A, {B,C}|D), (A,B|D), (A,C|D),

(B,A|{C,D}), (C,A|{B,D}), ({B,C}, A|D), (B,A|D), (C,A|D)}
is symmetric, decomposable and intersectable.

Its unique minimal undirected represen-
tation is

A

B C

D

If a faithful representation exists, obvi-
ously it is the unique minimal represen-
tation, and thus can be constructed by
the rule in lemma 2.
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Markov-equivalence

Definition 7. Let G,H be two graphs on a set V (undi-
rected or DAGs).
G and H are called markov-equivalent, if they have the
same independency model, i.e.

IG(X, Y |Z)⇔ IH(X, Y |Z), ∀X, Y, Z ⊆ V

The notion of markov-equivalence for undirected graphs
is uninteresting, as every undirected graph is markov-
equivalent only to itself (corollary of uniqueness of mini-
mal representation!).
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Properties of conditional independency
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u-separation + + + + + + + + + –
d-separation + + + – + + – + +

cond. ind. in general JPD + + – – + + – – – –1)

cond. ind. in non-extreme JPD + + – – + + + – – –1)

1) + for decomposable JPDs.

There is provably no finite axiomatiza-
tion of conditional independency of gen-
eral JPDs.

It is still an open research problem, if
there is a finite axiomatization of con-
ditional independency for non-extreme
JPDs.

Independency models that satisfy sym-
metry, decomposition, weak union, and
contraction (as conditional indepen-
dency of general JPDs) are called semi-
graphoids. If they satisfy also inter-
section (as conditional independency
of non-extreme JPDs), they are called
graphoids.
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Properties of conditional independency / no composition

Example 2 (example for composition in JPDs).

z y1 p(x|z, y1)
0 0 0.2
0 1 0.2
1 0 0.75
1 1 0.75

I(x, y1|z)

z y2 p(x|z, y2)
0 0 0.2
0 1 0.2
1 0 0.75
1 1 0.75

I(x, y2|z)

z x y1 y2 p(x, y1, y2, z)
0 0 0 0 0.04
0 0 0 1 0.04
0 0 1 0 0.04
0 0 1 1 0.04
0 1 0 0 0.01
0 1 0 1 0.01
0 1 1 0 0.01
0 1 1 1 0.01
1 0 0 0 0.05
1 0 0 1 0.05
1 0 1 0 0.05
1 0 1 1 0.05
1 1 0 0 0.15
1 1 0 1 0.15
1 1 1 0 0.15
1 1 1 1 0.15

z y1 y2 p(x|z, y1, y2)
0 0 0 0.2
0 0 1 0.2
0 1 0 0.2
0 1 1 0.2
1 0 0 0.75
1 0 1 0.75
1 1 0 0.75
1 1 1 0.75

I(x, {y1, y2}|z)

z p(z)
0 0.2
1 0.8
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Bayesian Networks / 2. Graph Representations of Ternary Relations

Properties of conditional independency / no composition

Example 3 (counterexample for composition in JPDs).

z y1 p(x|z, y1)
0 0 0.2
0 1 0.2
1 0 0.75
1 1 0.75

I(x, y1|z)

z y2 p(x|z, y2)
0 0 0.2
0 1 0.2
1 0 0.75
1 1 0.75

I(x, y2|z)

z x y1 y2 p(x, y1, y2, z)
0 0 0 0 0.04—— 0.03
0 0 0 1 0.04—— 0.05
0 0 1 0 0.04—— 0.05
0 0 1 1 0.04—— 0.03
0 1 0 0 0.01
0 1 0 1 0.01
0 1 1 0 0.01
0 1 1 1 0.01
1 0 0 0 0.05
1 0 0 1 0.05
1 0 1 0 0.05
1 0 1 1 0.05
1 1 0 0 0.15
1 1 0 1 0.15
1 1 1 0 0.15
1 1 1 1 0.15

z y1 y2 p(x|z, y1, y2)
0 0 0 0.2—— 0.25
0 0 1 0.2—— 0.17
0 1 0 0.2—— 0.17
0 1 1 0.2—— 0.25
1 0 0 0.75
1 0 1 0.75
1 1 0 0.75
1 1 1 0.75
¬I(x, {y1, y2}|z)!

z p(z)
0 0.2
1 0.8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 14/38



Bayesian Networks

1. Complete Graphs, DAGs and Topological Orderings

2. Graph Representations of Ternary Relations

3. Markov Networks

4. Bayesian Networks

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 15/38

Bayesian Networks / 3. Markov Networks

Representation of conditional independency

Definition 8. We say, a graph repre-
sents a JPD p, if it represents the con-
ditional independency relation Ip of p.

