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Components and cycles

Definition 1. Let G be an undirected
graph. G is called connected, if there
is a path from any vertex to any other
vertex:

G (v, w) # 0,

For a vertex v € V we call

compg(v) = {w | G*(v, w) # 0}
the (connection) component of v in G.

Yo,w eV

A proper path p = (vy,...,v,) is called

cyclic, if v; = v, and v; are pairwise dif-

ferent otherwise:
vi=vj&i=1and j=n

A proper path p = (vy,...,v,) is called

simple, if v; are pairwise different.

An undirected graph G is called acyclic,
if it does not contain a cyclic path.
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Figure 1: Graph with four components (colored).
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Trees

Definition 2. An undirected graph G is
called unrooted/undirected tree, if

(i) it is connected and acyclic
or equivalently

(i) there is exactly one simple path be-
tween any two vertices:

‘G:imple(vaw” =1, Yo,weV

The unique simple path between v and
w is denoted by path (v, w).

A directed graph G is called (rooted/direc

tree, if every vertex but one (called root)
has exactly one parent and the root has
no parents:

dre Vi pa(r)=0andVv e Vv #r: |pa

Rooted trees are special DAGs.
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Figure 2: An unrooted tree.
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Figure 3: A (rooted) tree.
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Trees / leaves ® 2008

Definition 3. Let G = (V, F) be an un-
rooted tree and » € V' any vertex. Then
the directed graph tree(G,r) = (V. E')
with

E' = {(v,w)|{v,w} € E,|path(r,v)| < | path(r,w)|} o)

is called tree rooted at » of G. Obuvi-
ously the tree rooted at r is a rooted tree
with root r.

For an unrooted tree the vertices with | Figure 4: Unrooted tree from figure 2 rootet at
only one neighbor are called leaves. 0.

For a rooted tree vertices other than the
root with only one neighbor are called
leaves; the root is called a leaf if it is
the only vertex of the tree.

Figure 5: The same tree as in figure 4
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Trees / level maps e

Definition 4. Let G be a DAG (e.g., a
rooted tree). The length of the longest
path is called the depth of G and de-
noted by depth(G).

Let G := (V, E) be a DAG (e.g., a rooted

tree). A map

Figure 6: The depth level map for a tree.
AV —-N

height
is called level map of G if
Av) > Mpa(v)), YveV

For a rooted tree G := (V, E) with root r,

depth(v) := | path(r, v)|

and Figure 7: The height level map for a tree.
height(v) := depth(G) — max{|p||w € V leaf,p € G*(v,w),r & p} + 1
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Links, polytrees

Definition 5. Let G := (V, F) be an undi-
rected graph. The set

L¢ :={(v,w)|{v,w} € E}
is called its set of links.

Definition 6. A directed graph G is
called polytree, if for each vertex r with-
out parents (called a root) its descen-
dants descr U {r} form a tree.

or equivalently

if every vertex has at most one parent
that is not a root (i.e., has parents itself). | Figure 8: A polytree with roots A and B.
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Cluster trees

Definition 7. Let VV be a set (of vari-

ables).
An unrooted tree G = (V,E) on V C
P(V) is called a cluster tree on V| if

(i) the induced subgraph on all ver-
tices containing a given variable v,
i.e.,

{WeV|ive W}
is connected for all variables v € V.

or equivalently
(i) forany U, W € V:
UNnW =Un Ucompg\{U}(W)

For two vertices U, W of a cluster tree
U N W is called their separator.

Cluster trees are also called join trees
and junction trees.

Figure 9: A cluster tree on
V :={A,B,C,D, E, F}.

Figure 10: Not a cluster tree.
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Cluster trees

Definition 8. Let V' be a set of variables
and @ be a set of potentials on V.
A cluster tree G = (V, FE) on V with a
map
Qc:V — PQ)

s.t.

(i) dom(q) C C'forallq € Qa(C), C €V,

(i) Im(Q¢) covers @, i.e.,

U QW) =@
Wwey
and
(iii) Qa(W) and Q¢(U) are pairwise dis-
junct, i.e.,
QeW)NQcU) #0=W =T,
YW, U €V

is called a cluster tree for Q.
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Q = {p(D),p(B), p(C|D),
p(E|D, B), p(A|C),p(F|C, E)}
are the conditional probabilities of the
bayesian network
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A simple cluster tree for polytree Bayesian networks ® a0 ¥

Let G be a directed graph. Forv e V
fam(v) := {v} U pa(v)

is called the familiy of v.

Let (G = (V,E), (p,)uev) be a polytree
Bayesian network. Let

V = {fam(v) |v € V'}
and

F = {(fam(pa(v)), fam(v)) | v € V, pa(v) #

Then H = (V,F) is a cluster tree for | Figure 12: Cluster tree of polytree Bayesian net-
Q = {p,|v € V} called family tree. work above.
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Clique cluster tree for Markov networks ey

Markov networks (G, (qgc)cec(c)) Use po- A B
tentials on cliques to specify the JPD.
If G is triangulated, it allows a chain of
cliques, i.e., an ordering Ci,...,C, of
the cliques that satisfies the running in-
tersection property:

cinlJC; € Gy, ViTk(i) < i SN~

j<i

Figure 13: Markov network.

