Bayesian Networks

3. Bayesian and Markov Networks

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

2. Graph Representations of Ternary Relations

3. Markov Networks

4. Bayesian Networks

Definition 1. An undirected graph $G:=(V, E)$ is called complete, if it contains all possible edges (i.e. if $E=$ $\mathcal{P}^{2}(V)$).

Figure 1: Undirected complete graph with 6 vertices.

Definition 2. Let $G:=(V, E)$ be a directed graph.
A bijective map

$$
\sigma:\{1, \ldots,|V|\} \rightarrow V
$$

is called an ordering of (the vertices of) G.

We can write an ordering as enumeration of V, i.e. as $v_{1}, v_{2}, \ldots, v_{n}$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{i} \neq v_{j}$ for $i \neq j$.

Figure 2: Ordering of a directed graph.

Definition 3. An ordering $\sigma=$ $\left(v_{1}, \ldots, v_{n}\right)$ is called topological ordering if
(i) all parents of a vertex have smaller numbers, i.e.
fanin $\left(v_{i}\right) \subseteq\left\{v_{1}, \ldots, v_{i-1}\right\}, \quad \forall i=1, \ldots, n$
or equivalently
(ii) all edges point from smaller to larger numbers
$(v, w) \in E \Rightarrow \sigma^{-1}(v)<\sigma^{-1}(w), \quad \forall v, \psi \in V$
The reverse of a topological ordering e.g. got by using the fanout instead of the fanin - is called ancestral numbering.

In general there are several topological orderings of a DAG.

Figure 3: DAG with different topological orderings: $\sigma_{1}=(A, B, C)$ and $\sigma_{2}=(B, A, C)$. The ordering $\sigma_{3}=(A, C, B)$ is not topological.

Bayesian Networks / 1. Complete Graphs, DAGs and Topological Orderings

Lemma 1. Let G be a directed graph. Then
G is acyclic (a DAG) $\Leftrightarrow G$ has a topological ordering

```
I topological-ordering(G= (V,E)):
2 choose v}\inV\mathrm{ with fanout }(v)=
3 }\sigma(|V|):=
```



```
r return }
```

Figure 4: Algorithm to compute a topologcial ordering of a DAG.

Exercise: write an algorithm for checking if a given directed graph is acyclic.

Definition 4. A DAG $G:=(V, E)$ is called complete, if
(i) it has a topological ordering $\sigma=$ $\left(v_{1}, \ldots, v_{n}\right)$ with
$\operatorname{fanin}\left(v_{i}\right)=\left\{v_{1}, \ldots, v_{i-1}\right\}, \quad \forall i=1, \ldots, n$
or equivalently
(ii) it has exactly one topological ordering
or equivalently
(iii) every additional edge introduces a cycle.

1. Complete Graphs, DAGs and Topological Orderings
2. Graph Representations of Ternary Relations

3. Markov Networks

4. Bayesian Networks

Graph representations of ternary relations on $\mathcal{P}(V)$

Definition 5. Let V be a set and I a ternary relation on $\mathcal{P}(V)$ (i.e. $I \subseteq$ $\left.\mathcal{P}(V)^{3}\right)$. In our context I is often called an independency model.

Let G be a graph on V (undirected or DAG).
G is called a representation of I, if
$I_{G}(X, Y \mid Z) \Rightarrow I(X, Y \mid Z) \quad \forall X, Y, Z \subseteq V$
A representation G of I is called faithful, if
$I_{G}(X, Y \mid Z) \Leftrightarrow I(X, Y \mid Z) \quad \forall X, Y, Z \subseteq V$
Representations are also called independency maps of I or markov w.r.t. I, faithful representations are also called perfect maps of I.

