Bayesian Networks

4. Exact Inference / Variable Elimination

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems
\& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Inference in Probabilistic Networks

2. Variable elimination

Figure 1: Genealogical structure for the horses in the studfarm example [Jen01, p. 47].

	aa	$a A$	AA
aa	$(1,0,0)$	$(0.5,0.5,0)$	$(0,1,0)$
aA	$(0.5,0.5,0)$	$(0.25,0.5,0.25)$	$(0,0.5,0.5)$
AA	$(0,1,0)$	$(0,0.5,0.5)$	$(0,0,1)$

Figure 2: p (Child | Father, Mother) for genetic inheritance. The numbers are the probabilities for (aa, aA, AA) [Jen01, p. 47].

Variable disease with three states:
pure (aa) carrier (aA) sick (AA)

Genalogic graph becomes bayesian network if
(i) each non-root vertex has conditional probability distribution p (child|father, mother) as given in fig. 2,
(ii) each root vertex has probability distribution

$$
p(a a)=.99, p(a A)=.01, p(A A)=.0
$$

Bayesian Networks / 1. Inference in Probabilistic Networks

Figure 3: Genealogical structure for the horses in the studfarm example [Jen01, p. 47].

	aa	aA	AA
aa	$(1,0,0)$	$(0.5,0.5,0)$	$(0,1,0)$
aA	$(0.5,0.5,0)$	$(0.25,0.5,0.25)$	$(0,0.5,0.5)$
AA	$(0,1,0)$	$(0,0.5,0.5)$	$(0,0,1)$

Figure 4: p(Child | Father, Mother) for genetic inheritance. The numbers are the probabilities for (aa, aA, AA) [Jen01, p. 47].

father mother	aa			aA			AA		
aa									
aa	1	.5	0	.5	.25	0	0	0	0
aA	0	.5	1	.5	.5	.5	1	.5	0
AA	0	0	0	0	.25	.5	0	.5	1

father mother	aa	aA	aA	aA
aa	1	. 5	. 5	. 25
aA	0	. 5	. 5	. 5
AA	0	0	0	. 25

father mother	aa aa aA	aA aa	aA	
aa	1	.5	.5	$\frac{1}{3}$
aA	0	.5	.5	$\frac{2}{3}$

Figure 5: p(child | father, mother) in general (left), if father and mother cannot be sick (middle), and if child cannot be sick either (right).

Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example / "forward inference"

$$
\begin{array}{rlrl}
p(a a)= & & 0.99 \cdot 0.99 \\
& +2 \cdot \frac{1}{2} . & & 0.99 \cdot 0.01 \\
& +\frac{1}{4} . & & 0.01 \cdot 0.01 \\
= & 0.990025 & &
\end{array}
$$

$$
\begin{align*}
p(a A)= & +2 \cdot \frac{1}{2} \\
& +\frac{1}{2} \\
= & 0.00995
\end{align*}
$$

$$
\begin{aligned}
p(A A) & =+\frac{1}{4} \\
& =0.000025
\end{aligned}
$$

Figure 6: Genealogical structure for the horses in the studfarm example [Jen01, p. 47].

father mother	aa aa		aA	
aa	aA			
aa	1	.5	.5	.25
aA	0	.5	.5	.5
AA	0	0	0	.25

Figure 7: p (child | father, mother) if father and mother cannot be sick.

Figure 8: Probabilities without evidence. [Jen01, p. 49]

Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example / "backward inference"

Figure 9: Genealogical structure for the horses in the studfarm example [Jen01, p. 47].

father mother	aa aa aA	aA aA		
aa	1	.5	.5	.25
aA	0	.5	.5	.5
AA	0	0	0	.25

Figure 10: p (child | father, mother) if father and mother cannot be sick.

If we know, that

(i) all horses but John are not sick and
(ii) John is sick (AA),
we can infer that
(iii) Henry and Irene are carrier (aA) with $p=1$.