General JPDs may have several mini-
mal undirected representations (as they
may violate the intersection property).

Non-extreme JPDs have a unique mini-
mal undirected representation.

To compute this representation we have
to check Ip(X, Y |V \ {X, Y }) for all pairs
of variables X, Y ∈ V , i.e.

p · p↓V \{X,Y } = p↓V \{X} · p↓V \{Y }

Then the minimal representation is the
complete graph on V omitting the edges
{X, Y } for that Ip(X, Y |V \ {X, Y })
holds.
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Bayesian Networks / 3. Markov Networks

Representation of conditional independency

Example 4. Let p be the JPD on V :=
{X, Y, Z} given by:

Z X Y p(X, Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Checking p · p↓V \{X,Y } = p↓V \{X} ·
p↓V \{Y } one finds that the only indepen-
dency relations of p are Ip(X, Y |Z) and
Ip(Y,X|Z).

Its marginals are:

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y, Z)
0 0 0.06
0 1 0.14
1 0 0.32
1 1 0.48

X Y p(X, Y )
0 0 0.12
0 1 0.2
1 0 0.26
1 1 0.42

X p(X)
0 0.32
1 0.68

Y p(Y )
0 0.38
1 0.62

Z p(Z)
0 0.2
1 0.8
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Bayesian Networks / 3. Markov Networks

Representation of conditional independency

Example 4 (cont.).
Z X Y p(X, Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Checking p · p↓V \{X,Y } = p↓V \{X} ·
p↓V \{Y } one finds that the only indepen-
dency relations of p are Ip(X, Y |Z) and
Ip(Y,X|Z).

Thus, the graph
X

Y Z

represents p, as its independency
model is IG := {(X, Y |Z), (Y,X|Z)}.

As for p only Ip(X, Y |Z) and Ip(Y,X|Z)
hold, G is a faithful representation.
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Bayesian Networks / 3. Markov Networks

Factorization of a JPD according to a graph

Definition 9. Let p be a joint probability
distribution of a set of variables V . Let
C be a cover of V , i.e. C ⊆ P(V ) with⋃
X∈C X = V .

p factorizes according to C, if there are
potentials

ψX :
∏

X∈X
X → R+

0 , X ∈ C

with
p =

∏

X∈C
ψX

In general, the potentials are not unique
and do not have a natural interpretation.

Example 5.

Z X Y p(X, Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y, Z) p(Y |Z)
0 0 0.06 0.3
0 1 0.14 0.7
1 0 0.32 0.4
1 1 0.48 0.6

p factorizes according to C =
{{X,Z}, {Y, Z}} as

p = p(X,Z) · p(Y |Z)
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Bayesian Networks / 3. Markov Networks

Factorization of a JPD according to a graph

Definition 10. Let G be an undirected
graph. A maximal complete subgraph of
G is called a clique of G. CG denotes
the set of all cliques of G.

p factorizes according to G, if it factor-
izes according to its clique cover CG.

The factorization induced by the com-
plete graph is trivial.

A B

C D

E

F G H

Figure 11: A graph with cliques {A,B,C},
{B,C,D,E}, {E,F,G} and {E,G,H}.

Example 6. The JPD p from last exam-
ple factorized according to the graph

X

Y Z

as it has cliques C = {{X,Z}, {Y, Z}}
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Bayesian Networks / 3. Markov Networks

Factorization and representation

Lemma 3. Let p be a JPD of a set of variables V , G be an
undirected graph on V . Then

(i) p factorizes acc. to G⇒ G represents p.

(ii) If p > 0 then
p factorizes acc. to G⇔ G represents p.

