
Bayesian Networks

Bayesian Networks

5. Exact Inference / Clustering

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems

& Institute for Computer Science
University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 1/24

Bayesian Networks

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 1/24

Bayesian Networks / 1. Trees

Components and cycles

Definition 1. Let G be an undirected
graph. G is called connected, if there
is a path from any vertex to any other
vertex:

G∗(v, w) 6= ∅, ∀v, w ∈ V

For a vertex v ∈ V we call
compG(v) := {w |G∗(v, w) 6= ∅}

the (connection) component of v in G.

A proper path p = (v1, . . . , vn) is called
cyclic, if v1 = vn and vi are pairwise dif-
ferent otherwise:

vi = vj ⇔ i = 1 and j = n

A proper path p = (v1, . . . , vn) is called
simple, if vi are pairwise different.

An undirected graph G is called acyclic,
if it does not contain a cyclic path.

A

B

C

D
E

F
G

H

I

J

K
L

M

N

Figure 1: Graph with four components (colored).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 1/24

Bayesian Networks / 1. Trees

Trees

Definition 2. An undirected graph G is
called unrooted/undirected tree, if

(i) it is connected and acyclic
or equivalently

(ii) there is exactly one simple path be-
tween any two vertices:

|G∗simple(v, w)| = 1, ∀v, w ∈ V
The unique simple path between v and
w is denoted by pathG(v, w).

A directed graphG is called (rooted/directed)
tree, if every vertex but one (called root)
has exactly one parent and the root has
no parents:

∃r ∈ V : pa(r) = ∅ and ∀v ∈ V, v 6= r : | pa(v)| = 1

Rooted trees are special DAGs.

A

B

C

D
E

F
G

H

I

J

K
L

M

N

O

Figure 2: An unrooted tree.

A

B C D

E F G

H I

Figure 3: A (rooted) tree.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 2/24

Bayesian Networks / 1. Trees

Trees / leaves

Definition 3. Let G = (V,E) be an un-
rooted tree and r ∈ V any vertex. Then
the directed graph tree(G, r) := (V,E ′)
with

E ′ := {(v, w) | {v, w} ∈ E, | path(r, v)| < | path(r, w)|}
is called tree rooted at r of G. Obvi-
ously the tree rooted at r is a rooted tree
with root r.

For an unrooted tree the vertices with
only one neighbor are called leaves.

For a rooted tree vertices other than the
root with only one neighbor are called
leaves; the root is called a leaf if it is
the only vertex of the tree.

A

B

C

D
E

F
G

H

I

J

K
L

M

N

O

Figure 4: Unrooted tree from figure 2 rootet at
O.

O

C

A B

G

D E F

J

H I

N

K L M

Figure 5: The same tree as in figure 4
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 3/24

Bayesian Networks / 1. Trees

Trees / level maps

Definition 4. Let G be a DAG (e.g., a
rooted tree). The length of the longest
path is called the depth of G and de-
noted by depth(G).

Let G := (V,E) be a DAG (e.g., a rooted
tree). A map

λ : V → N

is called level map of G if

λ(v) > λ(pa(v)), ∀v ∈ V

For a rooted tree G := (V,E) with root r,

depth(v) := | path(r, v)|
and

A

B C D

E F G

H I

depth

1

2

3

4

Figure 6: The depth level map for a tree.

A

B

C

D

E F

G

H I

height

1

2

3

4

Figure 7: The height level map for a tree.

height(v) := depth(G)−max{|p| |w ∈ V leaf, p ∈ G∗(v, w), r 6∈ p} + 1

are examples for level maps.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 4/24

Bayesian Networks / 1. Trees

Links, polytrees

Definition 5. Let G := (V,E) be an undi-
rected graph. The set

LG := {(v, w) | {v, w} ∈ E}
is called its set of links.

Definition 6. A directed graph G is
called polytree, if for each vertex r with-
out parents (called a root) its descen-
dants desc r ∪ {r} form a tree.
or equivalently
if every vertex has at most one parent
that is not a root (i.e., has parents itself).

A B

C D E

F G H

Figure 8: A polytree with roots A and B.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 5/24

Bayesian Networks

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 6/24

Bayesian Networks / 2. Cluster Trees

Cluster trees

Definition 7. Let V be a set (of vari-
ables).
An unrooted tree G := (V , E) on V ⊆
P(V) is called a cluster tree on V , if

(i) the induced subgraph on all ver-
tices containing a given variable v,
i.e.,

{W ∈ V | v ∈ W}
is connected for all variables v ∈ V .
or equivalently

(ii) for any U,W ∈ V:

U ∩W = U ∩
⋃

compG\{U}(W)

For two vertices U,W of a cluster tree
U ∩W is called their separator.
Cluster trees are also called join trees
and junction trees.