If only Fred, Dorothy, Erik, and Gwen existed, we could further infer that for each of them

$$
p(a a)=\frac{1}{3}, \quad p(a A)=\frac{2}{3}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 1. Inference in Probabilistic Networks studfarm example / "backward inference"

Figure 11: Probabilities given evidence that John is sick (AA). [Jen01, p. 49]

Evidence

Definition 1. Let V be a set of variables. The set

$$
\mathcal{E}:=\left\{E \subseteq \bigcup_{v \in V}\{v\} \times \operatorname{dom}(v) \mid \forall(v, c),\left(v, c^{\prime}\right) \in E: c=c^{\prime}\right\}
$$

is called space of evidence of V.
An element $E \in \mathcal{E}$ is called evidence of V. We call
$\operatorname{dom}(E):=\{v \in V \mid \exists c \in \operatorname{dom}(v):(v, c) \in$ the set of evidential variables and for each evidential variable $v \in \operatorname{dom}(E)$ we call the unique $E_{v}:=c \in \operatorname{dom}(v)$ with $(v, c) \in E$ its (evidential) value.
Evidence E corresponds to the probability distribution

Evidence is a setting of variables to specific values. "Fuzzy" or "uncertain evidence" that assigns probabilities to the different values of the variables, is not handled here.

$$
\begin{aligned}
\operatorname{epd}_{E}: \prod_{v \in \operatorname{dom}(E)} \operatorname{dom}(v) & \rightarrow \mathbb{R}_{0}^{+} \\
(x)_{v \in \operatorname{dom}(E)} & \mapsto \begin{cases}1, & \text { if } \forall v:(v, x) \in E \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 1. Inference in Probabilistic Networks

Evidence / example

Example 1. Let $V:=\{A, B, C, D\}$ and

$$
\begin{aligned}
\operatorname{dom}(A):= & \operatorname{dom}(B):=\{0,1\}, \\
& \operatorname{dom}(C):=\{0,1,2\} \text { and } \\
& \operatorname{dom}(A):=\{0,1,2,3\} .
\end{aligned}
$$

Then

$$
E:=\{(A, 1),(C, 2)\}
$$

is an evidence with the evidential variables A and C. The evidential variable A has value 1 , the variable C value 2 .

The probability distribution corresponding to E is

$$
\operatorname{epd}_{E}(A=1, C=2)=1
$$

and

$$
\operatorname{epd}_{E}(A=a, C=c)=0
$$

for all other values a of A or c of C.

Let V be a set of variables and q be a potential on a subset of V. Let E be evidence of V.
We call

$$
\begin{aligned}
q_{E}: \prod_{\substack{v \in \operatorname{dom}(q) \backslash \operatorname{dom}(E)}} \operatorname{dom}(v) & \rightarrow \mathbb{R}_{0}^{+} \\
& (x)_{v \in \operatorname{dom}(q) \backslash \operatorname{dom}(E)}
\end{aligned} r q(x, E)
$$

with
$(x, E)(v):= \begin{cases}x_{v}, & \text { if } v \in \operatorname{dom}(q) \backslash \operatorname{dom}(E) \\ E_{v}, & \text { if } v \in \operatorname{dom}(E)\end{cases}$
the potential q given evidence E.

If q is a JPD, then q_{E} is the probability distribution on the non-evidential variables $\operatorname{dom}(q) \backslash \operatorname{dom}(E)$ for outcomes that conform to E (i.e., have value E_{v} for each variable $v \in \operatorname{dom}(E)$).

Warning: q_{E} should not be confused with the conditional probability distribution $q^{\mid \operatorname{dom}(E)}$. In sloppy notation for $E=$ $\left\{\left(v_{1}, c_{1}\right), \ldots,\left(v_{n}, c_{n}\right)\right\}$:

$$
q_{E}=q\left(x, v_{1}=c 1, \ldots, v_{n}=c_{n}\right)
$$

and

$$
q^{\mid \operatorname{dom}(E)}=q\left(x \mid v_{1}, \ldots, v_{n}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 1. Inference in Probabilistic Networks

