

Bayesian Networks

1. Basic Probability Calculus

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 1/25

Bayesian Networks

1. Events

- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Joint probability distributions

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	Ν	Y	Ν	Y	Ν	Y	Ν
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
Ν	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 1: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weight-loss), V (vomiting) and A (adeno).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 1/25

Bayesian Networks / 1. Events

Joint probability distributions

Discrete JPDs are described by

- nested tables,
- multi-dimensional arrays,
- data cubes, or
- tensors

having entries in [0, 1] and summing to 1.

Probability spaces

Definition 1. Let Ω be a finite set. We call Ω the **sample space** and every subset $E \subseteq \Omega$ an **event**; subsets containing exactly one element, i.e.

 $E = \{e\}, \quad e \in \Omega$

are called elementary events.

A function

 $p: \mathcal{P}(\Omega) \to [0,1]$

with

1. *p* is additive, i.e. for disjunct $E, F \subseteq \Omega$:

$$p(E \cup F) = p(E) + p(F)$$

2. $p(\Omega) = 1$

is called **probability function** (axioms of probability, Kolmogorov, 1933). A pair (Ω, p) is called **probability space**.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 3/25

Bayesian Networks / 1. Events

Probability spaces

Lemma 1.

$$p(E) = \sum_{e \in E} p(\{e\}), \quad E \subseteq \Omega$$

Example 1. Throwing a dice can be described by

$$\Omega := \{1, 2, 3, 4, 5, 6\}$$

For a fair dice we have

$$p(\{1\}) = p(\{2\} = \ldots = p(\{6\}) = \frac{1}{6}$$

Then $E = \{2\}$ is the event of dicing a 2, $F = \{2, 4, 6\}$ the event of dicing an even number.

$$p(\{2,4,6\}) = p(\{2\}) + p(\{4\}) + p(\{6\}) = \frac{1}{2}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 4/25

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 5/25

Bayesian Networks / 2. Independent Events

Independent events

Definition 2. Let $E, F \subseteq \Omega$ with p(F) > 0. Then

$$p(E|F):=p^{|F}:=\frac{p(E\cap F)}{p(F)}$$

is called **conditional probability** of E given F.

Two events $E, F \subseteq \Omega$ are called **independent**, if

$$p(E \cap F) = p(E) \cdot p(F)$$

i.e., if
$$p(E|F) = p(E)$$
 or $p(E) = 0$ or $p(F) = 0$.

Independent Events / Example

Example 2. Let $F := \{2, 4, 6\}$ be the event of dicing an even number. Then the conditional probability

$$p(\{2\}|F) = \frac{1}{6}/\frac{1}{2} = \frac{1}{3}$$

describes the probability of dicing a 2 given we diced an even number.

Example 3. The events $E := \{2, 4, 6\}$ of dicing an even number and $F := \{1, 2, 3, 4\}$ of dicing a number less than 5 are independent as

$$p(E \cap F) = p(\{2, 4\}) = \frac{1}{3}$$
$$\stackrel{!}{=} p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{2}{3}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 6/25

Bayesian Networks / 2. Independent Events

Conditional independent events

Definition 3. Let $G \subseteq \Omega$ be an event with p(G) > 0. Two events $E, F \subseteq \Omega$ are called **conditionally independent** given *G*, if

$$p(E \cap F \cap G) = p(E \cap G) \cdot p(F \cap G)/p(G)$$

i.e., if $p(E|F \cap G) = p(E|G)$ or $p(E|G) = 0$ or $p(F|G) = 0$.

Definition 4. A partition $(E_i)_{i=1,...,m}$ of Ω is also called a set of mutually exclusive and exhaustive events, i.e.

1.
$$E_i \neq \emptyset$$
,
2. $\bigcup_{i=1}^m E_i = \Omega$, and

3. E_i are pairwise disjunct (i.e., $E_i \cap E_j = \emptyset$ for $i \neq j$).

Conditional independent events / Example

Example 4. The events

- $E := \{2, 4, 6\}$ of dicing an even number and
- $F := \{1, 2, 3, 4, 5\}$ of dicing anything but 6

are dependent as

$$p(E \cap F) = p(\{2, 4\}) = \frac{1}{3} \neq p(E) \cdot p(F) = \frac{1}{2} \cdot \frac{5}{6}$$

But given the event

• $G := \{1, 2, 3, 4\}$ of dicing a number less than 5,

E and F are conditionally independent given G as

$$p(E \cap F \cap G) = p(\{2, 4\}) = \frac{1}{3}$$
$$\stackrel{!}{=} p(E \cap G) \cdot p(F \cap G) / p(G) = \frac{1}{3} \cdot \frac{2}{3} / \frac{2}{3}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 8/25

Bayesian Networks

2. Independent Events

3. Random Variables

- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Random variables and probability distributions

Definition 5. Any function

 $X:\Omega\to X$

is called a **random variable** (by abuse of notation we label both, the map and the target space with X).