Figure 6: Non-faithful representation of

$$
\begin{aligned}
I:=\{ & (A, B \mid\{C, D\}),(B, C \mid\{A, D\}), \\
& (B, A \mid\{C, D\}),(C, B \mid\{A, D\})\}
\end{aligned}
$$

Figure 7: Faithful representation of I. Which I ?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 2. Graph Representations of Ternary Relations
Faithful representations

In G also holds
$I_{G}(B,\{A, C\} \mid D), I_{G}(B, A \mid D), I_{G}(B, C \mid D)$,
so G is not a representation of

$$
\begin{aligned}
& I:=\{(A, B \mid\{C, D\}),(B, C \mid\{A, D\}), \\
&(B, A \mid\{C, D\}),(C, B \mid\{A, D\})\}
\end{aligned}
$$

at all. It is a representation of

Figure 8: Faithful representation of J.

$$
\begin{aligned}
J:=\{ & (A, B \mid\{C, D\}),(B, C \mid\{A, D\}),(B,\{A, C\} \mid D),(B, A \mid D),(B, C \mid D), \\
& B, A \mid\{C, D\}),(C, B \mid\{A, D\}),(\{A, C\}, B \mid D),(A, B \mid D),(C, B \mid D)\}
\end{aligned}
$$

and as all independency statements of J hold in G, it is faithful.

For a complete undirected graph or a complete DAG $G:=(V, E)$ there is

$$
I_{G} \equiv \text { false },
$$

i.e. there are no triples $X, Y, Z \subseteq V$ with $I_{G}(X, Y \mid Z)$. Therefore G represents any independency model I on V and is called trivial representation.

There are independency models without faithful representation.

Figure 9: Independency model

$$
I:=\{(A, B \mid\{C, D\})\}
$$

without faithful representation.

Definition 6. A representation G of I is called minimal, if none of its subgraphs omitting an edge is a representation of I.

Figure 10: Different minimal undirected representations of the independency model

$$
\begin{aligned}
I:=\{ & (A, B \mid\{C, D\}),(A, C \mid\{B, D\}), \\
& (B, A \mid\{C, D\}),(C, A \mid\{B, D\})\}
\end{aligned}
$$

Lemma 2 (uniqueness of minimal undirected representation). An independency model I has exactly one minimal undirected representation, if and only if it is
(i) symmetric: $I(X, Y \mid Z) \Rightarrow I(Y, X \mid Z)$.
(ii) decomposable: $I(X, Y \mid Z) \Rightarrow I\left(X, Y^{\prime} \mid Z\right)$ for any $Y^{\prime} \subseteq Y$
(iii) intersectable: $I\left(X, Y \mid Y^{\prime} \cup Z\right)$ and $I\left(X, Y^{\prime} \mid Y \cup Z\right) \Rightarrow I(X, Y \cup$ $\left.Y^{\prime} \mid Z\right)$
Then this representation is $G=(V, E)$ with

$$
E:=\left\{\{x, y\} \in \mathcal{P}^{2}(V) \mid \operatorname{not} I(x, y \mid V \backslash\{x, y\}\}\right.
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 2. Graph Representations of Ternary Relations
Minimal representations (2/2)

Example 1.

$$
\begin{aligned}
I:=\{ & (A, B \mid\{C, D\}),(A, C \mid\{B, D\}),(A,\{B, C\} \mid D),(A, B \mid D),(A, C \mid D), \\
& (B, A \mid\{C, D\}),(C, A \mid\{B, D\}),(\{B, C\}, A \mid D),(B, A \mid D),(C, A \mid D)\}
\end{aligned}
$$

is symmetric, decomposable and intersectable.

Its unique minimal undirected representation is

If a faithful representation exists, obviously it is the unique minimal representation, and thus can be constructed by the rule in lemma 2.

Definition 7. Let G, H be two graphs on a set V (undirected or DAGs).
G and H are called markov-equivalent, if they have the same independency model, i.e.

$$
I_{G}(X, Y \mid Z) \Leftrightarrow I_{H}(X, Y \mid Z), \quad \forall X, Y, Z \subseteq V
$$

The notion of markov-equivalence for undirected graphs is uninteresting, as every undirected graph is markovequivalent only to itself (corollary of uniqueness of minimal representation!).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Bayesian Networks / 2. Graph Representations of Ternary Relations
Properties of conditional independency

${ }^{1)}+$ for decomposable JPDs.
There is provably no finite axiomatization of conditional independency of general JPDs.