(iii) If p > 0 then p factorizes acc. to its (unique) minimal
representation.

(iv) If G is an undirected graph and ψX for X ∈ CG are any
potentials on its cliques, then G represents the JPD

p := (
∏

X∈CG

ψX )|∅
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Bayesian Networks / 3. Markov Networks

Chain of cliques

Definition 11. Let G be an undirected
graph and CG be its cliques. A sequence
C1, . . . , Cn of cliques of G is called chain
of cliques, if

1. every clique occurs exactly once and

2. the running intersection property
holds:

Ci ∩
i−1⋃

j=1

Cj ⊆ Ck, ∀i∃k < i

A B

C D

E

F G H

Figure 12: A graph with chain of cliques
{A,B,C}, {B,C,D,E}, {E,F,G} and
{E,G,H}. A B

C D

E

F G H

Figure 13: A graph with cliques {A,B,C},
{B,D}, {C,E}, {D,E}, {E,F,G} and
{E,G,H}, but without chain of cliques.
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Bayesian Networks / 3. Markov Networks

Triangulated/chordal graphs

Definition 12. Let G be an undirected
graph.
G is called triangulated (or chordal), if
every cycle of length ≥ 4 has a chord,
i.e. it exists an additional edge in G
between non-successive vertices of the
cycle.

Lemma 4. G is chordal⇔ IG is chordal.

B

C D

E

B

C D

E

Figure 14: Cycle with chord and cycle without
chord.

B

C

D

F

E

Figure 15: Chordal or non-chordal graph?

A

B E D

C

Figure 16: Chordal or non-chordal graph?
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Bayesian Networks / 3. Markov Networks

Perfect ordering

Definition 13. Let G be an undirected
graph.
An ordering σ of (the vertices of) G is
called perfect, if

(i) σ(i) and its neighbors form a clique
of the subgraph on σ({1, . . . , i})
or equivalently

(ii) the subgraph on

fan(σ(i)) ∩ σ({1, . . . , i− 1})
is complete.

A perfect ordering is also called a per-
fect numbering. The reverse of a per-
fect ordering is also called elimination
or deletion sequence.

A B

C D

E

F G H

Figure 17: There are several perfect orderings
of this graph, e.g., H,G,E, F,D,C,B,A and
G,E,B,C,H,D, F,A.

A B

C D

E

F G H

Figure 18: A graph without perfect ordering.
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Bayesian Networks / 3. Markov Networks

Triangulation, perfect ordering, and chain of cliques

Lemma 5. Let G be an undirected
graph. It is equivalent:

(i) G is triangulated / chordal.

(ii) G admits a perfect ordering.

(iii) G admits a chain of cliques.

A B

C D

E

F G H

Figure 19: MCS finds the perfect ordering
(A,B,C,D,E, F,G,H).

1 perfect-ordering-MCS(G = (V, E)) :
2 for i = 1, . . . , |V | do
3 σ(i) := v ∈ V \ σ({1, . . . , i − 1}) with maximal |fanG(v) ∩ σ({1, . . . , i− 1})|
4 breaking ties arbitrarily
5 od
6 return σ

Figure 20: Algorithm to find a perfect ordering of a triangulated graph by maximum cardinality
search.
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Bayesian Networks / 3. Markov Networks

Triangulation, perfect ordering, and chain of cliques

1 chain-of-cliques(G) :
2 C := enumerate-cliques(G)
3 σ := perfect-ordering(G)
4 Order C by ascending max(σ−1(C)) for C ∈ C
5 breaking ties arbitrarily
6 return C

Figure 21: Algorithm to find a chain of cliques of
a triangulated graph.

A B

C D

E

F G H

Figure 22: Based on the perfect ordering
(A,B,C,D,E, F,G,H) the rank of the cliques
is computed as {A,B,C} (3) {B,C,D,E} (5),
{E,F,G} (7) and {E,G,H} (8). The algo-
rithm outputs the chain of cliques {A,B,C},
{B,C,D,E}, {E,F,G} and {E,G,H}.
Based on the perfect orderingG,E,B,C,H,D, F,A
rank of the cliques is computed as {A,B,C} (8)
{B,C,D,E} (6), {E,F,G} (7) and {E,G,H}
(5). The algorithm outputs the chain of
cliques {E,G,H}, {B,C,D,E}, {E,F,G} and
{A,B,C}.
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Factorization and representation (2/2)

Definition 14. A joint probability distri-
bution p is called decomposable, if its
conditional independency relation Ip is
chordal.