{A, C}

{B, D, E}

{C, E, F}{D}

{C, D, E}

Figure 9: A cluster tree on
V := {A,B,C,D,E, F}.

{A, C}

{B, D, E}

{C, E, F}{A, D}

{C, D, E}

Figure 10: Not a cluster tree.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 6/24

Bayesian Networks / 2. Cluster Trees

Cluster trees

Definition 8. Let V be a set of variables
and Q be a set of potentials on V .
A cluster tree G := (V , E) on V with a
map

QG : V → P(Q)

s.t.
(i) dom(q) ⊆ C for all q ∈ QG(C), C ∈ V,

(ii) Im(QG) covers Q, i.e.,⋃

W∈V
QG(W) = Q

and

(iii) QG(W) and QG(U) are pairwise dis-
junct, i.e.,

QG(W) ∩QG(U) 6= ∅ ⇒ W = U,

∀W,U ∈ V
is called a cluster tree for Q.

Q := {p(D), p(B), p(C|D),

p(E|D,B), p(A|C), p(F |C,E)}
are the conditional probabilities of the
bayesian network

D B

C E

A F

A cluster tree for Q is, e.g.,

{A, C}

{B, D, E}

{C, E, F}{D}

{C, D, E}p(A|C)

p(B), p(E|B, D)

p(F |C, E)p(D)

p(C|D)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 7/24

Bayesian Networks / 2. Cluster Trees

A simple cluster tree for polytree Bayesian networks

Let G be a directed graph. For v ∈ V

fam(v) := {v} ∪ pa(v)

is called the familiy of v.

Let (G = (V,E), (pv)v∈V) be a polytree
Bayesian network. Let

V := {fam(v) | v ∈ V }

and

F := {(fam(pa(v)), fam(v)) | v ∈ V, pa(v) 6= ∅}

Then H := (V , F) is a cluster tree for
Q := {pv | v ∈ V } called family tree.

A B

C D E

F G H

Figure 11: Polytree Bayesian network.

{A} {B}

{A, C} {A, B, D} {B, E}

{C, F} {C, G} {D, H}

Figure 12: Cluster tree of polytree Bayesian net-
work above.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 8/24

Bayesian Networks / 2. Cluster Trees

Clique cluster tree for Markov networks

Markov networks (G, (qC)C∈C(G)) use po-
tentials on cliques to specify the JPD.
If G is triangulated, it allows a chain of
cliques, i.e., an ordering C1, . . . , Cn of
the cliques that satisfies the running in-
tersection property:

Ci ∩
⋃

j<i

Cj ⊆ Ck(i), ∀i∃k(i) < i

We can construct the clique (cluster)
tree H := (V , F) from

V := C(G) = {C1, . . . , Cn}
and

F := {(Ck(i), Ci) | i = 2, . . . , n}

We will later address the problem
of cluster trees for non-triangulated
Markov networks.

A B

C D

E

F G H

Figure 13: Markov network.

{A, B, C}

{B, C, D, E}

{E, F, G} {E, G, H}

Figure 14: Clique cluster tree of Markov network
above.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 9/24

Bayesian Networks / 2. Cluster Trees

Clique cluster tree for Bayesian networks

Cluster trees for Bayesian networks can
be constructed by a two phase ap-
proach:

(i) construct an equivalent Markov net-
work representation of the Bayesian
network,

(ii) construct the clique cluster tree for
the Markov network.

An equivalent Markov network for a
Bayesian network (G = (V,E), (pv)v∈V)
can be constructed by

moral(G)

and assigning the conditional probabili-
ties to cliques that contain their domain.

D B

C E

A F

Figure 15: Bayesian network.
D B

C E

A F

Figure 16: Markov network for Bayesian network
above.

