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Bayesian Networks / 1. Events

Joint probability distributions

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113

Figure 1: Joint probability distribution p(P,W, V,A) of four random variables P (pain), W (weight-
loss), V (vomiting) and A (adeno).
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Bayesian Networks / 1. Events

Joint probability distributions

Discrete JPDs are described by

• nested tables,
• multi-dimensional arrays,
• data cubes, or
• tensors

having entries in [0, 1] and summing to 1.
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Bayesian Networks / 1. Events

Probability spaces

Definition 1. Let Ω be a finite set. We call Ω the sam-
ple space and every subset E ⊆ Ω an event; subsets
containing exactly one element, i.e.

E = {e}, e ∈ Ω

are called elementary events.

A function
p : P(Ω)→ [0, 1]

with

1. p is additive, i.e. for disjunct E,F ⊆ Ω:

p(E ∪ F ) = p(E) + p(F )

2. p(Ω) = 1

is called probability function (axioms of probability, Kol-
mogorov, 1933). A pair (Ω, p) is called probability space.
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Bayesian Networks / 1. Events

Probability spaces

Lemma 1.
p(E) =

∑

e∈E
p({e}), E ⊆ Ω

Example 1. Throwing a dice can be described by

Ω := {1, 2, 3, 4, 5, 6}
For a fair dice we have

p({1}) = p({2} = . . . = p({6}) =
1

6

Then E = {2} is the event of dicing a 2, F = {2, 4, 6} the
event of dicing an even number.

p({2, 4, 6}) = p({2}) + p({4}) + p({6}) =
1

2
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Bayesian Networks / 2. Independent Events

Independent events

Definition 2. Let E,F ⊆ Ω with p(F ) > 0. Then

p(E|F ) := p|F :=
p(E ∩ F )

p(F )

is called conditional probability of E given F .

Two events E,F ⊆ Ω are called independent, if

p(E ∩ F ) = p(E) · p(F )

i.e., if p(E|F ) = p(E) or p(E) = 0 or p(F ) = 0.
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Bayesian Networks / 2. Independent Events

Independent Events / Example

Example 2. Let F := {2, 4, 6} be the event of dicing an
even number. Then the conditional probability

p({2}|F ) =
1

6
/

1

2
=

1

3

describes the probability of dicing a 2 given we diced an
even number.

Example 3. The events E := {2, 4, 6} of dicing an even
number and F := {1, 2, 3, 4} of dicing a number less than
5 are independent as

p(E ∩ F ) = p({2, 4}) =
1

3
!

= p(E) · p(F ) =
1

2
· 2

3
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Bayesian Networks / 2. Independent Events

Conditional independent events

Definition 3. Let G ⊆ Ω be an event with p(G) > 0. Two
events E,F ⊆ Ω are called conditionally independent
given G, if

p(E ∩ F ∩G) = p(E ∩G) · p(F ∩G)/p(G)

i.e., if p(E|F ∩G) = p(E|G) or p(E|G) = 0 or p(F |G) = 0.

Definition 4. A partition (Ei)i=1,...,m of Ω is also called a set
of mutually exclusive and exhaustive events, i.e.

1. Ei 6= ∅,
2.
⋃m

i=1Ei = Ω, and
3. Ei are pairwise disjunct (i.e., Ei ∩ Ej = ∅ for i 6= j).
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Bayesian Networks / 2. Independent Events

Conditional independent events / Example

Example 4. The events

• E := {2, 4, 6} of dicing an even number and
• F := {1, 2, 3, 4, 5} of dicing anything but 6

are dependent as

p(E ∩ F ) = p({2, 4}) =
1

3

!

6= p(E) · p(F ) =
1

2
· 5

6

But given the event

• G := {1, 2, 3, 4} of dicing a number less than 5,

E and F are conditionally independent given G as

p(E ∩ F ∩G) = p({2, 4}) =
1

3
!

