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Bayesian Networks / 1. Separation in Undirected Graphs
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Graphs

Definition 1. Let V be any set and
ECP(V)={{z,y}|z,y eV}

be a subset of sets of unordered pairs of

V. Then G := (V, E) is called an undi-

rected graph. The elements of V' are

called vertices or nodes, the elements

of £ edges.

Let e = {z,y} € FE be an edge, then
we call the vertices x, y incident to the
edge e. We call two vertices z,y € V
adjacent, if there is an edge {z,y} € E.

The set of all vertices adjacent with a
given vertex x € V' is called its fan:

fan(z) == {y € V | {z,y} € F}
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Figure 1: Example graph.
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Paths on graphs

Definition 2. Let VV be a set. We call
V* = Uy V' the set of finite se-
quences in V. The length of a se-
quence s € V* is denoted by |s|.

Let G = (V, F) be a graph. We call

G =V ={pe V' |{pipin1} € E,
i=1,...,|p| -1}

the set of paths on G.

Any contiguous subsequence of a path
p € G* is called a subpath of p, i.e. any
path (pi7pi+17 ce 7pj) with 1 <i < 7 < n.
The subpath (p2,ps,...,p,—1) is called
the interior of p. A path of length |p| > 2
is called proper.
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Figure 2: Example graph.

The sequences
(A,D,G, H)
(C,E,B, D)
(F)

are paths on G, but the sequences
(A,D,E,C)
(A,H,C,F)
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Separation in graphs (u-separation)

Definition 3. Let G .= (V, E) be a graph.
Let 7 C V be a subset of vertices.
We say, two vertices =,y € V are u-
separated by 7 in G, if every path from
x to y contains some vertex of Z (Vp €
G :pr=xz,py=y=Fec{l.. . n}:
pi € Z).

Let X,Y,Z C V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are u-separated by 7 in G, if ev-
ery path from any vertex from X to any
vertex from Y is separated by 7, i.e.,
contains some vertex of Z.
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We write I;(X,Y|Z) for the statement,
that X and Y are u-separated by Z in
G.

I is called u-separation relation in G.

Figure 3: Example for u-separation [CGH97,
p. 179].
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Separation in graphs (u-separation) ® 200 7
Figure 4: More examples for u-separation [CGH97, p. 179].
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Properties of u-separation / no chardality

For u-separation the chordality property does not hold (in general).

or

or

O
n
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Figure 5: Counterexample for chordality in undirected graphs (u-separation) [CGH97, p. 189].
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Properties of u-separation © 2008

relation
u-separation |+ |+ + + + | + + |+ +|—
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Checking u-separation

To test, if for a given graph G = (V, E)
two given sets X, Y C V of vertices
are u-separated by a third given set
Z C V of vertices, we may use standard
breadth-first search to compute all ver-
tices that can be reached from X (see,
e.g., [OW02], [CLR90]).

breadth-first sear¢ly, X) :

border := X

reached := ()

while border # () do
reached := reached U border
border := fang(border) \ reached

od

return reached

o N o g~ W N P

Figure 6: Breadth-first search algorithm for enu-
merating all vertices reachable from X.

10}

For checking u-separation we have to
tweak the algorithm

1. not to add vertices from Z to the bor-
der and

2.to stop if a vertex of Y has been
reached.

1 check-u-separatid’, X,Y, 7) :
2 border := X

3 reached = ()

4 while border # () do

5 reached := reached U border

6 border := fan;(border) \ reached \ Z
7 if borderNY # ()

8 return false

9 fi

10 od

11 return true

Figure 7: Breadth-first search algorithm for
checking u-separation of X and Y by Z.
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1. Separation in Undirected Graphs

2. Properties of Ternary Relations on Sets

3. Separation in Directed Graphs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Bayesian Networks, winter term 2013/14

8/30



et

Bayesian Networks / 2. Properties of Ternary Relations on Sets g“% %
g Il ¢

Symmetry 2008

Definition 4. Let V be any set and I a ternary relation on
P(V),ie., I C(P(V))y>.

I is called symmetric, if
I(X,)Y|Z)= 1Y, X|Z)

Figure 8: Examples for symmetry [CGH97, p. 186].
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Decomposition and Composition 2008
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Definition 5. [ is called (right-)decomposable, if
I(X,Y|Z)=1(X,Y'|Z) foranyY'CY

I is called (right-)composable, if
I(X,Y|Z)and I(X,Y'|Z) = I(X,Y UY|2Z)

Figure 9: Examples for decomposition [CGH97, p. 186].
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Union 3

Definition 6. [ is called strongly unionable, if
I(X,Y|Z)= I(X,Y|ZuZ') forall Z’ disjunct with X,Y