It is still an open research problem, if there is a finite axiomatization of conditional independency for non-extreme

Independency models that satisfy symmetry, decomposition, weak union, and contraction (as conditional independency of general JPDs) are called semigraphoids. If they satisfy also intersection (as conditional independency of non-extreme JPDs), they are called graphoids.

Example 2 (example for composition in JPDs).

z	y_{1}	$p\left(x \mid z, y_{1}\right)$
0	0	0.2
0	1	0.2
1	0	0.75
1	1	0.75
	$I\left(x, y_{1} \mid z\right)$	

z	x	y_{1}	y_{2}	$p\left(x, y_{1}, y_{2}, z\right)$
0	0	0	0	0.04
0	0	0	1	0.04
0	0	1	0	0.04
0	0	1	1	0.04
0	1	0	0	0.01
0	1	0	1	0.01
0	1	1	0	0.01
0	1	1	1	0.01
1	0	0	0	0.05
1	0	0	1	0.05
1	0	1	0	0.05
1	0	1	1	0.05
1	1	0	0	0.15
1	1	0	1	0.15
1	1	1	0	0.15
1	1	1	1	0.15

z	y_{1}	y_{2}	$p\left(x \mid z, y_{1}, y_{2}\right)$
0	0	0	0.2
0	0	1	0.2
0	1	0	0.2
0	1	1	0.2
1	0	0	0.75
1	0	1	0.75
1	1	0	0.75
1	1	1	0.75
$I\left(x,\left\{y_{1}, y_{2}\right\} \mid z\right)$			

z	y_{2}	$p\left(x \mid z, y_{2}\right) \mid$
0	0	0.2
0	1	0.2
1	0	0.75
1	1	0.75
	$I\left(x, y_{2} \mid z\right)$	

$$
\begin{array}{|c|c|}
z & p(z) \\
\hline 0 & 0.2 \\
1 & 0.8 \\
\hline
\end{array}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 2. Graph Representations of Ternary Relations
Properties of conditional independency / no composition
Example 3 (counterexample for composition in JPDs).

z	y_{1}	$p\left(x \mid z, y_{1}\right)$
0	0	0.2
0	1	0.2
1	0	0.75
1	1	0.75
	$I\left(x, y_{1} \mid z\right)$	

z	y_{2}	$p\left(x \mid z, y_{2}\right)$
0	0	0.2
0	1	0.2
1	0	0.75
1	1	0.75
	$I\left(x, y_{2} \mid z\right)$	

z	x	y_{1}	y_{2}	$p\left(x, y_{1}, y_{2}, z\right)$
0	0	0	0	0.040 .03
0	0	0	1	0.040 .05
0	0	1	0	0.040 .05
0	0	1	1	0.040 .03
0	1	0	0	0.01
0	1	0	1	0.01
0	1	1	0	0.01
0	1	1	1	0.01
1	0	0	0	0.05
1	0	0	1	0.05
1	0	1	0	0.05
1	0	1	1	0.05
1	1	0	0	0.15
1	1	0	1	0.15
1	1	1	0	0.15
1	1	1	1	0.15

z	y_{1}	y_{2}	$p\left(x \mid z, y_{1}, y_{2}\right)$
0	0	0	0.2
0	0.25		
0	0	1	0.2
0	1	0	0.17
0	1	1	$0.2-0.17$
1	0	0	0.75
1	0	1	0.75
1	1	0	0.75
1	1	1	0.75
$\neg I\left(x,\left\{y_{1}, y_{2}\right\} \mid z\right)!$			

z	$p(z)$
0	0.2
1	0.8

1. Complete Graphs, DAGs and Topological Orderings

2. Graph Representations of Ternary Relations

3. Markov Networks

4. Bayesian Networks

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Definition 8. We say, a graph represents a JPD p, if it represents the conditional independency relation I_{p} of p.

