Bayesian Networks

5. Exact Inference / Clustering

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems
\& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Definition 1. Let G be an undirected graph. G is called connected, if there is a path from any vertex to any other vertex:

$$
G^{*}(v, w) \neq \emptyset, \quad \forall v, w \in V
$$

For a vertex $v \in V$ we call

$$
\operatorname{comp}_{G}(v):=\left\{w \mid G^{*}(v, w) \neq \emptyset\right\}
$$

the (connection) component of v in G.
A proper path $p=\left(v_{1}, \ldots, v_{n}\right)$ is called cyclic, if $v_{1}=v_{n}$ and v_{i} are pairwise different otherwise:

$$
v_{i}=v_{j} \Leftrightarrow i=1 \text { and } j=n
$$

A proper path $p=\left(v_{1}, \ldots, v_{n}\right)$ is called simple, if v_{i} are pairwise different.

An undirected graph G is called acyclic, if it does not contain a cyclic path.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Trees

Definition 2. An undirected graph G is called unrooted/undirected tree, if
(i) it is connected and acyclic or equivalently
(ii) there is exactly one simple path between any two vertices:

$$
\left|G_{\text {simple }}^{*}(v, w)\right|=1, \quad \forall v, w \in V
$$

The unique simple path between v and w is denoted by $\operatorname{path}_{G}(v, w)$.

Figure 2: An unrooted tree.

A directed graph G is called (rooted/directed) tree, if every vertex but one (called root) has exactly one parent and the root has no parents:
$\exists r \in V: \operatorname{pa}(r)=\emptyset$ and $\forall v \in V, v \neq r:|\mathrm{pa}(v)|=1$

Figure 3: A (rooted) tree.

Rooted trees are special DAGs.

Definition 3. Let $G=(V, E)$ be an unrooted tree and $r \in V$ any vertex. Then the directed $\operatorname{graph} \operatorname{tree}(G, r):=\left(V, E^{\prime}\right)$ with
$E^{\prime}:=\{(v, w)|\{v, w\} \in E,|\operatorname{path}(r, v)|<|\operatorname{path}(r, w)|\}$
is called tree rooted at r of G. Obviously the tree rooted at r is a rooted tree with root r.

For an unrooted tree the vertices with only one neighbor are called leaves.

For a rooted tree vertices other than the root with only one neighbor are called leaves; the root is called a leaf if it is the only vertex of the tree.

$|$| \|ath $(r, w) \mid\}$ |
| :--- |
| |

Figure 4: Unrooted tree from figure 2 rootet at O.

Figure 5: The same tree as in figure 4

Bayesian Networks / 1. Trees
Trees / level maps
Definition 4. Let G be a DAG (e.g., a rooted tree). The length of the longest path is called the depth of G and denoted by depth (G).

Let $G:=(V, E)$ be a DAG (e.g., a rooted tree). A map

$$
\lambda: V \rightarrow \mathbb{N}
$$

is called level map of G if

$$
\lambda(v)>\lambda(\operatorname{pa}(v)), \quad \forall v \in V
$$

For a rooted tree $G:=(V, E)$ with root r,

$$
\operatorname{depth}(v):=|\operatorname{path}(r, v)|
$$

and
and

$$
\operatorname{height}(v):=\operatorname{depth}(G)-\max \left\{|p| \mid w \in V \text { leaf, } p \in G^{*}(v, w), r \notin p\right\}+1
$$

Definition 5. Let $G:=(V, E)$ be an undirected graph. The set

$$
L_{G}:=\{(v, w) \mid\{v, w\} \in E\}
$$

is called its set of links.

Definition 6. A directed graph G is called polytree, if for each vertex r without parents (called a root) its descendants desc $r \cup\{r\}$ form a tree.
or equivalently
if every vertex has at most one parent that is not a root (i.e., has parents itself).

Figure 8: A polytree with roots A and B.

