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Bayesian Networks / 1. Separation in Undirected Graphs

Graphs

Definition 1. Let V be any set and
E ⊆ P2(V ) := {{x, y} |x, y ∈ V }

be a subset of sets of unordered pairs of
V . Then G := (V,E) is called an undi-
rected graph. The elements of V are
called vertices or nodes, the elements
of E edges.

Let e = {x, y} ∈ E be an edge, then
we call the vertices x, y incident to the
edge e. We call two vertices x, y ∈ V
adjacent, if there is an edge {x, y} ∈ E.

The set of all vertices adjacent with a
given vertex x ∈ V is called its fan:

fan(x) := {y ∈ V | {x, y} ∈ E}
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Figure 1: Example graph.
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Bayesian Networks / 1. Separation in Undirected Graphs

Paths on graphs

Definition 2. Let V be a set. We call
V ∗ :=

⋃
i∈N V

i the set of finite se-
quences in V . The length of a se-
quence s ∈ V ∗ is denoted by |s|.

Let G = (V,E) be a graph. We call

G∗ := V ∗|G := {p ∈ V ∗ | {pi, pi+1} ∈ E,

i = 1, . . . , |p| − 1}

the set of paths on G.

Any contiguous subsequence of a path
p ∈ G∗ is called a subpath of p, i.e. any
path (pi, pi+1, . . . , pj) with 1 ≤ i ≤ j ≤ n.
The subpath (p2, p3, . . . , pn−1) is called
the interior of p. A path of length |p| ≥ 2
is called proper.
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Figure 2: Example graph.
The sequences

(A,D,G,H)

(C,E,B,D)

(F )

are paths on G, but the sequences
(A,D,E,C)

(A,H,C, F )

are not.
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Bayesian Networks / 1. Separation in Undirected Graphs

Separation in graphs (u-separation)

Definition 3. Let G := (V,E) be a graph.
Let Z ⊆ V be a subset of vertices.
We say, two vertices x, y ∈ V are u-
separated by Z in G, if every path from
x to y contains some vertex of Z (∀p ∈
G∗ : p1 = x, p|p| = y ⇒ ∃i ∈ {1, . . . , n} :
pi ∈ Z).

Let X, Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are u-separated by Z in G, if ev-
ery path from any vertex from X to any
vertex from Y is separated by Z, i.e.,
contains some vertex of Z.

We write IG(X, Y |Z) for the statement,
that X and Y are u-separated by Z in
G.
IG is called u-separation relation in G.

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 3: Example for u-separation [CGH97,
p. 179].
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Bayesian Networks / 1. Separation in Undirected Graphs

Separation in graphs (u-separation)

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 4: More examples for u-separation [CGH97, p. 179].
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Bayesian Networks / 1. Separation in Undirected Graphs

Properties of u-separation / no chardality

For u-separation the chordality property does not hold (in general).

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 5: Counterexample for chordality in undirected graphs (u-separation) [CGH97, p. 189].
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Bayesian Networks / 1. Separation in Undirected Graphs

Properties of u-separation
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Bayesian Networks / 1. Separation in Undirected Graphs

Checking u-separation

To test, if for a given graph G = (V,E)
two given sets X, Y ⊆ V of vertices
are u-separated by a third given set
Z ⊆ V of vertices, we may use standard
breadth-first search to compute all ver-
tices that can be reached from X (see,
e.g., [OW02], [CLR90]).

1 breadth-first search(G,X) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached
7 od
8 return reached

Figure 6: Breadth-first search algorithm for enu-
merating all vertices reachable from X.

For checking u-separation we have to
tweak the algorithm

1. not to add vertices from Z to the bor-
der and

2. to stop if a vertex of Y has been
reached.

1 check-u-separation(G,X, Y, Z) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached \ Z
7 if border ∩ Y 6= ∅
8 return false
9 fi

10 od
11 return true

Figure 7: Breadth-first search algorithm for
checking u-separation of X and Y by Z.
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Bayesian Networks / 2. Properties of Ternary Relations on Sets

Symmetry

Definition 4. Let V be any set and I a ternary relation on
P(V ), i.e., I ⊆ (P(V ))3.