General JPDs may have several minimal undirected representations (as they may violate the intersection property).

Non-extreme JPDs have a unique minimal undirected representation.

To compute this representation we have to check $I_{p}(X, Y \mid V \backslash\{X, Y\})$ for all pairs of variables $X, Y \in V$, i.e.

$$
p \cdot p^{\downarrow V \backslash\{X, Y\}}=p^{\downarrow V \backslash\{X\}} \cdot p^{\downarrow V \backslash\{Y\}}
$$

Then the minimal representation is the complete graph on V omitting the edges $\{X, Y\}$ for that $I_{p}(X, Y \mid V \backslash\{X, Y\})$ holds.

Representation of conditional independency

Example 4. Let p be the JPD on $V:=\mid$ Its marginals are: $\{X, Y, Z\}$ given by:

Z	X	Y	$p(X, Y, Z)$
0	0	0	0.024
0	0	1	0.056
0	1	0	0.036
0	1	1	0.084
1	0	0	0.096
1	0	1	0.144
1	1	0	0.224
1	1	1	0.336

Checking $p \cdot p^{\downarrow V \backslash\{X, Y\}}=p^{\downarrow V \backslash\{X\}}$. $p^{\downarrow \backslash \backslash\{Y\}}$ one finds that the only independency relations of p are $I_{p}(X, Y \mid Z)$ and $I_{p}(Y, X \mid Z)$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 3. Markov Networks

Representation of conditional independency

Example 4 (cont.).

Z	X	Y	$p(X, Y, Z)$
0	0	0	0.024
0	0	1	0.056
0	1	0	0.036
0	1	1	0.084
1	0	0	0.096
1	0	1	0.144
1	1	0	0.224
1	1	1	0.336

Checking $p \cdot p^{\downarrow V \backslash\{X, Y\}}=p^{\downarrow V \backslash\{X\}}$. $p^{\downarrow V \backslash\{Y\}}$ one finds that the only independency relations of p are $I_{p}(X, Y \mid Z)$ and $I_{p}(Y, X \mid Z)$.

Thus, the graph

represents p, as its independency model is $I_{G}:=\{(X, Y \mid Z),(Y, X \mid Z)\}$.

As for p only $I_{p}(X, Y \mid Z)$ and $I_{p}(Y, X \mid Z)$ hold, G is a faithful representation.

Definition 9. Let p be a joint probability distribution of a set of variables V. Let \mathcal{C} be a cover of V, i.e. $\mathcal{C} \subseteq \mathcal{P}(V)$ with $\bigcup_{\mathcal{X} \in \mathcal{C}} \mathcal{X}=V$.
p factorizes according to \mathcal{C}, if there are potentials

$$
\psi_{\mathcal{X}}: \prod_{X \in \mathcal{X}} X \rightarrow \mathbb{R}_{0}^{+}, \quad \mathcal{X} \in \mathcal{C}
$$

with

$$
p=\prod_{\mathcal{X} \in \mathcal{C}} \psi_{\mathcal{X}}
$$

In general, the potentials are not unique and do not have a natural interpretation.

Example 5.

$p=p(X, Z) \cdot p(Y \mid Z)$
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 3. Markov Networks
Factorization of a JPD according to a graph

Definition 10. Let G be an undirected graph. A maximal complete subgraph of G is called a clique of $G . \mathcal{C}_{G}$ denotes the set of all cliques of G.
p factorizes according to G, if it factorizes according to its clique cover \mathcal{C}_{G}.

The factorization induced by the complete graph is trivial.

Figure 11: A graph with cliques $\{A, B, C\}$, $\{B, C, D, E\},\{E, F, G\}$ and $\{E, G, H\}$.