{A, C}

{B, D, E}

{C, E, F}

{C, D, E}p(A|C)

p(B), p(E|B, D)

p(F |C, E)

p(D), p(C|D)

Figure 17: Clique cluster tree for Markov net-
work above.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 10/24

Bayesian Networks

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 11/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Vertex marginals and link potentials

Let Q be a set of potentials and G be a
cluster tree for Q.
Inference for all variables separately can
be accomplished by

(i) adding the evidence potentials to Q
(and to QG),

(ii) computing the vertex marginals
qV := (

∏

q∈Q
q)↓V

(iii) computing the single variable
marginals
qv := (qV)↓v, for V ∈ V with v ∈ V

This can be done by a recursive compu-
tation of the link potentials:

qU,W := (
∏

q∈QG(compG\{W}(U))

q)↓U∩W

traditionally called messages.

A

B

C

D
E

F
G

H

I

J

K
L

M

N

OqC,O

Figure 18: The link potential qC,O describes the
potentials in the component compG\{O}(C) (or-
ange).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 11/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Link potentials

Lemma 1. Vertex marginals and link po-
tentials can be expressed by link poten-
tials:

(i)

qU =
∏

q∈QG(U)

q
∏

T∈fan(U)

qT,U

(ii)

qU,W = (
∏

q∈QG(U)

q
∏

T∈fan(U),
T 6=W

qT,U)↓U∩W

A

B

C

D
E

F
G

H

I

J

K
L

M

N

OqC,O

qG,O

qJ,O

qN,O

Figure 19: Expressing the vertex potential qO by
the linkpotentials q.,O.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 11/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Link potentials

Lemma 1. Vertex marginals and link po-
tentials can be expressed by link poten-
tials:

(i)

qU =
∏

q∈QG(U)

q
∏

T∈fan(U)

qT,U

(ii)

qU,W = (
∏

q∈QG(U)

q
∏

T∈fan(U),
T 6=W

qT,U)↓U∩W

A

B

C

D
E

F
G

H

I

J

K
L

M

N

OqC,O

qG,O

qJ,O

qO,N

Figure 20: Expressing the link potential qO,N by
the linkpotentials q.,O.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 12/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Recursive computation of link potentials

Lemma 2. The formula of the previous
lemma allows the recursive computation
of link potentials in a cluster tree G.
Proof. Choose an arbitrary vertex as
root and replace G by its rooted tree.
Let λ be a level map of G and λmin, λmax

its minimal and maximal values.
I. up links (collect evidence): induction
on n := λ(U) for link potentials qU,pa(U).
n = λmax: U is a leaf and has no other

neighbors other than its parent.

n→ n− 1: the link potentials from
childs into U have already been com-
puted by induction hypothesis. ⇒
qU,pa(U) can be computed (G is a tree,
thus U has at most one parent).

A

B

C

D
E

F
G

H

I

J

K
L

M

N

O2

2

2

2

1

1

1 1
1

1

1

1

11

Figure 21: Collect evidence.

O

C

A B

G

D E F

J

H I

N

K L M

2 2

2 2

1

1

1
1

1

1

1

1
1

1

Figure 22: Collect evidence.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 13/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Recursive computation of link potentials

Lemma 2. The formula of the previous
lemma allows the recursive computation
of link potentials in a cluster tree G.
Proof (cont.).
II. down links (distribute evidence): in-
duction on n := λ(pa(U)) for link poten-
tials qpa(U),U .
n = λmin: pa(U) is the root. All of

its neighboring link potentials have
been computed by step I. ⇒ qpa(U),U

can be computed.

n→ n + 1: the link potentials from childs
into pa(U) have already been com-
puted by step I, the link potential
qpa(pa(U)),pa(U) has already been com-
puted by induction hypothesis. ⇒
qpa(U),U can be computed.

A

B

C

D
E

F
G

H

I

J

K
L

M

N

O

3 3

33

4

4

4

4

4

44

44

4

Figure 23: Distribute evidence.

O

C

A B

G

D E F

J

H I

N

K L M

3 3

3 3

4

4

4
4

4

4

4

4
4

4

Figure 24: Distribute evidence.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 13/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Shafer-Shenoy propagation
The following computation scheme is called Shafer-Shenoy propagation []:

(i) collect evidence:

qU,W = (
∏

q∈QG(U)

q
∏

T∈fan(U),
T 6=W

qT,U)↓U∩W = ((
∏

q∈QG(U)

q) · qT1,U · · · qTn,U)↓U∩W

(ii) distribute evidence:

qU,Ti = (
∏

q∈QG(U)

q
∏

T∈fan(U),
T 6=Ti

qT,U)↓U∩Ti = ((
∏

q∈QG(U)

q) · qW,U · qT1,U · · · q̂Ti,U · · · qTn,U)↓U∩Ti

(iii) marginalize:

qU =
∏

q∈QG(U)

q
∏

T∈fan(U)

qT,U = (
∏

q∈QG(U)

q) · qW,U · qT1,U · · · qTn,U

T1 T2
. . . Tn

U

W

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 14/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Hugin propagation