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Definition 7. Let V be a set (of variables).
An unrooted tree $G:=(\mathcal{V}, E)$ on $\mathcal{V} \subseteq$ $\mathcal{P}(V)$ is called a cluster tree on V, if
(i) the induced subgraph on all vertices containing a given variable v, i.e.,

$$
\{W \in \mathcal{V} \mid v \in W\}
$$

is connected for all variables $v \in V$. or equivalently
(ii) for any $U, W \in \mathcal{V}$:

$$
U \cap W=U \cap \bigcup \operatorname{comp}_{G \backslash\{U\}}(W)
$$

For two vertices U, W of a cluster tree $U \cap W$ is called their separator.

Cluster trees are also called join trees and junction trees.

Figure 9: A cluster tree on $V:=\{A, B, C, D, E, F\}$.

Figure 10: Not a cluster tree.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Cluster Trees

Definition 8. Let V be a set of variables and Q be a set of potentials on V.
A cluster tree $G:=(\mathcal{V}, E)$ on V with a map

$$
Q_{G}: \mathcal{V} \rightarrow \mathcal{P}(Q)
$$

s.t.
(i) $\operatorname{dom}(q) \subseteq C$ for all $q \in Q_{G}(C), C \in \mathcal{V}$,
(ii) $\operatorname{Im}\left(Q_{G}\right)$ covers Q, i.e.,

$$
\bigcup_{W \in \mathcal{V}} Q_{G}(W)=Q
$$

and
(iii) $Q_{G}(W)$ and $Q_{G}(U)$ are pairwise disjunct, i.e.,

$$
\begin{array}{r}
Q_{G}(W) \cap Q_{G}(U) \neq \emptyset \Rightarrow W=U, \\
\forall W, U \in \mathcal{V}
\end{array}
$$

is called a cluster tree for \mathbf{Q}.

$$
\begin{aligned}
Q:= & \{p(D), p(B), p(C \mid D), \\
& p(E \mid D, B), p(A \mid C), p(F \mid C, E)\}
\end{aligned}
$$

are the conditional probabilities of the bayesian network

A cluster tree for Q is, e.g.,

A simple cluster tree for polytree Bayesian networks
2003

Let G be a directed graph. For $v \in V$

$$
\operatorname{fam}(v):=\{v\} \cup \mathrm{pa}(v)
$$

is called the familiy of v.

Let $\left(G=(V, E),\left(p_{v}\right)_{v \in V}\right)$ be a polytree Bayesian network. Let

$$
\mathcal{V}:=\{\operatorname{fam}(v) \mid v \in V\}
$$

and
$F:=\{(\operatorname{fam}(\operatorname{pa}(v)), f a m(v)) \mid v \in V, \operatorname{pa}(v) \neq$
Then $H:=(\mathcal{V}, F)$ is a cluster tree for $Q:=\left\{p_{v} \mid v \in V\right\}$ called family tree.

Figure 11: Polytree Bayesian network.

Figure 12: Cluster tree of polytree Bayesian network above.

Bayesian Networks / 2. Cluster Trees
Clique cluster tree for Markov networks

Markov networks $\left(G,\left(q_{C}\right)_{C \in \mathcal{C}(G)}\right)$ use potentials on cliques to specify the JPD. If G is triangulated, it allows a chain of cliques, i.e., an ordering C_{1}, \ldots, C_{n} of the cliques that satisfies the running intersection property:

$$
C_{i} \cap \bigcup_{j<i} C_{j} \subseteq C_{k(i)}, \quad \forall i \exists k(i)<i
$$

We can construct the clique (cluster) tree $H:=(\mathcal{V}, F)$ from

$$
\mathcal{V}:=\mathcal{C}(G)=\left\{C_{1}, \ldots, C_{n}\right\}
$$

and

$$
F:=\left\{\left(C_{k(i)}, C_{i}\right) \mid i=2, \ldots, n\right\}
$$

We will later address the problem of cluster trees for non-triangulated

Figure 13: Markov network.