Example 6. The JPD p from last example factorized according to the graph

as it has cliques $\mathcal{C}=\{\{X, Z\},\{Y, Z\}\}$

2003

Lemma 3. Let p be a JPD of a set of variables V, G be an undirected graph on V. Then
(i) p factorizes acc. to $G \Rightarrow G$ represents p.
(ii) If $p>0$ then p factorizes acc. to $G \Leftrightarrow G$ represents p.
(iii) If $p>0$ then p factorizes acc. to its (unique) minimal representation.
(iv) If G is an undirected graph and $\psi_{\mathcal{X}}$ for $\mathcal{X} \in \mathcal{C}_{G}$ are any potentials on its cliques, then G represents the JPD

$$
p:=\left(\prod_{\mathcal{X} \in \mathcal{C}_{G}} \psi_{\mathcal{X}}\right)^{|\emptyset|}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Definition 11. Let G be an undirected graph and \mathcal{C}_{G} be its cliques. A sequence C_{1}, \ldots, C_{n} of cliques of G is called chain of cliques, if

1. every clique occurs exactly once and
2. the running intersection property holds:

$$
C_{i} \cap \bigcup_{j=1}^{i-1} C_{j} \subseteq C_{k}, \quad \forall i \exists k<i
$$

Figure 12: A graph with chain of cliques $\{A, B, C\}, \quad\{B, C, D, E\}, \quad\{E, F, G\} \quad$ and $\{E, G, H\}$.

Figure 13: A graph with cliques $\{A, B, C\}$, $\{B, D\}, \quad\{C, E\}, \quad\{D, E\}, \quad\{E, F, G\} \quad$ and

2003

Definition 12. Let G be an undirected graph.
G is called triangulated (or chordal), if every cycle of length ≥ 4 has a chord, i.e. it exists an additional edge in G between non-successive vertices of the cycle.

Lemma 4. G is chordal $\Leftrightarrow I_{G}$ is chordal.

Figure 14: Cycle with chord and cycle without chord.

Figure 15: Chordal or non-chordal graph?

Figure 16: Chordal or non-chordal graph?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 3. Markov Networks

Definition 13. Let G be an undirected graph.
An ordering σ of (the vertices of) G is called perfect, if
(i) $\sigma(i)$ and its neighbors form a clique of the subgraph on $\sigma(\{1, \ldots, i\})$ or equivalently
(ii) the subgraph on

$$
\operatorname{fan}(\sigma(i)) \cap \sigma(\{1, \ldots, i-1\})
$$

is complete.
A perfect ordering is also called a perfect numbering. The reverse of a perfect ordering is also called elimination or deletion sequence.

Figure 17: There are several perfect orderings of this graph, e.g., H, G, E, F, D, C, B, A and G, E, B, C, H, D, F, A.

2003

Lemma 5. Let G be an undirected graph. It is equivalent:
(i) G is triangulated / chordal.
(ii) G admits a perfect ordering.
(iii) G admits a chain of cliques.

Figure 19: MCS finds the perfect ordering (A, B, C, D, E, F, G, H).

```
l perfect-ordering-MCS}(G=(V,E))
for}i=1,\ldots,|V|\underline{\mathrm{ do}
    \sigma(i):=v\inV\\sigma({1,\ldots,i-1}) with maximal |fan}\mp@subsup{G}{G}{}(v)\cap\sigma({1,\ldots,i-1})
        breaking ties arbitrarily
od
return }
```

Figure 20: Algorithm to find a perfect ordering of a triangulated graph by maximum cardinality search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Triangulation, perfect ordering, and chain of cliques
chain-of-cliques (G) :
$\mathcal{C}:=$ enumerate-cliques (G)
з $\sigma:=$ perfect-ordering (G)
Order \mathcal{C} by ascending $\max \left(\sigma^{-1}(C)\right)$ for $C \in \mathcal{C}$ breaking ties arbitrarily
return \mathcal{C}
Figure 21: Algorithm to find a chain of cliques of a triangulated graph.