We assign each value $x \in X$ a probability via

$$p(X=x) := p(X^{-1}(x))$$

p is called the **probability distribution of** X.

If X is numeric, e.g., $X = \mathbb{R}$, we call

$$E(X) := \sum_{x \in X} x \cdot p(x)$$

the **expected value** of X.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 9/25

Bayesian Networks / 3. Random Variables

Random variables and probability distributions

Example 5. Let Ω contain the outcomes of a throw of two (distinguishable) dice, i.e.

$$\Omega := \{ (1,1), (1,2), \dots, (1,6), \\ (2,1), (2,2), \dots, (6,5), (6,6) \}$$

Then the sum of the two dice,

$$\begin{array}{rrr} X: & \Omega & \to & \mathbb{N} \\ & (i,j) & \mapsto & i+j \end{array}$$

is a random variable.

The value X = 3 then represents the event $X^{-1}(3) = \{(1,2), (2,1)\}$ and thus $p(X = 3) = \frac{2}{36}$.

The expected value of X is E(X) = 7.

X	2	3	4	5	6	7	8	9	10	11	12
p(X)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 10/25

Joint probability distributions

Definition 6. Let X and Y be two random variables. Then their cartesian product

 $\begin{array}{rcl} X \times Y : \ \Omega \ \rightarrow \ X \times Y \\ e \ \mapsto \ (X(e), Y(e)) \end{array}$

is again a random variable; its distribution is called **joint probability distribution** of *X* and *Y*.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 11/25

Bayesian Networks / 3. Random Variables

Joint probability distributions

Example 6. Let Ω be the outcomes of a throw of two dices and *X* the sum of their numbers as before. Let *Y* be

$$Y(i,j) := egin{cases} \mathsf{odd}, & \mathsf{if} \ i \ \mathsf{and} \ j \ \mathsf{is} \ \mathsf{odd} \ \mathsf{even}, & \mathsf{if} \ i \ \mathsf{or} \ j \ \mathsf{is} \ \mathsf{even} \end{cases}$$

Then the probability of

$$p(X = 4, Y = \text{odd}) = p(\{(1,3), (3,1)\}) = \frac{2}{36}$$

In general,

$$p(X = x, Y = y) \neq p(X = x) \cdot p(Y = y)$$

as can be seen here:

$$p(X = 4) = p(\{(1,3), (3,1), (2,2)\}) = \frac{3}{36}$$
$$p(Y = \text{odd}) = \frac{9}{36}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 12/25 Marginal probability distributions

2003

Definition 7. Let p be a the joint probability of the random variables $\mathcal{X} := \{X_1, \ldots, X_n\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$p(\mathcal{Y}=y) := p^{\downarrow \mathcal{Y}}(y) := \sum_{x \in \operatorname{dom} \mathcal{X} \backslash \mathcal{Y}} p(\mathcal{X} \setminus \mathcal{Y}=x, \mathcal{Y}=y)$$

is a probability distribution of $\mathcal Y$ called **marginal probability distribution**.

Example 7. Marginal p(V, A):

Figure 2: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weight-loss), V (vomiting) and A (adeno).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 13/25

Bayesian Networks / 3. Random Variables

Marginal probability distributions / example

Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 14/25

Extreme and non-extreme probability distributions

p(x) > 0, for all $x \in \prod \operatorname{dom}(p)$

Then *p* is called **non-extreme**.

Example 8.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 15/25

Bayesian Networks / 3. Random Variables

 $\begin{pmatrix} 0.4 & 0.0 \\ 0.3 & 0.3 \end{pmatrix}$

Conditional probability distributions

Definition 9. For a JPD p and a subset $\mathcal{Y} \subseteq \text{dom}(p)$ of its variables with $p^{\downarrow \mathcal{Y}} > 0$ we define

$$p^{\mid \mathcal{Y}} := \frac{p}{p^{\downarrow \mathcal{Y}}}$$

as conditional probability distribution of p w.r.t. \mathcal{Y} .

A conditional probability distribution w.r.t. \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y} , i.e.,

$$(p^{|\mathcal{Y}})^{\downarrow\mathcal{Y}} \equiv 1$$

 $\begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$

Conditional probability distributions / example

Example 9. Let *p* be the JPD

$$p := \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

on two variables R (rows) and C (columns) with the domains $dom(R) = dom(C) = \{1, 2\}$.

The conditional probability distribution w.r.t. C is

 $p^{|C} := \begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 17/25

Bayesian Networks

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- 5. Independent Random Variables

Chain rule

Lemma 2 (Chain rule). Let p be a JPD on variables X_1, X_2, \ldots, X_n with $p(X_1, \ldots, X_{n-1}) > 0$. Then

 $p(X_1, X_2, \dots, X_n) = p(X_n | X_1, \dots, X_{n-1}) \cdots p(X_2 | X_1) \cdot p(X_1)$

The chain rule provides a **factorization** of the JPD in some of its conditional marginals.

