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Bayesian Networks / 1. Inference in Probabilistic Networks g“v %
studfarm example % a0 ¥
- ) Variable disease with three states:
,\A nn \) .i/R ri an.\] {/E.’cc il \; . .
S = e pure (aa) carrier (aA) sick (AA)
[:\IIF“\'(I. /, 'i{m‘(n}l}jl 'f;liri“ﬁ /;' “!’\(.\\ mﬂa:;'
o W T Genalogic graph becomes bayesian
( Henry ) ( Irene ) .
Nt B network if
( Jobn ) (i) each non-root vertex has condi-

A

Figure 1: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

aa aA AA
aa (1,0,0) (0.5,0.5,0) (0,1,0)
aA | (0.5,0.5,0) (0.25,0.5,0.25) (0,0.5,0.5)
AA| (0,1,0) (0, 0.5,0.5) (0,0, 1)

tional probability distribution
p(child|father, mother)
as given in fig. 2,

(i) each root vertex has probability dis-
tribution

Figure 2: p(Child | Father, Mother) for genetic in-
heritance. The numbers are the probabilities for

(aa, aA, AA) [Jen01, p. 47].

plaa) = .99, p(aA) = .01, p(AA) = .0
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studfarm example 5 2008
aa aA AA
.A:n\ f'/l-:h'iar;\\l {/E.’ccil\‘-\\"- aa (1,0,0) (0.5, 0.5, 0) (0,1,0)
b S S aA | (0.5,0.5,0) (0.25,0.5,0.25) (0,0.5,0.5)
B i L e AA| (0,1,0) (0, 0.5, 0.5) (0,0, 1)
e P e T ) .
::f il (Dorothy) / Exic. ) (Gw afrigure 4: p(Child | Father, Mother) for genetic in-
s ST oy [ heritance. The numbers are the probabilities for
- =) /"s_ar\
\’\/Henr}-'t] ( Irene ) (aa, aA, AA) [Jen01, p. 47].
{J ohn \
M _____/'

Figure 3: Genealogical structure for the horses

in the studfarm example [Jen01, p. 47].

father | aa aA AA

mother |aa aA AA|aa aA AA aa aA AA
aa i1 5 0|5 25 0|0 0 O
aA o 5 1|5 5 5|1 5 0
AA 0O 0 0|0 25 5/0 5 1

father | aa aA
father | aa aA
mother | aa aA | aa aA
mother |aa aA|aa aA
aa 1 5.5 25 aa ] 5[5 1
aA 0O 5|5 5 aA 0 '5 '5 3
AA 0O 0|0 .25 : . 3

Figure 5: p(child | father, mother) in general (left), if father and mother cannot be sick (middle), and

if child cannot be sick either (right).
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studfarm example / "forward inference"

/Ann |'\/BII;U] \] @culv\
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[\H__ S Doio_th\/ (\.5___ L I '“\Q_“
\‘“‘x_(' = ‘_:5—4:_'"/--/-
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KHenr)-/ ( Trene )
o "/‘,_:-—*:.\ e
( John )
N A

Figure 6: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

father | aa aA

mother |aa aA |aa aA
aa 1 5.5 25
aA 0O 5|5 5
AA 0O 0|0 .25

Figure 7: p(child | father, mother) if father and
mother cannot be sick.
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studfarm example / "forward inference"

| Ann Brian | | Cecily | K |
[ I
Cai 1.0On Cai 1.0 Cai  1.00 (Cai  1.00 |Cai 1.00
Pur 99 () S— Pur 9904 S— Pur 949, (1) a—— Pur 94900 m—— EIII[ CH LK) —

NINT~L [/

Fred Dorothy
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| ('“\.\ S}

Cai 1.00
Pur 99 () ne—

I.{ ai  1.00
[Pur 99,00 m—

Cai 10D
Pur 9900 m——
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Pur 9900 me-—
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Cai 093
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Cai
Pur