Figure 22: Based on the perfect ordering (A, B, C, D, E, F, G, H) the rank of the cliques is computed as $\{A, B, C\}$ (3) $\{B, C, D, E\}$ (5), $\{E, F, G\}$ (7) and $\{E, G, H\}$ (8). The algorithm outputs the chain of cliques $\{A, B, C\}$, $\{B, C, D, E\},\{E, F, G\}$ and $\{E, G, H\}$.
Based on the perfect ordering G, E, B, C, H, D, F, rank of the cliques is computed as $\{A, B, C\}$ (8) $\{B, C, D, E\}$ (6), $\{E, F, G\}$ (7) and $\{E, G, H\}$ (5). The algorithm outputs the chain of cliques $\{E, G, H\},\{B, C, D, E\},\{E, F, G\}$ and $\{A, B, C\}$.

2003

Definition 14. A joint probability distribution p is called decomposable, if its conditional independency relation I_{p} is chordal.

Warning. p being decomposable has nothing to do with I_{p} being decomposable!

Definition 15. Let G be a triangulated / chordal graph and $\mathcal{C}=C_{1}, \ldots, C_{n}$ a chain of cliques of G. Then

$$
S_{i}:=C_{i} \cap \bigcup_{j<i} C_{j}
$$

is called the i-th separator.

Lemma 6. Let p be a JPD of a set of variables V, G be an undirected graph on V. If G represents p and p is decomposable (i.e. G triangulated/chordal), let $\mathcal{C}=C_{1}, \ldots, C_{n}$ be a chain of cliques, and then

$$
p=\prod_{i=1}^{n} p^{\left\lfloor C_{i} \mid S_{i}\right.}
$$

i.e. p factorizes in the conditional probability distributions of the cliques given its separators.

Definition 16. A pair $\left(G,\left(\psi_{C}\right)_{C \in \mathcal{C}_{G}}\right)$ consisting of
(i) an undirected graph G on a set of variables V and
(ii) a set of potentials

$$
\psi_{C}: \prod_{X \in C} \operatorname{dom}(X) \rightarrow \mathbb{R}_{0}^{+}, \quad C \in \mathcal{C}_{G}
$$

on the cliques ${ }^{1}$) of G (called clique potentials)
is called a markov network.
${ }^{1)}$ on the product of the domains of the variables of each clique.

Thus, a markov network encodes
(i) a joint probability distribution factorized as

$$
p=\left(\prod_{C \in \mathcal{C}_{G}} \psi_{C}\right)^{1 \emptyset}
$$

and
(ii) conditional independency statements

$$
I_{G}(X, Y \mid Z) \Rightarrow I_{p}(X, Y \mid Z)
$$

G represents p, but not necessarily faithfully.

Under some regularity conditions (not covered here), $\psi_{C_{i}}$ can be choosen as conditional probabilities $p^{\downarrow C_{i} \mid S_{i}}$.

Figure 23: Example for a markov network.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

1. Complete Graphs, DAGs and Topological Orderings

2. Graph Representations of Ternary Relations

3. Markov Networks

4. Bayesian Networks

	probability distribution	markov network
structure	conditional independence I_{p} representations exist alwa Sym+Dec+Int+SUn+S minimal represe $\text { Sym+Dec+Int } \Rightarrow \text { uni }$ e.g. for p non-extreme	u-separation in graph (e.g., trivial representation) ans \Leftrightarrow faithful (Lemma 2) ations exist always ue minimal (Lemma 3) different graphs give different representations (trivial markov-equivalence)
parameters	large probability table p if p is decomposable (i.e. I_{p} chordal/triangulated)	clique potentials ϕ if G is chordal/triangulated \Rightarrow conditional clique probabilities $p\left(C_{i} \mid S_{i}\right)$ for a chain of cliques $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 4. Bayesian Networks
Bayesian networks

Bayesian networks		
	probability distribution	bayesian network
structure	conditional independence I_{p}	d-separation in graph
	representations exist always (e.g., trivial representation) Sym+Dec+Comp+Contr+Int+WUn+WTrans+Chor \Leftarrow faithful (Lemma	
	minimal rep Sym+Dec+Contr+Int+WUn $=$ e.g. for p non-extreme	ntations exist always que minimal up to ordering (Lemma
		graphs with same DAG pattern give same representation (markov-equivalence)
parameters	large probability table p	conditional vertex probabilities $p(v \mid \mathrm{pa}(v))$