The factorizations stemming from the chain rule are trivial as they have as many parameters as the original JPD:

#parameters = $2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0 = 2^n - 1$

(example computation for all binary variables)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 18/25

Bayesian Networks / 4. Chain Rule and Bayes Formula

Bayes formula

Lemma 3 (Bayes Formula). Let p be a JPD and \mathcal{X}, \mathcal{Y} be two disjoint sets of its variables. Let $p(\mathcal{Y}) > 0$. Then

$$p(\mathcal{X} \mid \mathcal{Y}) = \frac{p(\mathcal{Y} \mid \mathcal{X}) \cdot p(\mathcal{X})}{p(\mathcal{Y})}$$

Thomas Bayes (1701/2-1761)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 19/25

Bayes formula / Example

Example 10. Assign each object in fig. 4 an equal probability $\frac{1}{13}$. Let *X* be the label of the outcome (1 or 2) and

Y be the color of the outcome (black or white).

Then

$$\begin{split} p(X=1|Y=\text{black}) \\ &= \frac{p(Y=\text{black}|X=1)\,p(X=1)}{p(Y=\text{black}|X=1)\,p(X=1)+p(Y=\text{black}|X=2)\,p(X=2)} \\ &= \frac{\frac{3}{5}\cdot\frac{5}{13}}{\frac{3}{5}\cdot\frac{5}{13}+\frac{6}{8}\cdot\frac{8}{13}} = \frac{1}{3} \end{split}$$

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 20/25

Bayesian Networks

- 1. Events
- 2. Independent Events
- 3. Random Variables
- 4. Chain Rule and Bayes Formula
- **5. Independent Random Variables**

Independent variables

Definition 10. Two sets \mathcal{X}, \mathcal{Y} of variables are called **inde**pendent, when

$$p(\mathcal{X} = x, \mathcal{Y} = y) = p(\mathcal{X} = x) \cdot p(\mathcal{Y} = y)$$

for all x and y or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y) = p(\mathcal{X} = x)$$

for y with $p(\mathcal{Y} = y) > 0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 21/25

Bayesian Networks / 5. Independent Random Variables

Independent variables / example

- R =true, if a card is royal,
- T = true, if a card is a ten or a jack,
- S =true, if a card is spade.

Cards for a single color:

2

	0. 0						
3 4	5	6	7	8 9 10 J	QK	4	
				RC	YALS		
	S	R	Т	p(R,T S)			
	Y	Υ	Υ	1/13			
			Ν	2/13	R	T	p(R,T)
		Ν	Y	1/13	Y	Υ	4/52 = 1/13
			Ν	9/13		Ν	8/52 = 2/13
	Ν	Y	Υ	3/39 = 1/13	N	Υ	4/52 = 1/13
			Ν	6/39 = 2/13		Ν	36/52 = 9/13
		Ν	Υ	3/39 = 1/13			I
			Ν	27/39 = 9/13			
	-						

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 22/25 Conditionally independent variables

Definition 11. Let \mathcal{X}, \mathcal{Y} , and \mathcal{Z} be sets of variables.

 \mathcal{X}, \mathcal{Y} are called **conditionally independent given** \mathcal{Z} , when for all events $\mathcal{Z} = z$ with $p(\mathcal{Z} = z) > 0$ all pairs of events $\mathcal{X} = x$ and $\mathcal{Y} = y$ are conditionally independend given $\mathcal{Z} = z$, i.e.

$$p(\mathcal{X} = x, \mathcal{Y} = y, \mathcal{Z} = z) = \frac{p(\mathcal{X} = x, \mathcal{Z} = z) \cdot p(\mathcal{Y} = y, \mathcal{Z} = z)}{p(\mathcal{Z} = z)}$$

for all x, y and z (with $p(\mathcal{Z} = z) > 0$), or equivalently

 $p(\mathcal{X}=x|\mathcal{Y}=y,\mathcal{Z}=z)=p(\mathcal{X}=x|\mathcal{Z}=z)$

We write $I_p(\mathcal{X}, \mathcal{Y}|\mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z} .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 23/25

Bayesian Networks / 5. Independent Random Variables

2003 2003

Conditionally independent variables / Example

Example 12. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 5.

We show $I_p(\{L\}, \{S\}|\{C\})$, i.e., that label and shape are conditionally independent given the color.

	C	S	L	p(L C,S)			
	black	square	1	2/6 = 1/3			
			2	4/6 = 2/3	C	L	p(L C)
		round	1	1/3	black	1	3/9 = 1/3
			2	2/3		2	6/9 = 2/3
	white	square	1	1/2	white	1	2/4 = 1/2
			2	1/2		2	2/4 = 1/2
		round	1	1/2			
			2	1/2			
1							
			1				
	1	2 1		2			
			0				

Figure 5: 13 objects with different shape, color, and label [Nea03, p. 8].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 24/25

References

[BK02] Christian Borgelt and Rudolf Kruse. *Graphical Models*. Wiley, New York, 2002. [Nea03] Richard E. Neapolitan. *Learning Bayesian Networks*. Prentice Hall, 2003.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 25/25