Warning. p being decomposable has
nothing to do with Ip being decompos-
able!

Definition 15. Let G be a triangulated
/ chordal graph and C = C1, . . . , Cn a
chain of cliques of G. Then

Si := Ci ∩
⋃

j<i

Cj

is called the i-th separator.

Lemma 6. Let p be a JPD of a set of
variables V , G be an undirected graph
on V . If G represents p and p is decom-
posable (i.e. G triangulated/chordal), let
C = C1, . . . , Cn be a chain of cliques, and
then

p =

n∏

i=1

p↓Ci|Si

i.e. p factorizes in the conditional proba-
bility distributions of the cliques given its
separators.
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Markov networks

Definition 16. A pair (G, (ψC)C∈CG) con-
sisting of

(i) an undirected graph G on a set of
variables V and

(ii) a set of potentials

ψC :
∏

X∈C
dom(X)→ R+

0 , C ∈ CG

on the cliques1) of G (called clique
potentials)

is called a markov network.

1) on the product of the domains of the
variables of each clique.

Thus, a markov network encodes

(i) a joint probability distribution factor-
ized as

p = (
∏

C∈CG

ψC)|∅

and

(ii) conditional independency state-
ments

IG(X, Y |Z)⇒ Ip(X, Y |Z)

G represents p, but not necessarily faith-
fully.

Under some regularity conditions (not
covered here), ψCi can be choosen as
conditional probabilities p↓Ci|Si.
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Markov networks / examples

X

Y Z

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y |Z)
0 0 0.3
0 1 0.7
1 0 0.4
1 1 0.6

Figure 23: Example for a markov network.
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1. Complete Graphs, DAGs and Topological Orderings

2. Graph Representations of Ternary Relations

3. Markov Networks

4. Bayesian Networks
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Markov networks
probability distribution markov network

structure conditional independence Ip u-separation in graph

representations exist always (e.g., trivial representation)
Sym+Dec+Int+SUn+STrans⇔ faithful (Lemma 2)

minimal representations exist always
Sym+Dec+Int⇒ unique minimal (Lemma 3)

e.g. for p non-extreme

different graphs give different
representations (trivial
markov-equivalence)

parameters large probability table p clique potentials φ

if p is decomposable if G is chordal/triangulated
(i.e. Ip chordal/triangulated) ⇒ conditional clique probabilities

p(Ci|Si) for a chain of cliques
C = (C1, . . . , Cn).
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Bayesian networks

probability distribution bayesian network
structure conditional independence Ip d-separation in graph

representations exist always (e.g., trivial representation)
Sym+Dec+Comp+Contr+Int+WUn+WTrans+Chor⇐ faithful (Lemma ...)

minimal representations exist always
Sym+Dec+Contr+Int+WUn⇒ unique minimal up to ordering (Lemma ...)

e.g. for p non-extreme

graphs with same DAG pattern
give same representation
(markov-equivalence)

parameters large probability table p conditional vertex probabilities
p(v| pa(v))
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DAG-representations

Lemma 7 (criterion for DAG-representation). Let p be a joint probability distribution
of the variables V and G be a graph on the vertices V . Then:

G represents p⇔ v and nondesc(v) are conditionally independent
given pa(v) for all v ∈ V , i.e.,

Ip({v}, nondesc(v)| pa(v)), ∀v ∈ V

J

A

I

B

C H

D

E F

GK L
Figure 24: Parents of a vertex (orange).
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Faithful DAG-representations

Lemma 8 (necessary conditions for faithful DAG-representability). An indepen-
dency model I has a faithful DAG representation, only if it is

(i) symmetric: I(X, Y |Z)⇒ I(Y,X|Z).