JTohn

Sic
Cai  0.88)
Pur 99,05 n—

0.04

Figure 8: Probabilities without evidence. [Jen01, p. 49]

__lrene
1.001
99,00 ——
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Bayesian Networks / 1. Inference in Probabilistic Networks g“v %
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studfarm example / "backward inference % a0 ¥
If we know, that
G OGS v |
B il SR e Ei (i) all horses but John are not sick and
< > P N .
[\ Fred ) “\Domthy) (\ Eric /j -( Gwénn /J
el ST | (ii) John is sick (AA),
i:l—en;:;\' |/[u,n; )
KR——c;'_/ J E‘:-.—-— —--"j .
e SN we can infer that
=
( John /

iii) Henry and Irene ar rrier (aA
Figure 9: Genealogical structure for the horses (iii) Henry and lrene are carrier (aA)

in the studfarm example [Jen01, p. 47]. with p = 1.
father | aa | aA If only Fred, Dorothy, Erik, and Gwen ex-
mother | aa aA |aa aA . .
aa |1 515 25 isted, we could further infer that for each
aA 0 5|5 5 of them
AA |0 0 /0 .25
Figure 10: p(child | father, mother) if father and 1 2
plaa) = =, p(ad) ==

mother cannot be sick.

3
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studfarm example / "backward inference" K ey

I -‘i . Ann_ _.% [ Brian | [ Cecily —| [ K
I I
Cai  2.081 Car 6356 I— | Cai 37.05 - |Cai 1.981 Cai 1911
Pur 97.92 S Pur 36 4~ 7.2 J Pur 62.92 mmm Pur 98.012 n Pur 954 S

—
[ Fred Dorothy [ Eric Gwenn
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e
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Figure 11: Probabilities given evidence that John is sick (AA). [Jen01, p. 49]
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Bayesian Networks / 1. Inference in Probabilistic Networks

Evidence
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Definition 1. Let V be a set of variables. The set
€ ={E C [ J{v} x dom(v) |¥(v,¢), (v,¢) € E:c=c}

veV
is called space of evidence of V. Evidence is a setting of variables to spe-
An element E € £ is called evidence of | cific values. "Fuzzy" or "uncertain evi-
V. We call dence" that assigns probabilities to the

dom(E) := {v € V|3 € dom(v) : (v,¢) € Eﬁifferent values of the variables, is not

the set of evidential variables and for | "andled here.
each evidential variable v € dom(F) we
call the unique E, = ¢ € dom(v) with
(v,c) € E its (evidential) value.
Evidence E corresponds to the proba-
bility distribution

x v m .
(@)vedon( 0, otherwise
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Evidence / example e

Example 1. LetV .= {A, B,C, D} and | The probability distribution correspond-

dom(A) := dom(B) := {0, 1}, ing to E'is
dom(A) = {0,1.2.3}. | _
Then epdp(A=a,C=¢)=0

E={(A1),(C,2)}
is an evidence with the evidential vari-
ables A and C. The evidential variable
A has value 1, the variable C value 2.

for all other values a of A or c of C.
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Entering evidence

Let V be a set of variables and ¢ be a
potential on a subset of V. Let E be ev-
idence of V.

We call

—>Ra_

11

vedom(g)\dom(E)

qp dom(v)

(x>v€d0m(q)\dom(E) r—>q(a:, E)

with

if v € dom(q) \ dom(F)
if v € dom(F)

Lo,
Ly,

(x, F)(v) = {

the potential ¢ given evidence F.

g
&
g\

Ly5at"

If ¢ is a JPD, then ¢g is the probabil-
ity distribution on the non-evidential vari-
ables dom(q) \ dom(F) for outcomes that
conform to E (i.e., have value E, for
each variable v € dom(FE)).