I is called symmetric, if

I(X, Y |Z)⇒ I(Y,X|Z)

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 8: Examples for symmetry [CGH97, p. 186].
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Bayesian Networks / 2. Properties of Ternary Relations on Sets

Decomposition and Composition

Definition 5. I is called (right-)decomposable, if

I(X, Y |Z)⇒ I(X, Y ′|Z) for any Y ′ ⊆ Y

I is called (right-)composable, if

I(X, Y |Z) and I(X, Y ′|Z)⇒ I(X, Y ∪ Y ′|Z)

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 9: Examples for decomposition [CGH97, p. 186].
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Bayesian Networks / 2. Properties of Ternary Relations on Sets

Union

Definition 6. I is called strongly unionable, if

I(X, Y |Z)⇒ I(X, Y |Z ∪ Z ′) for all Z ′ disjunct with X, Y

I is called (right-)weakly unionable, if

I(X, Y |Z)⇒ I(X, Y ′|(Y \ Y ′) ∪ Z) for any Y ′ ⊆ Y

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 10: Examples for a) strong union and b) weak union [CGH97, p. 186,189].
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Bayesian Networks / 2. Properties of Ternary Relations on Sets

Contraction and Intersection

Definition 7. I is called (right-)contractable, if

I(X, Y |Z) and I(X, Y ′|Y ∪ Z)⇒ I(X, Y ∪ Y ′|Z)

I is called (right-)intersectable, if

I(X, Y |Y ′ ∪ Z) and I(X, Y ′|Y ∪ Z)⇒ I(X, Y ∪ Y ′|Z)

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

186 5. Building Probabilistic Models

(a) Symmetry (b) Decomposition

=?

(c) Weak Union

(d) Contraction

PTnTTDlC' ~ ~ "

(e) Intersection

=?

Figure 11: Examples for a) contraction and b) intersection [CGH97, p. 186].
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Bayesian Networks / 2. Properties of Ternary Relations on Sets

Transitivity

Definition 8. I is called strongly transitive, if

I(X, Y |Z)⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

I is called weakly transitive, if

I(X, Y |Z) and I(X, Y |Z∪{v})⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \Z

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 12: Examples for a) strong transitivity and b) weak transitivity. [CGH97, p. 189]
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Bayesian Networks / 2. Properties of Ternary Relations on Sets

Chordality

Definition 9. I is called chordal, if

I({a}, {c}|{b, d}) and I({b}, {d}|{a, c})⇒ I({a}, {c}|{b}) or I({a}, {c}|{d})

a

b d

c

&

a

b d

c

⇒

a

b d

c

or

a

b d

c

Figure 13: Example for chordality.
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Bayesian Networks / 3. Separation in Directed Graphs

Directed graphs

Definition 10. Let V be any set and

E ⊆ V × V

be a subset of sets of ordered pairs of
V . Then G := (V,E) is called a directed
graph. The elements of V are called
vertices or nodes, the elements of E
edges.

Let e = (x, y) ∈ E be an edge, then
we call the vertices x, y incident to the
edge e. We call two vertices x, y ∈ V
adjacent, if there is an edge (x, y) ∈ E
or (y, x) ∈ E.

The set of all vertices with an edge from
a given vertex x ∈ V is called its fanout:

fanout(x) := {y ∈ V | (x, y) ∈ E}

The set of all vertices with an edge to a
given vertex x ∈ V is called its fanin:

fanin(x) := {y ∈ V | (y, x) ∈ E}

J

A

I

B

C H

D

E F

GK L

Figure 14: Fanin (orange) and fanout (green) of
a node (blue).
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Bayesian Networks / 3. Separation in Directed Graphs

Paths on directed graphs

Definition 11. Let G = (V,E) be a di-
rected graph. We call
G∗ := V ∗|G := {p ∈ V ∗ | (pi, pi+1) ∈ E,

i = 1, . . . , |p| − 1}
the set of paths on G. For two vertices
x, y ∈ V we denote by

G∗[x,y] := {p ∈ V ∗|G | p1 = x, p|p| = y}
the set of paths from x to y.

The notions of subpath, interior, and
proper path carry over to directed
graphs.

A proper path p = (p1, . . . , pn) ∈ G∗ with
p1 = pn is called cyclic. A path without
cyclic subpath is called a simple path.
A graph without a cyclic path is called
directed acyclig graph (DAG).