We can construct the clique (cluster)
tree H .= (V, F') from

Vi=C(G) = {Cy,...,C,}
and

We will later address the problem
of cluster trees for non-triangulated | Figure 14: Clique cluster tree of Markov network
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Clique cluster tree for Bayesian networks ® 2008

Cluster trees for Bayesian networks can D) (B
be constructed by a two phase ap-
proach:

(i) construct an equivalent Markov net- AvtF

work representation of the Bayesian | Figure 15: Bayesian network.

network, DB
(i) construct the clique cluster tree for
the Markov network. L

_ Figure 16: Markov network for Bayesian network
An equivalent Markov network for a | apove.

Bayesian network (G = (V, E), (pv)vev)
can be constructed by

moral(G)

and assigning the conditional probabili-

ties to cliques that contain their domain.
Figure 17: Clique cluster tree for Markov net-

work - above
v LAYX)
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Vertex marginals and link potentials s S

Let Q be a set of potentials and G be a
cluster tree for Q).

Inference for all variables separately can
be accomplished by

(i) adding the evidence potentials to @
(and to Q¢),

(i) computing the vertex marginals

qv = (H Q>W

qeq

(iif) computing the single variable
marginals
g = (q)!’, forVeVwithveV

This can be done by a recursive compu-
tation of the link potentials:

H q)lUﬂW

q€Qc¢(compey (131 (U))

quw = (

Course on Bayesian Networks summer term 2010

Figure 18: The link potential ¢ describes the
potentials in the component compe (oy(C) (or-
ange).
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Lemma 1. Vertex marginals and link po-
tentials can be expressed by link poten-
tials:

(1)
H q H qru
q€Qa(U) Tefan(U)
(i)
quw = H H qr, lUﬂW
q€Qa(U) Tefan(U),
TAW

Figure 19: Expressing the vertex potential ¢o by
the linkpotentials ¢ o.
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Link potentials ® 2008 ¥

Lemma 1. Vertex marginals and link po-
tentials can be expressed by link poten-
tials:

(1)

H H qru

q€Qqa(U)  Tefan(U)
(ii)
quw = H H QTU lUﬁW

g€Qn(U) Tefan(U),
T+W

Figure 20: Expressing the link potential ¢o v by
the linkpotentials ¢ o.
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Lemma 2. The formula of the previous
lemma allows the recursive computation
of link potentials in a cluster tree G.

Proof. Choose an arbitrary vertex as
root and replace G by its rooted tree.
Let A be a level map of G and A in, Amax
its minimal and maximal values.
l. up links (collect evidence): induction
on n := A(U) for link potentials gy pa ().
n = Amax: U 1S a leaf and has no other
neighbors other than its parent.

n —n — 1:the link potentials from
childs into U have already been com-
puted by induction hypothesis. =
qupa() C@N be computed (G is a tree,
thus U has at most one parent).

[

Figure 22: Collect evidence.
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Recursive computation of link potentials

Lemma 2. The formula of the previous
lemma allows the recursive computation
of link potentials in a cluster tree G.

Proof (cont.).

ll. down links (distribute evidence): in-

duction on n := A(pa(U)) for link poten-

tials Qpa(U),U

n = Amn: pa(U) is the root. All of
its neighboring link potentials have
been computed by step |. = g0 v
can be computed.

n — n + 1: the link potentials from childs
into pa(U) have already been com-
puted by step I, the link potential
Tpa(pa(U)) pa(u) NaS already been com-
puted by induction hypothesis. =
Ipa(u),v CAN be computed.

[ | Figure 24: Distribute evidence.
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Shafer-Shenoy propagation
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The following computation scheme is called Shafer-Shenoy propagation []:

(i) collect evidence:

quw = ( H H qro)'™ = (( H Q) any-aro)UW

q€Qq(U) Tefan(U), q€Qc(U)
TAW

(ii) distribute evidence:

qur; = ( H H gro)tM = (( H Q) qwy - qnu- - qnu

q€Qq(U) Tefan(U), q€Qc(U)
TAT,

(iil) marginalize:

qu = H H qr.u = ( H q) - qwu - qru 4T,

q€Qq(U) Tefan(U) q€Qc(U)

gr, )"
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Bayesian Networks / 3. Recursive Computation of Link Potentials

Hugin propagation

G)\\,‘\\u"q%
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The following computation scheme is called Hugin propagation []:

(i) collect evidence:

H H gru = ( H Q) qru - qr,u

q€Qq(U) Tefan(U) q€Qq(U)
T#W
1LUNW
qQuw = 4y

(il) marginalize and distribute evidence:

qu = C]& “qwu
qurT = (U ywonr, but store separator marginal (¢

Iz

)lUﬂTz’
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Shafer-Shenoy vs. Hugin propagation ® a0 ¥