= p(E ∩G) · p(F ∩G)/p(G) =
1

3
· 2

3
/

2

3
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Bayesian Networks / 3. Random Variables

Random variables and probability distributions

Definition 5. Any function

X : Ω→ X

is called a random variable (by abuse of notation we la-
bel both, the map and the target space with X).

We assign each value x ∈ X a probability via

p(X = x) := p(X−1(x))

p is called the probability distribution of X.

If X is numeric, e.g., X = R, we call

E(X) :=
∑

x∈X
x · p(x)

the expected value of X.
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Bayesian Networks / 3. Random Variables

Random variables and probability distributions

Example 5. Let Ω contain the outcomes of a throw of two
(distinguishable) dice, i.e.

Ω := {(1, 1), (1, 2), . . . , (1, 6),

(2, 1), (2, 2), . . . , (6, 5), (6, 6)}

Then the sum of the two dice,

X : Ω → N
(i, j) 7→ i + j

is a random variable.

The value X = 3 then represents the event X−1(3) =
{(1, 2), (2, 1)} and thus p(X = 3) = 2

36.

The expected value of X is E(X) = 7.

X 2 3 4 5 6 7 8 9 10 11 12
p(X) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Bayesian Networks / 3. Random Variables

Joint probability distributions

Definition 6. Let X and Y be two random variables. Then
their cartesian product

X × Y : Ω → X × Y
e 7→ (X(e), Y (e))

is again a random variable; its distribution is called joint
probability distribution of X and Y .
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Bayesian Networks / 3. Random Variables

Joint probability distributions

Example 6. Let Ω be the outcomes of a throw of two dices
and X the sum of their numbers as before. Let Y be

Y (i, j) :=

{
odd, if i and j is odd
even, if i or j is even

Then the probability of

p(X = 4, Y = odd) = p({(1, 3), (3, 1)}) =
2

36

In general,

p(X = x, Y = y) 6= p(X = x) · p(Y = y)

as can be seen here:

p(X = 4) = p({(1, 3), (3, 1), (2, 2)}) =
3

36

p(Y = odd) =
9

36

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 12/25



Bayesian Networks / 3. Random Variables

Marginal probability distributions

Definition 7. Let p be a the joint probability of the random vari-
ables X := {X1, . . . , Xn} and Y ⊆ X a subset thereof. Then

p(Y = y) := p↓Y(y) :=
∑

x∈domX\Y
p(X \ Y = x,Y = y)

is a probability distribution of Y called marginal probability dis-
tribution.

Example 7. Marginal p(V,A):

Vomiting Y N
Adeno Y 0.350 0.350

N 0.090 0.210

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113
Figure 2: Joint probability distribution p(P,W, V,A) of four random variables P (pain), W (weight-
loss), V (vomiting) and A (adeno).
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Bayesian Networks / 3. Random Variables

Marginal probability distributions / example
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Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].
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Bayesian Networks / 3. Random Variables

Extreme and non-extreme probability distributions

Definition 8. By p > 0 we mean

p(x) > 0, for all x ∈
∏

dom(p)

Then p is called non-extreme.

Example 8. (
0.4 0.0
0.3 0.3

) (
0.4 0.1
0.2 0.3

)
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Bayesian Networks / 3. Random Variables

Conditional probability distributions

Definition 9. For a JPD p and a subset Y ⊆ dom(p) of its
variables with p↓Y > 0 we define

p|Y :=
p

p↓Y

as conditional probability distribution of p w.r.t. Y.

A conditional probability distribution w.r.t. Y sums to 1 for
all fixed values of Y, i.e.,

(p|Y)↓Y ≡ 1
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Bayesian Networks / 3. Random Variables

Conditional probability distributions / example

Example 9. Let p be the JPD

p :=

(
0.4 0.1
0.2 0.3

)

on two variables R (rows) and C (columns) with the do-
mains dom(R) = dom(C) = {1, 2}.