Figure 14: Clique cluster tree of Markov network

Cluster trees for Bayesian networks can be constructed by a two phase approach:
(i) construct an equivalent Markov network representation of the Bayesian network,
(ii) construct the clique cluster tree for the Markov network.

An equivalent Markov network for a Bayesian network $\left(G=(V, E),\left(p_{v}\right)_{v \in V}\right)$ can be constructed by

$$
\operatorname{moral}(G)
$$

and assigning the conditional probabilities to cliques that contain their domain.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BWWI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Figure 15: Bayesian network.

Figure 16: Markov network for Bayesian network above.

Figure 17: Clique cluster tree for Markov network above Insitite for Computer Science, University of Hildesheim

Bayesian Networks

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Let Q be a set of potentials and G be a cluster tree for Q.
Inference for all variables separately can be accomplished by
(i) adding the evidence potentials to Q (and to Q_{G}),
(ii) computing the vertex marginals

$$
q_{V}:=\left(\prod_{q \in Q} q\right)^{\perp V}
$$

(iii) computing the single variable marginals

$$
q_{v}:=\left(q_{V}\right)^{\downarrow v}, \quad \text { for } V \in \mathcal{V} \text { with } v \in V
$$

This can be done by a recursive computation of the link potentials:

$$
q_{U, W}:=\left(\prod_{q \in Q_{G}\left(\operatorname{comp}_{G \backslash\{W\}}(U)\right)} q\right)^{\downarrow U \cap W}
$$

Figure 18: The link potential $q_{C, O}$ describes the potentials in the component $\operatorname{comp}_{G \backslash\{O\}}(C)$ (orange).

Bayesian Networks / 3. Recursive Computation of Link Potentials
Link potentials

Lemma 1. Vertex marginals and link potentials can be expressed by link potentials:
(i)

$$
q_{U}=\prod_{q \in Q_{G}(U)} q \prod_{T \in \operatorname{fan}(U)} q_{T, U}
$$

(ii)

$$
q_{U, W}=\left(\prod_{q \in Q_{G}(U)} q \prod_{\substack{T \in \operatorname{fan}(U), T \neq W}} q_{T, U}\right)^{\downarrow U \cap W}
$$

Figure 19: Expressing the vertex potential q_{o} by the linkpotentials q.o.

Lemma 1. Vertex marginals and link potentials can be expressed by link potentials:
(i)

$$
q_{U}=\prod_{q \in Q_{G}(U)} q \prod_{T \in \operatorname{fan}(U)} q_{T, U}
$$

(ii)

$$
q_{U, W}=\left(\prod_{q \in Q_{G}(U)} q \prod_{\substack{T \in \operatorname{fan}(U), T \neq W}} q_{T, U}\right)^{\downarrow U \cap W}
$$

Figure 20: Expressing the link potential $q_{O, N}$ by the linkpotentials $q_{\text {., }}$.

Bayesian Networks / 3. Recursive Computation of Link Potentials

Recursive computation of link potentials

Lemma 2. The formula of the previous lemma allows the recursive computation of link potentials in a cluster tree G.
Proof. Choose an arbitrary vertex as root and replace G by its rooted tree. Let λ be a level map of G and $\lambda_{\text {min }}, \lambda_{\text {max }}$ its minimal and maximal values.
I. up links (collect evidence): induction on $n:=\lambda(U)$ for link potentials $q_{U, \operatorname{pa}(U)}$. $n=\lambda_{\text {max }}: U$ is a leaf and has no other neighbors other than its parent.
$n \rightarrow n-1$: the link potentials from childs into U have already been computed by induction hypothesis. \Rightarrow $q_{U, \mathrm{pa}(U)}$ can be computed (G is a tree, thus U has at most one parent).

Figure 21: Collect evidence.

Figure 22: Collect evidence.