I is called (right-)weakly unionable, if
I(X,)Y|Z)= I(X,)Y|(Y\Y)UZ) foranyY' CY
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Contraction and Intersection

Definition 7. [ is called (right-)contractable, if
I(X,)Y|Z)and I(X,Y'|Y U Z) = (X, Y UY'|Z)

I is called (right-)intersectable, if
I(X,Y|IY'UZ)and I(X,Y'|YUZ)= I(X,Y UY'|2)
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Figure 11: Examples for a) contraction and b) intersection [CGH97, p. 186].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
11/30

Course on Bayesian Networks, winter term 2013/14



ersily p

Bayesian Networks / 2. Properties of Ternary Relations on Sets g“p %

Transitivity % 200

Definition 8. [ is called strongly transitive, if
I(X,)Y|Z)= I(X,{v}|Z)or [({v},Y|Z) YveV\Z

I is called weakly transitive, if
I(X,Y|Z)and I(X,Y|ZU{v}) = I(X,{v}|Z) or [{v},Y|Z) VveV\Z
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Figure 12: Examples for a) strong transitivity and b) weak transitivity. [CGH97, p. 189]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14 12/30
. ) . 21Sildy
Bayesian Networks / 2. Properties of Ternary Relations on Sets Swpr%
EY £
Chordality J'ﬁ'
hes

Definition 9. [ is called chordal, if

I({a}, {c}[{b, d}) and I({b}, {d}{a, c}) = I({a}, {c}[{b}) or I({a}, {c}[{d})

o

Figure 13: Example for chordality.
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Bayesian Networks / 3. Separation in Directed Graphs
Directed graphs

oiftung

Definition 10. Let V be any set and The set of all vertices with an edge to a
ECV XV given vertex x € V' is called its fanin:

be a subset of sets of ordered pairs of fanin(z) == {y € V| (y,2) € E}
V. Then G := (V, E) is called a directed
graph. The elements of V' are called
vertices or nodes, the elements of F£
edges.

Let ¢ = (z,y) € E be an edge, then
we call the vertices z,y incident to the
edge e. We call two vertices =,y € V
adjacent, if there is an edge (z,y) € E
or (y,xz) € E.

The set of all vertices with an edge from
a given vertex x € V is called its fanout:

fanout(z) == {y € V| (z,y) € E} Figure 14: Fanin (orange) and fanout (green) of
a node (blue).
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Paths on directed graphs
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Definition 11. Let G = (V, E) be a di-

rected graph. We call

G =V ={peV"'|(p,p+) € E,
i=1,...,|p| -1}

the set of paths on ;. For two vertices

x,y € V we denote by

Gy ={p€Viglp =2,pp =y}
the set of paths from z to y.

The notions of subpath, interior, and
proper path carry over to directed
graphs.

Figure 15: Example for a cycle.

A proper path p = (py,...,p,) € G* with
p1 = p, is called cyclic. A path without
cyclic subpath is called a simple path.
A graph without a cyclic path is called
directed acyclig graph (DAG).
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Paths on directed graphs (2/2) % o0

Definition 12. For a DAG G vertices of
the fanout are also called children

child(z) := fanout(z) :={y € V| (z,y) € F
and the vertices of the fanin parents:
pa(z) = fanin(z) = {y € V| (y,z) € E}

=

Vertices y with a proper path from y to x
are called ancestors of z:

anc(x) :={y eV |Ipe G :|p| > 2,
pL=Y,Dp| = T}

Vertices y with a proper path from = to y | Figure 16: Parents/Fanin (orange) and addi-
are called descendents of r: tional ancestors (light orange), children/fanout
o . (green) and additional descendants (light green)
desc(z) ={y e V|Ip e G*: |p| > 2, of a node (blue).
PL=T,pp =Y}

Vertices that are not a descendent of =
are called nondescendents of .
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Chains ® 2008
Definition 13. Let G = (V,FE) be a

directed graph. We can construct an
undirected skeleton «(G) = (V,u(FE))
of G by dropping the directions of the
edges:

w(E) = {{z,y}|(z,y) € Eor (y,x) € E}

The paths on u(G) are called chains of
G-
G* = u(GQ)*

i.e., a chain is a sequence of vertices
that are linked by a forward or a back-
ward edge. If we want to stress the di-
rections of the linking edges, we denote
achainp= (py,...,p,) € G* by

p1%p2_>p3<_"'<_pn—l—>pn

The notions of length, subchain, inte-
rior and proper carry over from undi-

®
®

m)
m)

G G

Figure 17: Chain (A, B, E,D,F) on directed
graph and path on undirected skeleton.
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Blocked chains

Definition 14. Let G := (V, F) be a di-
rected graph. We call a chain

D1 —7 P2 < P3
a head-to-head meeting.