A B

C

D

E F

G

Figure 15: Example for a cycle.
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Bayesian Networks / 3. Separation in Directed Graphs

Paths on directed graphs (2/2)

Definition 12. For a DAG G vertices of
the fanout are also called children
child(x) := fanout(x) := {y ∈ V | (x, y) ∈ E}
and the vertices of the fanin parents:
pa(x) := fanin(x) := {y ∈ V | (y, x) ∈ E}

Vertices y with a proper path from y to x
are called ancestors of x:

anc(x) := {y ∈ V | ∃p ∈ G∗ : |p| ≥ 2,

p1 = y, p|p| = x}

Vertices y with a proper path from x to y
are called descendents of x:

desc(x) := {y ∈ V | ∃p ∈ G∗ : |p| ≥ 2,

p1 = x, p|p| = y}

Vertices that are not a descendent of x
are called nondescendents of x.

J

A

I

B

C H

D

E F

GK L

Figure 16: Parents/Fanin (orange) and addi-
tional ancestors (light orange), children/fanout
(green) and additional descendants (light green)
of a node (blue).
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Bayesian Networks / 3. Separation in Directed Graphs

Chains

Definition 13. Let G := (V,E) be a
directed graph. We can construct an
undirected skeleton u(G) := (V, u(E))
of G by dropping the directions of the
edges:
u(E) := {{x, y} | (x, y) ∈ E or (y, x) ∈ E}

The paths on u(G) are called chains of
G:

GN := u(G)∗

i.e., a chain is a sequence of vertices
that are linked by a forward or a back-
ward edge. If we want to stress the di-
rections of the linking edges, we denote
a chain p = (p1, . . . , pn) ∈ GN by

p1 ← p2 → p3 ← · · · ← pn−1 → pn

The notions of length, subchain, inte-
rior and proper carry over from undi-
rected paths to chains.

A B

C

D

E F

G

A B

C

D

E F

G

Figure 17: Chain (A,B,E,D, F ) on directed
graph and path on undirected skeleton.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14 17/30

Bayesian Networks / 3. Separation in Directed Graphs

Blocked chains

Definition 14. Let G := (V,E) be a di-
rected graph. We call a chain

p1 → p2 ← p3

a head-to-head meeting.

Let Z ⊆ V be a subset of vertices.
Then a chain p ∈ GN is called blocked
at position i by Z, if for its subchain
(pi−1, pi, pi+1) there is
{
pi ∈ Z, if not pi−1 → pi ← pi+1

pi 6∈ Z ∪ anc(Z), else

A B

C

D

E F

G

Figure 18: Chain (A,B,E,D, F ) is blocked by
Z = {B} at 2.
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Bayesian Networks / 3. Separation in Directed Graphs

Blocked chains / more examples

A B

C

D

E F

G

Figure 19: Chain (A,B,E,D, F ) is blocked by
Z = ∅ at 3.

A B

C

D

E F

G

Figure 20: Chain (A,B,E,D, F ) is not blocked
by Z = {E} at 3.
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Bayesian Networks / 3. Separation in Directed Graphs

Blocked chains / rationale

The notion of blocking is choosen in
a way so that chains model "flow of
causal influence" through a causal net-
work where the states of the vertices Z
are already know.

1) Serial connection / intermediate
cause:

flu

nausea

palor

flu

nausea

palor

2) Diverging connection / common
cause:

flu

nausea fever

flu

nausea fever

3) Converging connection / common ef-
fect:

flu salmonella

nausea

palor

flu salmonella

nausea

palor

Models "discounting" [Nea03, p. 51].
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Bayesian Networks / 3. Separation in Directed Graphs

The moral graph

Definition 15. Let G := (V,E) be a DAG.

As the moral graph of G we denote the undirected skele-
ton graph of G plus additional edges between each two
parents of a vertex, i.e. moral(G) := (V,E ′) with

E ′ := u(E) ∪ {{x, y} | ∃z ∈ V : x, y ∈ pa(z)}

A B

C

D

E F

G

A B

C

D

E F

G

Figure 22: DAG and its moral graph.Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14 21/30

Bayesian Networks / 3. Separation in Directed Graphs

Separation in DAGs (d-separation)

Let G := (V,E) be a DAG.