The conditional probability distribution w.r.t. C is

p|C :=

(
2/3 1/4
1/3 3/4

)
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Bayesian Networks / 4. Chain Rule and Bayes Formula

Chain rule

Lemma 2 (Chain rule). Let p be a JPD on variables X1, X2, . . . , Xn

with p(X1, . . . , Xn−1) > 0. Then

p(X1, X2, . . . , Xn) = p(Xn|X1, . . . , Xn−1) · · · p(X2|X1) · p(X1)

The chain rule provides a factorization of the JPD in some of its
conditional marginals.

The factorizations stemming from the chain rule are trivial
as they have as many parameters as the original JPD:

#parameters = 2n−1 + 2n−2 + · · · + 21 + 20 = 2n − 1

(example computation for all binary variables)
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Bayesian Networks / 4. Chain Rule and Bayes Formula

Bayes formula

Lemma 3 (Bayes Formula). Let p be a JPD and X ,Y be two dis-
joint sets of its variables. Let p(Y) > 0. Then

p(X |Y) =
p(Y |X ) · p(X )

p(Y)

Thomas Bayes (1701/2–1761)
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Bayesian Networks / 4. Chain Rule and Bayes Formula

Bayes formula / Example

Example 10. Assign each object in fig. 4 an equal probability 1
13.

Let X be the label of the outcome (1 or 2) and
Y be the color of the outcome (black or white).

Then

p(X = 1|Y = black)

=
p(Y = black|X = 1) p(X = 1)

p(Y = black|X = 1) p(X = 1) + p(Y = black|X = 2) p(X = 2)

=
3
5 · 5

13
3
5 · 5

13 + 6
8 · 8

13

=
1

3

aaQQ
.........

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].
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Bayesian Networks / 5. Independent Random Variables

Independent variables

Definition 10. Two sets X ,Y of variables are called inde-
pendent, when

p(X = x,Y = y) = p(X = x) · p(Y = y)

for all x and y or equivalently

p(X = x|Y = y) = p(X = x)

for y with p(Y = y) > 0.
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Bayesian Networks / 5. Independent Random Variables

Independent variables / example

Example 11. Let Ω be the cards in an ordinary deck and

• R = true, if a card is royal,
• T = true, if a card is a ten or a jack,
• S = true, if a card is spade.

Cards for a single color:

2 4 5 6 7 8 9 J Q AK3 10

ROYALS

S R T p(R, T |S)

Y Y Y 1/13
N 2/13

N Y 1/13
N 9/13

N Y Y 3/39 = 1/13
N 6/39 = 2/13

N Y 3/39 = 1/13
N 27/39 = 9/13

R T p(R, T )

Y Y 4/52 = 1/13
N 8/52 = 2/13

N Y 4/52 = 1/13
N 36/52 = 9/13
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Bayesian Networks / 5. Independent Random Variables

Conditionally independent variables

Definition 11. Let X ,Y, and Z be sets of variables.

X ,Y are called conditionally independent given Z,
when for all events Z = z with p(Z = z) > 0 all pairs
of events X = x and Y = y are conditionally independend
given Z = z, i.e.

p(X = x,Y = y,Z = z) =
p(X = x,Z = z) · p(Y = y,Z = z)

p(Z = z)

for all x, y and z (with p(Z = z) > 0), or equivalently

p(X = x|Y = y,Z = z) = p(X = x|Z = z)

We write Ip(X ,Y|Z) for the statement, that X and Y are
conditionally independent given Z.
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Bayesian Networks / 5. Independent Random Variables

Conditionally independent variables / Example

Example 12. Assume S (shape), C (color), and L (label) be three random variables
that are distributed as shown in figure 5.

We show Ip({L}, {S}|{C}), i.e., that label and shape are conditionally independent
given the color.

C S L p(L|C, S)

black square 1 2/6 = 1/3
2 4/6 = 2/3

round 1 1/3
2 2/3

white square 1 1/2
2 1/2

round 1 1/2
2 1/2

C L p(L|C)

black 1 3/9 = 1/3
2 6/9 = 2/3

white 1 2/4 = 1/2
2 2/4 = 1/2

aaQQ
.........

Figure 5: 13 objects with different shape, color, and label [Nea03, p. 8].
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Bayesian Networks / 5. Independent Random Variables
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