Let Z C V be a subset of vertices.
Then a chain p € G* is called blocked
at position i by 7, if for its subchain
(Pi-1, Di, pit1) there is

if not p; 1 — pi < piy

Di € Zn
pi € ZUanc(Z), else

|

m)

G

Figure 18: Chain (A, B, E, D, F) is blocked by
Z ={B} at 2.
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Blocked chains / more examples ¢ 2008 7
C C
G G
Figure 19: Chain (A, B, E, D, F) is blocked by | Figure 20: Chain (A, B, E, D, F') is not blocked
Z =0 at3. by Z = {E} at 3.
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Blocked chains / rationale

The notion of blocking is choosen in | 2) Diverging connection / common
a way so that chains model "flow of | cause:

causal influence" through a causal net-
work where the states of the vertices 7
are already know.

3) Converging connection / common ef-
1) Serial connection / intermediate | fect:

cause:
(flu)
nausea
palor palor

‘ Models "discounting”" [Nea03, p. 51].
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Bayesian Networks / 3. Separation in Directed Graphs Sprs
The moral graph ® 2008 ¥
Definition 15. Let G := (V, F) be a DAG.
As the moral graph of G we denote the undirected skele-
ton graph of G plus additional edges between each two
parents of a vertex, i.e. moral(G) := (V, E') with
E' =uwE)U{{z,y}|Fz €V 2,y € pa(2)}
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL); Ins! )
Course on Bayesian Networks, winter term 2013/14 21/30
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Separation in DAGs (d-separation) ® a0 ¥

Let G := (V, E') be a DAG.

Let X,Y,Z C V be three disjoint sub-

sets of vertices. We say, the vertices X

and Y are separated by 7 in G, if

(i) every chain from any vertex from X
to any vertex from Y is blocked by Z

or equivalently
(i) X and Y are u-separated by 7 in the

moral graph of the ancestral hull of
XUYUZ.

We write I(X,Y|Z) for the statement, | Figure 23: Are the vertices A and D separated
that X and Y are separated by Zin G. | by CinG?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Separation in DAGs (d-separation) / examples
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Figure 24: A and D are separated by C'in G.
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Separation in DAGs (d-separation) / more examples e

Figure 25: A and D are not separated by {C, G} in G.
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Checking d-separation ® 2002 ¥
To test, if for a given graph G = (V, E) two given sets
X,Y C V of vertices are d-separated by a third given set
Z C V of vertices, we may
e build the moral graph of the ancestral hull and
e apply the u-separation criterion.
1 check-d-separation(G, X, Y, 7) :
2 G’ :=moral(ancg(X UY U Z))
3 return check-u-separation(G’', X,Y, Z)
Figure 26: Algorithm for checking d-separation via u-separation in the
moral graph.
A drawback of this algorithm is that we have to rebuild
the moral graph of the ancestral hull whenever X or Y
changes.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Checking d-separation 5 a0 ¥
Instead of constructing a moral graph, 2 € fanout(y)
we can modify a breadth-first search
for chains to find all vertices not d-
separated from X by 7 in G.
The breadth-first search must not hop N i yeZuanc(2)
over head-to-head meetings with the
middle vertex not in Z nor having an de- G € fanin(z)
scendent in Z.
/ enumerate-d-separation(G = (V, E), X, Z) : Figure 27: Restricted breadth-first search of
2 borderForward := () non-blocked chains.
3 borderBackward := X \ Z
4 reached := ()
s while borderForward # () or borderBackward # () do
6 reached := reached U (borderForward \ Z) U borderBackward
7 borderForward := fanout(borderBackward U (borderForward \ Z)) \ reached
8 borderBackward := faning(borderBackward U (borderForward N (Z U anc(Z)))) \ Z \ reached
9 od

return V' \ reached

~
=)

Figure 28: Algorithm for enumerating all vertices d-separated from X by Z in G via restricted
breadth-first search (see [Nea03, p. 80—86] for another formulation).
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Properties of d-separation / no strong union 6

For d-separation the strong union property does not hold.

I is called strongly unionable, if
I(X,)Y|Z)= [(X,Y|ZuZ") forall Z'disjunct with X, Y

Z z

Figure 30: Counterexample for strong unions in
DAGs (d-separation).

Figure 29: Example for strong union in undi-
rected graphs (u-separation) [CGH97, p. 189].
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Properties of d-separation / no strong transitivity

For d-separation the strong transitivity property does not hold.

I is called strongly transitive, if
I(X,)Y|Z)= I(X,{v}|Z)or I({v},Y|Z) YveV\Z
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Figure 31: Example for strong transitivity in undi- | Figure 32: Counterexample for strong transitivity

Vv
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Bayesian Networks / 3. Separation in Directed Graphs g‘v %
Properties of d-separation 5

relation
u-separation
d-separation
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