The following computation scheme is called Hugin propagation []:

(i) collect evidence:

q′U =
∏

q∈QG(U)

q
∏

T∈fan(U)
T 6=W

qT,U = (
∏

q∈QG(U)

q) · qT1,U · · · qTn,U

qU,W = q′↓U∩WU

(ii) marginalize and distribute evidence:

qU = q′U · qW,U
qU,Ti = (

qU
qTi,U

)↓U∩Ti but store separator marginal (qU)↓U∩Ti

T1 T2
. . . Tn

U

W

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 15/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Shafer-Shenoy vs. Hugin propagation

Hugin propagation compared to Shafer-
Shenoy propagation:

(i) Hugin propagation allows the reuse
of the storage space of the link po-
tentials qU,W for qW,U (one "postbox"
instead of two),

(ii) Hugin propagation affords extra
storage space for the vertex poten-
tials qU and thus its overall space re-
quirements are higher,

(iii) Hugin propagation requires a
smaller number of total opera-
tions (additions, multiplications, di-
visions) than Shafer-Shenoy propa-
gation at vertices with degree > 3
(that can be avoided by the use of
binary cluster trees),

(iv) Hugin propagation allows the
marginalization of the smaller sep-
arator marginals,

(v) Some of the operations required by
Hugin propagation are more costly
(divisions) than those required by
Shafer-Shenoy.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 16/24

Bayesian Networks / 3. Recursive Computation of Link Potentials

Lazy propagation

The idea of lazy propagation [MJ98] is to keep the link po-
tentials in factored form, i.e., to replace the link potential qU,W
with a set of potentials QU,W with

qU,W =
∏

q∈QU,W

q

The formulas of lemma 1 then read as:

(i)
qU =

∏

q∈QG(U)

q
∏

T∈fan(U)
q∈Q(T,U)

q

(ii)
qU,W = elim(QG(U) ∪

⋃

T∈fan(U),
T 6=W

QT,U , c(U ∩W))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 17/24

Bayesian Networks

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 18/24

Bayesian Networks / 4. Clique (Cluster) Trees

Clique trees for triangulated graphs (1/3)

Clique cluster trees can easily be com-
puted of triangulated graphs.

(i) Triangulated graphs admit a perfect
ordering of G, i.e., an ordering σ
with

famσ({1,...,i})(σ(i))

is complete.

(ii) A perfect ordering can be computed
by the maximum cardinality search
algorithm (MCS).

Proving the correctness of MCS affords
some work (e.g., [Sha94, p. 43–46]).

A B

C D

E

F G H I

1 2

3 4

5

6 7 8 9

Figure 25: Perfect ordering of a triangulated
graph obtained by MCS.

1 perfect-ordering-MCS(G = (V, E)) :
2 for i = 1, . . . , |V | do
3 σ(i) := v ∈ V \ σ({1, . . . , i − 1}) with maximal |fanG(v) ∩ σ({1, . . . , i− 1})|
4 breaking ties arbitrarily
5 od
6 return σ

Figure 26: MCS algorithm to compute a perfect ordering [TY84].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 18/24

Bayesian Networks / 4. Clique (Cluster) Trees

Clique trees for triangulated graphs (2/3)

All cliques can be enumerated by a vari-
ant of the MCS algorithm:

1. if G is triangulated, MCS com-
putes a perfect ordering of G, i.e.,
famσ({1,...,i})(σ(i)) is complete.

2. we get all cliques this way, as for
each clique C let i := maxσ−1(C),
then C = famσ({1,...,i})(σ(i)).

Let Ci := famσ({1,...,i})(σ(i)) and

Ci = {σ(j1), . . . , σ(jn), σ(i)}
with j1 < j2 < . . . < jn. Due to the com-
pleteness of Ci then σ(jn) is a neighbor
of all σ(jl), l = 1, . . . , n− 1, and thus

Ci ∩
⋃

k<i

Ck ⊆ Cjn

i.e., the sequence (Ci)i=1,...,|V | has the
running intersection property (that can
be telescoped if a Ci gets pruned).