Hugin propagation compared to Shafer- | (iv) Hugin propagation allows the

Shenoy propagation: marginalization of the smaller sep-
(i) Hugin propagation allows the reuse arator marginals,
of the storage space of the link po- | () Some of the operations required by
tentials gy for qw,y (one "postbox” Hugin propagation are more costly
instead of two), (divisions) than those required by
(i) Hugin propagation affords extra Shafer-Shenoy.

storage space for the vertex poten-
tials ¢y and thus its overall space re-
quirements are higher,

(ii) Hugin  propagation requires a
smaller number of total opera-
tions (additions, multiplications, di-
visions) than Shafer-Shenoy propa-
gation at vertices with degree > 3
(that can be avoided by the use of
binary cluster trees),

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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The idea of lazy propagation [MJ98] is to keep the link po-
tentials in factored form, i.e., to replace the link potential gy i
with a set of potentials Q- with

quw = H q
9€Qu,w

The formulas of lemma 1 then read as:

()
= Il « I «

g€Qa(U) Tetan(U)
qeQ(T\U)

quw = elim(Qe(U)U |} Qru,c(UnW))

Tefan(U),
T#W
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Clique trees for triangulated graphs (1/3)

Clique cluster trees can easily be com-
puted of triangulated graphs.

(i) Triangulated graphs admit a perfect
ordering of G, i.e., an ordering o
with

famg 1,1 (0 (7))
is complete.
(ii) A perfect ordering can be computed

by the maximum cardinality search
algorithm (MCS).

GP‘\\U"Q 7
&
-

Ly5at"

Proving the correctness of MCS affords
some work (e.g., [Sha94, p. 43—-46]).

Figure 25: Perfect ordering of a triangulated
graph obtained by MCS.

o(i):=veV\o{l,...,i—1}) with maximal |fang(v) No({1,...,i — 1})]

1 perfect-ordering-MCS(G = (V, E)) :
2fori=1,...,|V|do

3

4 breaking ties arbitrarily

5 od

6 return o
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Clique trees for triangulated graphs (2/3)

All cliques can be enumerated by a vari-
ant of the MCS algorithm:

1.if G is triangulated, MCS com-
putes a perfect ordering of G, i.e.,
fam, 1. 1) (o (7)) is complete.

2. we get all cliques this way, as for
each clique C let i := maxo (C),
then C' = famg({lj_”ﬂ-})(a(i)).

1 enumerate-cliques-MCS(G = (V, E)) :
2 C:=10
sfori=1,...,|V|do

4
5 breaking ties arbitrarily
6

7 od

sC:={CeC| ADeC:DDC}
9 return C

G;ﬁvdﬂg

. &
2003

Let C; = famo.({l 72})(O‘(Z)) and

5

Ci = {0(j1)7 S 70<jn>7 U(Z>}

with j; < j» < ... < j,. Due to the com-
pleteness of C; then o(j,) is a neighbor
ofallo(y),l=1,...,n— 1, and thus

cnlJaca,
k<i
i.e., the sequence (C;),—; v has the

running intersection property (that can
be telescoped if a C; gets pruned).

o(i):==veV\o({l,...,i—1}) with maximal |fang(v) No({1,...,i —1})]

Figure 27: MCS algorithm to compute cliques of a triangulated graph [TY84].
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Bayesian Networks / 4. Clique (Cluster) Trees g“v 3
Clique trees for triangulated graphs (3/3) ® 2008 ¥

Figure 29: Clique cluster tree for triangulated
Figure 28: Perfect ordering of a triangulated | graph at the left (blue nodes are temporary and
graph obtained by MCS. pruned).
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Triangulation of graphs (1/3) % 200

As clique cluster trees can easily be
computed of triangulated graphs, we
triangulate non-triangulated graphs by
filling-in additional edges.

However, additional edges mean, that
the graph represents a smaller portion
of the independency statements, and
thus, inference becomes harder.

The fewer edges have to be filled-in, the
better.

Cc

Figure 30: Non-triangulated graph and its trian-
gulation obtained by MCS.

fillin := fillin U {(u, w) | u, w € fany, o f1in) (0 (1)) No({1,...,i = 1}), {u, w} € E}

1 triangulate-MCS(G = (V, F)) :
2 o := perfect-ordering-MCS (G)
3 fillin := ()

4 fori=|V|],...,1do

5

¢ od

7 return G’ := (V, E U fillin)
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Triangulation of graphs (2/3) 5 a0 ¥

MCS does not guarantee to give best
results (i.e., minimal fill-ins). It is just a
heuristics that gives useable results (in
most cases).

Figure 32: Optimal triangulation.

Figure 33: Non-optimal triangulation obtained
by MCS (with smallest index rule).
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Triangulation of graphs (3/3)

Beneath the heuristic triangulation algo-

rithms one distinguishes between:

minimum triangulations: no other tri-
angulation has a smaller number of
filled-in edges (global minimum).

This task is known to be NP-
complete [Yan81].

minimal triangulations: no subset of
the filled-in edges results in a trian-
gulation (local minimum).

There are several algorithms for the
minimal triangulation task, e.g., Lex-
M [RTL76], MCS-M [BBHO02], and
LB-triang [BBH03].

Figure 34: A minimum triangulation (here:

unique).

A

Figure 35: A minimal triangulation.
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