Lemma 2．The formula of the previous lemma allows the recursive computation of link potentials in a cluster tree G ．
Proof（cont．）．
II．down links（distribute evidence）：in－ duction on $n:=\lambda(\mathrm{pa}(U))$ for link poten－ tials $q_{\mathrm{pa}(U), U}$ ．
$n=\lambda_{\min }: \mathrm{pa}(U)$ is the root．All of its neighboring link potentials have been computed by step I．$\Rightarrow q_{\mathrm{pa}(U), U}$ can be computed．
$n \rightarrow n+1$ ：the link potentials from childs into $\mathrm{pa}(U)$ have already been com－ puted by step I，the link potential $q_{\mathrm{pa}(\mathrm{pa}(U)), \mathrm{pa}(U)}$ has already been com－ puted by induction hypothesis．\Rightarrow $q_{\mathrm{pa}(U), U}$ can be computed．

Figure 23：Distribute evidence．

Figure 24：Distribute evidence．

Lars Schmidt－Thieme，Information Systems and Machine Learning Lab（ISMLL），Institute BW／WI \＆Institute for Computer Science，University of Hildesheim Course on Bayesian Networks，summer term 2010
Bayesian Networks／3．Recursive Computation of Link Potentials
Shafer－Shenoy propagation
The following computation scheme is called Shafer－Shenoy propagation［］：
（i）collect evidence：

$$
q_{U, W}=\left(\prod_{\substack{q \in Q_{G}(U)}} q \prod_{\substack{T \in \operatorname{fan}(U), T \neq W}} q_{T, U}\right)^{\downarrow U \cap W}=\left(\left(\prod_{q \in Q_{G}(U)} q\right) \cdot q_{T_{1}, U} \cdots q_{T_{n}, U}\right)^{\downarrow U \cap W}
$$

（ii）distribute evidence：

$$
q_{U, T_{i}}=\left(\prod_{q \in Q_{G}(U)} q \prod_{\substack{T \in \operatorname{fan}(U), T \neq T_{i}}} q_{T, U}\right)^{\downarrow U \cap T_{i}}=\left(\left(\prod_{q \in Q_{G}(U)} q\right) \cdot q_{W, U} \cdot q_{T_{1}, U} \cdots \widehat{q_{T_{i}, U}} \cdots q_{T_{n}, U}\right)^{\downarrow U \cap T_{i}}
$$

（iii）marginalize：

$$
q_{U}=\prod_{q \in Q_{G}(U)} q \prod_{T \in \operatorname{fan}(U)} q_{T, U}=\left(\prod_{q \in Q_{G}(U)} q\right) \cdot q_{W, U} \cdot q_{T_{1}, U} \cdot \cdots q_{T_{n}, U}
$$

The following computation scheme is called Hugin propagation []:
(i) collect evidence:

$$
\begin{aligned}
q_{U}^{\prime} & =\prod_{q \in Q_{G}(U)} q \prod_{\substack{T \in \operatorname{fan}(U) \\
T \neq W}} q_{T, U}=\left(\prod_{q \in Q_{G}(U)} q\right) \cdot q_{T_{1}, U} \cdots q_{T_{n}, U} \\
q_{U, W} & =q_{U}^{\prime \prime U \cap W}
\end{aligned}
$$

(ii) marginalize and distribute evidence:

$$
\begin{aligned}
q_{U} & =q_{U}^{\prime} \cdot q_{W, U} \\
q_{U, T_{i}} & =\left(\frac{q_{U}}{q_{T_{i}, U}}\right)^{\downarrow U \cap T_{i}} \quad \text { but store separator marginal }\left(q_{U}\right)^{\downarrow U \cap T_{i}}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

15/24
Bayesian Networks / 3. Recursive Computation of Link Potentials
Shafer-Shenoy vs. Hugin propagation

Hugin propagation compared to ShaferShenoy propagation:
(i) Hugin propagation allows the reuse of the storage space of the link potentials $q_{U, W}$ for $q_{W, U}$ (one "postbox" instead of two),
(ii) Hugin propagation affords extra storage space for the vertex potentials q_{U} and thus its overall space requirements are higher,
(iii) Hugin propagation requires a smaller number of total operations (additions, multiplications, divisions) than Shafer-Shenoy propagation at vertices with degree > 3 (that can be avoided by the use of binary cluster trees),
(iv) Hugin propagation allows the marginalization of the smaller separator marginals,
(v) Some of the operations required by Hugin propagation are more costly (divisions) than those required by Shafer-Shenoy.