1 enumerate-cliques-MCS(G = (V, E)) :
2 C := ∅
3 for i = 1, . . . , |V | do
4 σ(i) := v ∈ V \ σ({1, . . . , i− 1}) with maximal |fanG(v) ∩ σ({1, . . . , i− 1})|
5 breaking ties arbitrarily
6 C := C ∪ {famσ({1,...,i})(σ(i))}
7 od
8 C := {C ∈ C | 6 ∃D ∈ C : D ⊇ C}
9 return C
Figure 27: MCS algorithm to compute cliques of a triangulated graph [TY84].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 19/24

Bayesian Networks / 4. Clique (Cluster) Trees

Clique trees for triangulated graphs (3/3)

A B

C D

E

F G H I

1 2

3 4

5

6 7 8 9

Figure 28: Perfect ordering of a triangulated
graph obtained by MCS.

{A} {A, B}
{A, B, C}

{B, C, D}

{B, C, D, E}

{E, F}

{E, F, G}

{E, H}

{E, H, I}

Figure 29: Clique cluster tree for triangulated
graph at the left (blue nodes are temporary and
pruned).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 20/24

Bayesian Networks

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 21/24

Bayesian Networks / 5. Triangulation

Triangulation of graphs (1/3)

As clique cluster trees can easily be
computed of triangulated graphs, we
triangulate non-triangulated graphs by
filling-in additional edges.

However, additional edges mean, that
the graph represents a smaller portion
of the independency statements, and
thus, inference becomes harder.

The fewer edges have to be filled-in, the
better.

A

B E D

C

A

B E D

C

1

2 3

4

5

Figure 30: Non-triangulated graph and its trian-
gulation obtained by MCS.

1 triangulate-MCS(G = (V, E)) :
2 σ := perfect-ordering-MCS (G)
3 fillin := ∅
4 for i = |V |, . . . , 1 do
5 fillin := fillin ∪ {(u, w) | u, w ∈ fan(V,E∪fillin)(σ(i)) ∩ σ({1, . . . , i− 1}), {u, w} 6∈ E}
6 od
7 return G′ := (V, E ∪ fillin)

Figure 31: Maximum cardinality search algorithm for triangulating a graph [TY84].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 21/24

Bayesian Networks / 5. Triangulation

Triangulation of graphs (2/3)

MCS does not guarantee to give best
results (i.e., minimal fill-ins). It is just a
heuristics that gives useable results (in
most cases).

A

B C D E

F

Figure 32: Optimal triangulation.

A

B C D E

F

Figure 33: Non-optimal triangulation obtained
by MCS (with smallest index rule).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 22/24

Bayesian Networks / 5. Triangulation

Triangulation of graphs (3/3)

Beneath the heuristic triangulation algo-
rithms one distinguishes between:
minimum triangulations: no other tri-

angulation has a smaller number of
filled-in edges (global minimum).

This task is known to be NP-
complete [Yan81].

A

B C D E

F

Figure 34: A minimum triangulation (here:
unique).

minimal triangulations: no subset of
the filled-in edges results in a trian-
gulation (local minimum).

There are several algorithms for the
minimal triangulation task, e.g., Lex-
M [RTL76], MCS-M [BBH02], and
LB-triang [BBH+03].

A

B C D E

F

Figure 35: A minimal triangulation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 23/24

Bayesian Networks / 5. Triangulation

References

[BBH02] A. Berry, J. R. S. Blair, , and P. Heggernes. Maximum cardinality search for com-
puting minimal triangulations. In L. Kucera, editor, Graph Theoretical Concepts in
Computer Science, Proceedings of the 28th International Workshop on Graph The-
oretical Concepts in Computer Science (WG 2002), Cesky Krumlov, Czech Republic,
June 13-15, 2002.

[BBH+03] A. Berry, J. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algo-
rithm for minimal triangulation from an arbitrary ordering, 2003.

[MJ98] Anders L. Madsen and Finn V. Jensen. Lazy propagation in junction trees. In Pro-
ceedings of the 14th Conference on UAI, pages 362–369, 1998.

[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5:266–283, 1976.

[Sha94] Ron Shamir. Advanced topics in graph algorithms. Technical report, Tel-Aviv Univer-
sity, 1994.

[TY84] R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduct acyclic hypergraphs.
SIAM Journal on Computing, 13:566–579, 1984.

[Yan81] M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM J. Alg. and
Disc. Meth., 2:77–79, 1981.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 24/24