Given a JPD p on a set of variables V and evidenve E on V.
We distinguish three types of inference targets:
(i) a single variable: For a given variable $v \in V$ infering v based on E w.r.t. p means to compute

$$
p(v \mid E)=\frac{p(v, E)}{p(E)} \sim p(v, E)
$$

or (more exactly) $\left(p_{E}\right)^{\downarrow v \mid \emptyset}$.
(ii) several variables separately: For a given set of variables $W \subseteq V$ infering W separately based on E w.r.t. p means to compute

$$
\begin{aligned}
& p(v \mid E)=\frac{p(v, E)}{p(E)} \sim p(v, E), \quad \forall v \in W \\
& \text { or }\left(p_{E}\right)^{\downarrow v \mid \emptyset}
\end{aligned}
$$

(iii) joint distribution of several variabls For a given set of variables $W \subseteq V$ infering the marginal W based on E w.r.t. p means to compute

$$
p(W \mid E)=\frac{p(W, E)}{p(E)} \sim p(W, E)
$$

or $\left(p_{E}\right)^{\downarrow W \mid \emptyset}$

Normalizing is necessary, as p_{E} in general is not a probability distribution, even if p is.

If p is given as one large table, infering the marginal W based on E means
(i) select the subtable indexed by E,
(ii) aggregate to W, i.e., sum over all variables $V \backslash \operatorname{dom}(E) \backslash W$,
(iii) normalize.

Pain	Y			N				
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	220	220	25	25	95	95	10	10
N	4	9	5	12	31	76	50	113

Figure 12: JPD p given as one large table.

Pain	Y		N	
Weightloss	Y	N	Y	N
Adeno Y	220	25	95	10
N	4	5	31	50

Figure 13: Subtable for $E=\{(V, Y)\}$: distribution p_{E} before normalization.

If we observe the evidence $V=Y$, then

$$
\begin{aligned}
p(\text { adeno }=Y \mid V=Y) & =\sum_{w, q} p(\text { adeno }=Y, W=w, P=q \mid V=Y) \\
& =\frac{220+25+95+10}{224+30+126+60}=\frac{350}{440}=0.80
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 1. Inference in Probabilistic Networks
Inferencing / JPD as product of potentials

If p is given as product of potentials, i.e.,

$$
p:=\left(\prod_{q \in Q} q\right)^{\mid \emptyset}
$$

the problem becomes more interesting.

Naive approach: we reduce the problem to inference w.r.t. p as one large table by explicitly computing p and then doing inference as on the former slide, actually computing

$$
\left(p_{E}\right)^{\perp W \mid \emptyset}=\left(\left(\left(\prod_{q \in Q} q\right)^{\mid \emptyset}\right)_{E}\right)^{\perp W \mid \emptyset}
$$

Naive approach ${ }_{2}$: we

(i) enter evidence in the factors first, i.e., compute q_{E}, and then
(ii) compute p_{E} as product of the q_{E} 's

$$
\left(p_{E}\right)^{\downarrow W \mid \emptyset}=\left(\left(\prod_{q \in Q} q_{E}\right)^{\downarrow W \mid \emptyset}\right)
$$

Pain	Y			N				
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	.982	.961	.833	.676	.754	.556	.167	.081

Figure 14: Bayesian Network for adeno JPD.

Pain	Y			N				
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	.169	.210	.048	.049	.119	.112	.009	.005
N	.003	.009	.010	.024	.039	.090	.044	.062

Figure 15: JPD of Bayesian Network for adeno JPD.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Inference in Probabilistic Networks
product of potentials / naive approach

Pain	Y			N				
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	.169	.210	.048	.049	.119	.112	.009	.005
N	.003	.009	.010	.024	.039	.090	.044	.062

Figure 16: JPD p given as one large table.

Pain	Y	N		
Weightloss	Y	N	Y	N
Adeno Y	.169	.048	.119	.009
N	.003	.010	.039	.044

Figure 17: Subtable for $E=\{(V, Y)\}$: distribution p_{E} before normalization.

Adeno Y	.345
N	.096

Figure 18: Aggregate subtable for $E=\{(V, Y)\}$.
If we observe the evidence $V=Y$, then

$$
\begin{aligned}
p(\text { adeno }=Y \mid V=Y) & =\sum_{w, q} p(\text { adeno }=Y, W=w, P=q \mid V=Y) \\
& =\frac{.345}{.345+.096}=0.782
\end{aligned}
$$

product of potentials / naive approach ${ }_{2}$

| Pain Y | .52 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Pain	Y			N				
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	.982	.961	.833	.676	.754	.556	.167	.081

Figure 19: Bayesian Network for adeno JPD.