The idea of lazy propagation [MJ98] is to keep the link potentials in factored form, i.e., to replace the link potential $q_{U, W}$ with a set of potentials $Q_{U, W}$ with

$$
q_{U, W}=\prod_{q \in Q_{U, W}} q
$$

The formulas of lemma 1 then read as:
(i)

$$
q_{U}=\prod_{q \in Q_{G}(U)} q \prod_{\substack{T \in \operatorname{fan}(U) \\ q \in Q(T, U)}} q
$$

(ii)

$$
q_{U, W}=\operatorname{elim}\left(Q_{G}(U) \cup \bigcup_{\substack{T \in \operatorname{fan}(U), T \neq W}} Q_{T, U}, c(U \cap W)\right)
$$

1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

Clique cluster trees can easily be computed of triangulated graphs.
(i) Triangulated graphs admit a perfect ordering of G, i.e., an ordering σ with

$$
\operatorname{fam}_{\sigma(\{1, \ldots, i\})}(\sigma(i))
$$

is complete.
(ii) A perfect ordering can be computed by the maximum cardinality search algorithm (MCS).

Proving the correctness of MCS affords some work (e.g., [Sha94, p. 43-46]).

Figure 25: Perfect ordering of a triangulated graph obtained by MCS.

```
1 perfect-ordering-MCS}(G=(V,E))
2 \underline{\mathrm{ for }}i=1,\ldots,|V|\underline{\mathrm{ do}}
3 \sigma(i):=v\inV\\sigma({1,\ldots,i-1}) with maximal |fan}\mp@subsup{G}{G}{}(v)\cap\sigma({1,\ldots,i-1})
4 breaking ties arbitrarily
5 Od
6 return }
```

Figure 26: MCS algorithm to compute a perfect ordering [TY84].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 4. Clique (Cluster) Trees
Clique trees for triangulated graphs (2/3)
All cliques can be enumerated by a variant of the MCS algorithm:

1. if G is triangulated, MCS computes a perfect ordering of G, i.e., $\operatorname{fam}_{\sigma(\{1, \ldots, i\})}(\sigma(i))$ is complete.
2. we get all cliques this way, as for each clique C let $i:=\max \sigma^{-1}(C)$, then $C=\operatorname{fam}_{\sigma(\{1, \ldots, i\})}(\sigma(i))$.
```
enumerate-cliques-MCS}(G=(V,E)) 
```

$\mathcal{C}:=\emptyset$

Let $C_{i}:=\operatorname{fam}_{\sigma(\{1, \ldots, i\})}(\sigma(i))$ and

$$
C_{i}=\left\{\sigma\left(j_{1}\right), \ldots, \sigma\left(j_{n}\right), \sigma(i)\right\}
$$

with $j_{1}<j_{2}<\ldots<j_{n}$. Due to the completeness of C_{i} then $\sigma\left(j_{n}\right)$ is a neighbor of all $\sigma\left(j_{l}\right), l=1, \ldots, n-1$, and thus

$$
C_{i} \cap \bigcup_{k<i} C_{k} \subseteq C_{j_{n}}
$$

i.e., the sequence $\left(C_{i}\right)_{i=1, \ldots,|V|}$ has the running intersection property (that can be telescoped if a C_{i} gets pruned).
${ }^{3} \underline{\text { for }} i=1, \ldots,|V| \underline{\text { do }}$ $\sigma(i):=v \in V \backslash \sigma(\{1, \ldots, i-1\})$ with maximal $\left|\operatorname{fan}_{G}(v) \cap \sigma(\{1, \ldots, i-1\})\right|$
breaking ties arbitrarily

$$
\mathcal{C}:=\mathcal{C} \cup\left\{\operatorname{fam}_{\sigma(\{1, \ldots, i\})}(\sigma(i))\right\}
$$

od
$\mathcal{C}:=\{C \in \mathcal{C} \mid \nexists D \in \mathcal{C}: D \supseteq C\}$
return \mathcal{C}
Figure 27: MCS algorithm to compute cliques of a triangulated graph [TY84].