Warning: ¢z should not be confused
with the conditional probability distribu-
tion ¢/™(®)_ In sloppy notation for £ =

{(Ula Cl)a ) (Un, Cn)}:
qp = q(z,v1=cl,...,v, = ¢,)
and

q'dom(E) =q(x|vy,...,0)
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Inferencing

Given a JPD p on a set of variables V'

and evidenve Eon V.

We distinguish three types of inference

targets:

(i) a single variable: For a given vari-
able v € V infering v based on E
w.r.t. p means to compute

p(v, E)
p(olB) = £ s~ bl )
or (more exactly) (pg)*"".

(ii) several variables separately: For
a given set of variables W C V in-
fering W separately based on £
w.r.t. p means to compute

p(u]p) = 20D

() Yve W
or (pg)*"

~ p(v, B),

. &
2003

G’g‘\\u My ¢y

(iii) joint distribution of several variabl¢
For a given set of variables W C V
infering the marginal 1/ based on
E w.r.t. p means to compute

p(W, E)

p(W|E) = (B

~ p(W, E)
or (pg)"l?
Normalizing is necessary, as pg in gen-

eral is not a probability distribution, even
if pis.
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Bayesian Networks / 1. Inference in Probabilistic Networks Sprs
Inferencing / JPD as one large table ® a0 ¥
If p is given as one large table, infering Pain| Y N
: Weightloss Y N Y N
the marginal W based on F means Vomitng| Y N| Y N|Y N| Y N
Adeno Y 220 220 |25 25|95 95|10 10
N| 4 9 5 12|31 76|50 113

(i) select the subtable indexed by F,

(ii) aggregate to W, i.e., sum over all
variables V' \ dom(FE) \ W,

(iil) normalize.

If we observe the evidence V =Y, then

Figure 12: JPD p given as one large table.

Pain| Y N
Weightloss| Y N| Y N
Adeno Y 220 25|95 10
NI 4 5/31 50

Figure 13: Subtable for £ = {(V,Y)}: distribu-
tion pr before normalization.

pladeno=Y |V =Y) = "p(adeno=Y, W = w, P = q|V =Y

w,q
220+ 25+ 95+ 10 _350_080
9224+ 304+ 126460 440
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Inferencing / JPD as product of potentials 2008

If p is given as product of potentials, i.e.,

p=qJ]"
qe
the problem becomes more interesting.

Naive approach: we reduce the prob-
lem to inference w.r.t. p as one large ta-
ble by explicitly computing p and then
doing inference as on the former slide,

actually computing
(pg) VW = H g)0) )10
qe@

&

. ]
c.,\‘—“” I &,

Naive approach,: we

(i) enter evidence in the factors first,
l.e., compute gz, and then

(i) compute pz as product of the gz’s

H 5 LW](Z)

qeq

lWW)
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product of potentials / naive approach

PainY[.52| WeithlossY[.75| VomitingY | .44 |

P w \'/
A
Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y | .982 .961|.833 .676|.754 .556 |.167 .081

Figure 14: Bayesian Network for adeno JPD.

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y .169 .210 .048 .049|.119 .112|.009 .005
N |.003 .009|.010 .024 |.039 .090 .044 .062

Figure 15: JPD of Bayesian Network for adeno JPD.
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product of potentials / naive approach ey
Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
AdenoY |.169 .210|.048 .049|.119 .112|.009 .005
N|.003 .009|.010 .024|.039 .090|.044 .062

Figure 16: JPD p given as one large table.

Pain Y N
Weightloss Y N Y N
Adeno Y |.169 .048|.119 .009
N .003 .010/.039 .044

Figure 17: Subtable for £ = {(V,Y)}: distribution pr before normalization.

Adeno Y |.345
N |.096

Figure 18: Aggregate subtable for £ = {(V,Y)}.
If we observe the evidence V =Y, then

pladeno=Y |V =Y) =Y "p(adeno=Y, W = w, P = q|V =Y
w,q

34
345 + 096
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Bayesian Networks / 1. Inference in Probabilistic Networks g% %
product of potentials / naive approach, ey

PainY[.52| Weithloss Y [.75| VomitingY [ 44—1.0 |

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y | .982 .961|.833 .676|.754 .556 |.167 .081

Figure 19: Bayesian Network for adeno JPD.