Let X, Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are separated by Z in G, if
(i) every chain from any vertex from X

to any vertex from Y is blocked by Z

or equivalently

(ii) X and Y are u-separated by Z in the
moral graph of the ancestral hull of
X ∪ Y ∪ Z.

We write IG(X, Y |Z) for the statement,
that X and Y are separated by Z in G.

A B

C

D

E F

G

Figure 23: Are the vertices A and D separated
by C in G?
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Bayesian Networks / 3. Separation in Directed Graphs

Separation in DAGs (d-separation) / examples

A B

C

D

E F

G

A B

C

D

E F

G

A B

C

D

E F

G

Figure 24: A and D are separated by C in G.
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Bayesian Networks / 3. Separation in Directed Graphs

Separation in DAGs (d-separation) / more examples

A B

C

D

E F

G

A B

C

D

E F

G

A B

C

D

E F

G

Figure 25: A and D are not separated by {C,G} in G.
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Bayesian Networks / 3. Separation in Directed Graphs

Checking d-separation

To test, if for a given graph G = (V,E) two given sets
X, Y ⊆ V of vertices are d-separated by a third given set
Z ⊆ V of vertices, we may

• build the moral graph of the ancestral hull and

• apply the u-separation criterion.

1 check-d-separation(G,X, Y, Z) :
2 G′ := moral(ancG(X ∪ Y ∪ Z))
3 return check-u-separation(G′, X, Y, Z)

Figure 26: Algorithm for checking d-separation via u-separation in the
moral graph.

A drawback of this algorithm is that we have to rebuild
the moral graph of the ancestral hull whenever X or Y
changes.
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Bayesian Networks / 3. Separation in Directed Graphs

Checking d-separation

Instead of constructing a moral graph,
we can modify a breadth-first search
for chains to find all vertices not d-
separated from X by Z in G.

The breadth-first search must not hop
over head-to-head meetings with the
middle vertex not in Z nor having an de-
scendent in Z.

x y

z ∈ fanout(y)

z ∈ fanin(y)

if y∈Z∪anc(Z)

Figure 27: Restricted breadth-first search of
non-blocked chains.

1 enumerate-d-separation(G = (V,E), X, Z) :
2 borderForward := ∅
3 borderBackward := X \ Z
4 reached := ∅
5 while borderForward 6= ∅ or borderBackward 6= ∅ do
6 reached := reached ∪ (borderForward \ Z) ∪ borderBackward
7 borderForward := fanoutG(borderBackward ∪ (borderForward \ Z)) \ reached
8 borderBackward := faninG(borderBackward ∪ (borderForward ∩ (Z ∪ anc(Z)))) \ Z \ reached
9 od

10 return V \ reached

Figure 28: Algorithm for enumerating all vertices d-separated from X by Z in G via restricted
breadth-first search (see [Nea03, p. 80–86] for another formulation).
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Bayesian Networks / 3. Separation in Directed Graphs

Properties of d-separation / no strong union

For d-separation the strong union property does not hold.

I is called strongly unionable, if

I(X, Y |Z)⇒ I(X, Y |Z ∪ Z ′) for all Z ′ disjunct with X, Y

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 29: Example for strong union in undi-
rected graphs (u-separation) [CGH97, p. 189].

X Y

Z

X Y

Z

Figure 30: Counterexample for strong unions in
DAGs (d-separation).
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Bayesian Networks / 3. Separation in Directed Graphs

Properties of d-separation / no strong transitivity

For d-separation the strong transitivity property does not hold.

I is called strongly transitive, if

I(X, Y |Z)⇒ I(X, {v}|Z) or I({v}, Y |Z) ∀v ∈ V \ Z

(a) Strang Union (b) Strang Transitivity

(e) Weak Transitivity

&

(d) Chordality

:::}

or

or

Figure 31: Example for strong transitivity in undi-
rected graphs (u-separation) [CGH97, p. 189].

x

z

y

v

Figure 32: Counterexample for strong transitivity
in DAGs (d-separation).
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Bayesian Networks / 3. Separation in Directed Graphs

Properties of d-separation
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u-separation + + + + + + + + + –
d-separation + + + – + + – + +
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