(ii) decomposable: I(X, Y |Z)⇒ I(X, Y ′|Z) for any Y ′ ⊆ Y

(iii) composable: I(X, Y |Z) and I(X, Y ′|Z)⇒ I(X, Y ∪ Y ′|Z)

(iv) contractable: I(X, Y |Z) and I(X, Y ′|Y ∪ Z)⇒ I(X, Y ∪ Y ′|Z)

(v) intersectable: I(X, Y |Y ′ ∪ Z) and I(X, Y ′|Y ∪ Z)⇒ I(X, Y ∪ Y ′|Z)

(vi) weakly unionable: I(X, Y |Z)⇒ I(X, Y ′|(Y \ Y ′) ∪ Z) for any Y ′ ⊆ Y

(vii) weakly transitive: I(X, Y |Z) and I(X, Y |Z∪{v})⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈
V \ Z

(viii) chordal: I({a}, {c}|{b, d}) and I({b}, {d}|{a, c})⇒ I({a}, {c}|{b}) or I({a}, {c}|{d})
It is still an open research problem, if there is a finite axiomatisation of faithful
DAG-representability.
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Example for a not faithfully DAG-representable independency model

Probability distributions may have no faithful DAG-
representation.

Example 7. The independency model

I := {I(x, y|z), I(y, x|z), I(x, y|w), I(y, x|w)}
does not have a faithful DAG-representation. [CGH97,
p. 239]

Exercise: compute all minimal DAG-representations of I
using lemma 9 and check if they are faithful.
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Minimal DAG-representations

Lemma 9 (construction and uniqueness of minimal DAG-representation, [VP90]).
Let I be an independence model of a JPD p. Then:

(i) A minimal DAG-representation can be constructed as follows: Choose an ar-
bitrary ordering σ := (v1, . . . , vn) of V . Choose a minimal set πi ⊆ {v1, . . . , vi−1}
of σ-precursors of vi with

I(vi, {v1, . . . , vi−1} \ πi|πi)
Then G := (V,E) with

E := {(w, vi) | i = 1, . . . , n, w ∈ πi}
is a minimal DAG-representation of p.

(ii) If p also is non-extreme, then the minimal representation G is unique up to
ordering σ.
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Minimal DAG-representations / example

I := {(A,C|B), (C,A|B)},,-~~---

VTV
(!i}(A,B, C) (b) (A, C, B) (e) (B, A, C)

(B,C,A)
(d)(C,A, B) (e) (C, B, A)

---n~~ ~ ,.., ~"... 1 rI . -' T
. cl . h h cl cl Ymode

.-.~o 're>rt.PlI-maDS assoclate Wlt t e epen ene .
Figure 25: Minimal DAG-representations of I [CGH97, p. 240].
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Minimal representations / conclusion

Representations always exist (e.g., trivial).

Minimal representations always exist
(e.g., start with trivial and drop edges successively).

Markov network (undirected) Bayesian network (directed)
minimal faithful minimal faithful

general JPD may not be
unique

may not
exist

may not be
unique

may not
exist

non-extreme JPD unique may not
exist

unique up
to ordering

may not
exist
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Bayesian Network

Definition 17. A pair (G := (V,E), (pv)v∈V )
consisting of

(i) a directed graph G on a set of vari-
ables V and

(ii) a set of conditional probability dis-
tributions
pX : dom(X)×

∏

Y ∈pa(X)

dom(Y )→ R+
0

at the vertices X ∈ V conditioned
on its parents (called (conditional)
vertex probability distributions)

is called a bayesian network.
Thus, a bayesian network encodes

(i) a joint probability distribution factor-
ized as

p =
∏

X∈V
p(X| pa(X))

and

(ii) conditional independency state-
ments

IG(X, Y |Z)⇒ Ip(X, Y |Z)

G represents p, but not necessarily faith-
fully.

A B

C

D

E F

G

p(A)

p(B|A, C)

p(C)

p(D|C)

p(E|B, D) p(F |D, E)

p(G|E)

Figure 26: Example for a bayesian network.
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Types of probabilistic networks

probabilistic network

rep. discrete JPD rep. continuous JPD rep. mixed JPD

markov network bayesian network gaussian network dirichlet network ...

Figure 27: Types of probabilistic networks.
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