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N

Adeno Y |.384 0 .109 0|.270 0/.020 O
N|.007 0/.023 0/.089 0|.100 O

Figure 20: JPD of Bayesian Network for adeno JPD with evidenve IV = Y entered.
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Overview of inference methods [Guo and Hsu 2001] ey
(i) exact inference: (i) approximate inference:
(a) Polyt.rc.ee glgorlthm (a) stochastic sampling
(b) conditioning e
. (b) model simplification
(c) clustering
(d) arc reversal (c) search-based
(e) variable elimination (d) loopy propagation

(iii) symbolic inference.
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1. Inference in Probabilistic Networks

2. Variable elimination
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Bayesian Networks / 2. Variable elimination gi,’s’%
Aggregating products ® 2002 ¥
Doing inference using the naive | But it is true for dom(p) N dom(q) C W,
approachg, i.e., if pand ¢ have no common variables
me H a5 me except those in W,
9eQ Lemma 1. Let p and q be two potentials
we compute a large table as product of | on a subset of variables V. LetW C V
qr and then aggregate to V. a subset of the variables.
: Ifd Nd C W then
Question: can we aggregate the factors om(p) 1 dom(g) ©
and then multiply the aggregates? (pa)""" =p*"M gt
?
()™ = p"M "
In general, this equation does not hold,
as
(pg)™ (x) = > plz, y)q(z, )
yeHXEdom(pq)\W’ dom(X)
but
(""" ) () = ( > (@, y)) > q(z,y))

yellxedom(py\w dom(X) Y€l xedom(qg)\w dom(X)
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Bayesian Networks / 2. Variable elimination Sy
Variable elimination ® 2008 ¥
We can make use of this observation for l.e., we replace the potentials R by
. . . W.
S|rT1pI|fy|ng (quQ.q)l ; g
(i) choose a variable v € V' \ W, clearly ' .
(H Y <<H Jbev) 1w After this replacement, the variable
Qq - Qq v is eliminated from the potentials
qe qe . /| cv
. o . . = RU .
i.e., we can eliminate variable v first, ¢ A ta™)
(ii) let
R:={q€Q|vedom(q)}
be all potentials which’s domain
contains v and
ql = an Qrest = H q
q€R qEQ\R
(iii) Then
dom(q’) N dom(grest) € V' \ {v}
and thus
(T 0" = (drest - ¢"*)*"
Q
Lars Schmidt-Thiem%,@ln?ormation Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Variable elimination 5 2008 ¥

inference-varelim(Q) : set of potentials, W : set of variables) :
while |, dom(g) \ WV 0 do
choose v € |, dom(q) \ W arbitrarily
() := eliminate-variable(Q, v)
od
return ([T ., )"

A L AW N~

7 eliminate-variable((Q) : set of potentials, v : variable) :
8 R:={qeQ|vedom(q)}

9.q = (quR q>lcv
10 return Q \ RU {¢'}

Also known as bucket elimination.

Useful if the set I of variables to infer separately is small.
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example

Example 2. Let (G, (p,).cv) be the fol-
lowing Bayesian network

The conditional probabilities are

Q = {p(A), p(B|A),p(C|A),p(D|B),
p(E|B,C),p(F|C)}

We want to compute the marginal p(D)
given evidence on F. Thus we add
epd(F) to Q.

GP‘\\U"Q 7
&
-

Ly5at"

For the elimination sequence
FECAB

the following steps have to be per-
formed:

p(A), p(B|A)

p(D|B)

p(E’B,C)

p(F|C), epd(F)
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example ® 2008
For the elimination sequence
A B,C E F

the following steps have to be performed:

p(A), p(B|A), p(C|]A

p(D|B),p(E|B,C)

epd(F)
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