Pain	Y		N	
Weightloss	Y	N	Y	N
Vomiting	Y N	Y N	Y N	Y N
Adeno Y	. 3840	. 1090	. 2700	. 0200
N	. 0070	. 0230	. 089	. 100

Figure 20: JPD of Bayesian Network for adeno JPD with evidenve $V=Y$ entered.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Inference in Probabilistic Networks
Overview of inference methods [Guo and Hsu 2001]
(i) exact inference:
(a) Polytree algorithm
(b) conditioning
(c) clustering
(d) arc reversal
(e) variable elimination
(ii) approximate inference:
(a) stochastic sampling
(b) model simplification
(c) search-based
(d) loopy propagation
(iii) symbolic inference.

1. Inference in Probabilistic Networks

2. Variable elimination

We can make use of this observation for simplifying $\left(\prod_{q \in Q} q\right)^{\downarrow W}$:
(i) choose a variable $v \in V \backslash W$, clearly

$$
\left(\prod_{q \in Q} q\right)^{\downarrow W}=\left(\left(\prod_{q \in Q} q\right)^{\downarrow c v}\right)^{\downarrow W}
$$

i.e., we can eliminate variable v first,
(ii) let

$$
R:=\{q \in Q \mid v \in \operatorname{dom}(q)\}
$$

be all potentials which's domain contains v and

$$
q^{\prime}:=\prod_{q \in R} q, \quad q_{\mathrm{rest}}=\prod_{q \in Q \backslash R} q
$$

(iii) Then

$$
\operatorname{dom}\left(q^{\prime}\right) \cap \operatorname{dom}\left(q_{\text {rest }}\right) \subseteq V \backslash\{v\}
$$

and thus

$$
\left(\prod q\right)^{\downarrow W}=\left(q_{\text {rest }} \cdot q^{\prime \downarrow c v}\right)^{\downarrow W}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
i.e., we replace the potentials R by

After this replacement, the variable v is eliminated from the potentials $Q^{\prime}:=Q \backslash R \cup\left\{q^{\prime \backslash c v}\right\}$.

Bayesian Networks / 2. Variable elimination

Variable elimination

```
1 inference-varelim(Q : set of potentials, W : set of variables):
2 while }\mp@subsup{\bigcup}{q\inQ}{}\operatorname{dom}(q)\W\not=\emptyset\underline{\mathrm{ do}
3 choose v\in \bigcup \q\inQ 两 (om (q)\W arbitrarily
4 Q := eliminate-variable( }Q,v
Od
return (\prod}\mp@subsup{\prod}{q\inQ}{}q\mp@subsup{)}{}{\\emptyset
7 eliminate-variable( }Q\mathrm{ : set of potentials, v: variable) :
8 R}:={q\inQ|v\in\operatorname{dom}(q)
q}\mp@subsup{q}{}{\prime}:=(\mp@subsup{\prod}{q\inR}{}q\mp@subsup{)}{}{\downarrowcv
\mathrm{ return }Q\backslashR\cup{\mp@subsup{q}{}{\prime}}
```


Also known as bucket elimination.

Useful if the set W of variables to infer separately is small.

2003

Example 2. Let $\left(G,\left(p_{v}\right)_{v \in V}\right)$ be the following Bayesian network

The conditional probabilities are

$$
\begin{aligned}
Q:= & \{p(A), p(B \mid A), p(C \mid A), p(D \mid B), \\
& p(E \mid B, C), p(F \mid C)\}
\end{aligned}
$$

We want to compute the marginal $p(D)$ given evidence on F. Thus we add $\operatorname{epd}(F)$ to Q.

For the elimination sequence

$$
F, E, C, A, B
$$

the following steps have to be performed:

Bayesian Networks / 2. Variable elimination

For the elimination sequence

$$
A, B, C, E, F
$$

the following steps have to be performed:

[Jen01] Finn V. Jensen. Bayesian networks and decision graphs. Springer, New York, 2001.