Clique trees for triangulated graphs (3/3)

Figure 28: Perfect ordering of a triangulated graph obtained by MCS.

Figure 29: Clique cluster tree for triangulated graph at the left (blue nodes are temporary and pruned).

[^0]1. Trees

2. Cluster Trees

3. Recursive Computation of Link Potentials

4. Clique (Cluster) Trees

5. Triangulation

As clique cluster trees can easily be computed of triangulated graphs, we triangulate non-triangulated graphs by filling-in additional edges.

However, additional edges mean, that the graph represents a smaller portion of the independency statements, and thus, inference becomes harder.

The fewer edges have to be filled-in, the better.

Figure 30: Non-triangulated graph and its triangulation obtained by MCS.

1 triangulate- $\operatorname{MCS}(G=(V, E))$:
$2 \sigma:=$ perfect-ordering-MCS (G)
3 fillin $:=\emptyset$
$4 \underline{\text { for }} i=|V|, \ldots, 1 \underline{\text { do }}$
$5 \quad$ fillin $:=$ fillin $\cup\left\{(u, w) \mid u, w \in \operatorname{fan}_{(V, E \cup f i l l i n)}(\sigma(i)) \cap \sigma(\{1, \ldots, i-1\}),\{u, w\} \notin E\right\}$
6 Od
7 return $G^{\prime}:=(V, E \cup$ fillin $)$
Figure 31: Maximum cardinality search algorithm for triangulating a graph [TY84].
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 5. Triangulation
Triangulation of graphs (2/3)

MCS does not guarantee to give best results (i.e., minimal fill-ins). It is just a heuristics that gives useable results (in most cases).

Figure 32: Optimal triangulation.

Figure 33: Non-optimal triangulation obtained by MCS (with smallest index rule).

Beneath the heuristic triangulation algorithms one distinguishes between:
minimum triangulations: no other triangulation has a smaller number of filled-in edges (global minimum).

This task is known to be NPcomplete [Yan81].

Figure 34: A minimum triangulation (here: unique).
minimal triangulations: no subset of the filled-in edges results in a triangulation (local minimum).

There are several algorithms for the minimal triangulation task, e.g., LexM [RTL76], MCS-M [BBH02], and LB-triang [$\left.\mathrm{BBH}^{+} 03\right]$.

Figure 35: A minimal triangulation.
[BBH02] A. Berry, J. R. S. Blair, , and P. Heggernes. Maximum cardinality search for computing minimal triangulations. In L. Kucera, editor, Graph Theoretical Concepts in Computer Science, Proceedings of the 28th International Workshop on Graph Theoretical Concepts in Computer Science (WG 2002), Cesky Krumlov, Czech Republic, June 13-15, 2002.
[$\left.\mathrm{BBH}^{+} 03\right]$ A. Berry, J. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algorithm for minimal triangulation from an arbitrary ordering, 2003.
[MJ98] Anders L. Madsen and Finn V. Jensen. Lazy propagation in junction trees. In Proceedings of the 14th Conference on UAI, pages 362-369, 1998.
[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5:266-283, 1976.
[Sha94] Ron Shamir. Advanced topics in graph algorithms. Technical report, Tel-Aviv University, 1994.
[TY84] R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduct acyclic hypergraphs. SIAM Journal on Computing, 13:566-579, 1984.
[Yan81] M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM J. Alg. and Disc. Meth., 2:77-79, 1981.

[^0]: Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