Lemma 7 (criterion for DAG-representation). Let p be a joint probability distribution of the variables V and G be a graph on the vertices V. Then:
G represents $p \Leftrightarrow v$ and nondesc (v) are conditionally independent given $\mathrm{pa}(v)$ for all $v \in V$, i.e.,

$$
I_{p}(\{v\}, \operatorname{nondesc}(v) \mid \operatorname{pa}(v)), \quad \forall v \in V
$$

Figure 24: Parents of a vertex (orange).
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 4. Bayesian Networks

Faithful DAG-representations

Lemma 8 (necessary conditions for faithful DAG-representability). An independency model I has a faithful DAG representation, only if it is
(i) symmetric: $I(X, Y \mid Z) \Rightarrow I(Y, X \mid Z)$.
(ii) decomposable: $I(X, Y \mid Z) \Rightarrow I\left(X, Y^{\prime} \mid Z\right) \quad$ for any $Y^{\prime} \subseteq Y$
(iii) composable: $I(X, Y \mid Z)$ and $I\left(X, Y^{\prime} \mid Z\right) \Rightarrow I\left(X, Y \cup Y^{\prime} \mid Z\right)$
(iv) contractable: $I(X, Y \mid Z)$ and $I\left(X, Y^{\prime} \mid Y \cup Z\right) \Rightarrow I\left(X, Y \cup Y^{\prime} \mid Z\right)$
(v) intersectable: $I\left(X, Y \mid Y^{\prime} \cup Z\right)$ and $I\left(X, Y^{\prime} \mid Y \cup Z\right) \Rightarrow I\left(X, Y \cup Y^{\prime} \mid Z\right)$
(vi) weakly unionable: $I(X, Y \mid Z) \Rightarrow I\left(X, Y^{\prime} \mid\left(Y \backslash Y^{\prime}\right) \cup Z\right) \quad$ for any $Y^{\prime} \subseteq Y$
(vii) weakly transitive: $I(X, Y \mid Z)$ and $I(X, Y \mid Z \cup\{v\}) \Rightarrow I(X,\{v\} \mid Z)$ or $I(\{v\}, Y \mid Z)$ $V \backslash Z$
(viii) chordal: $I(\{a\},\{c\} \mid\{b, d\})$ and $I(\{b\},\{d\} \mid\{a, c\}) \Rightarrow I(\{a\},\{c\} \mid\{b\})$ or $I(\{a\},\{c\} \mid\{$ It is still an open research problem, if there is a finite axiomatisation of faithful DAG-representability.

Example for a not faithfully DAG-representable independency model

Probability distributions may have no faithful DAGrepresentation.

Example 7. The independency model

$$
I:=\{I(x, y \mid z), I(y, x \mid z), I(x, y \mid w), I(y, x \mid w)\}
$$

does not have a faithful DAG-representation. [CGH97, p. 239]

Exercise: compute all minimal DAG-representations of I using lemma 9 and check if they are faithful.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Lemma 9 (construction and uniqueness of minimal DAG-representation, [VP90]). Let I be an independence model of a JPD p. Then:
(i) A minimal DAG-representation can be constructed as follows: Choose an arbitrary ordering $\sigma:=\left(v_{1}, \ldots, v_{n}\right)$ of V. Choose a minimal set $\pi_{i} \subseteq\left\{v_{1}, \ldots, v_{i-1}\right\}$ of σ-precursors of v_{i} with

$$
I\left(v_{i},\left\{v_{1}, \ldots, v_{i-1}\right\} \backslash \pi_{i} \mid \pi_{i}\right)
$$

Then $G:=(V, E)$ with

$$
E:=\left\{\left(w, v_{i}\right) \mid i=1, \ldots, n, w \in \pi_{i}\right\}
$$

is a minimal DAG-representation of p.
(ii) If p also is non-extreme, then the minimal representation G is unique up to ordering σ.

$$
I:=\{(A, C \mid B),(C, A \mid B)\}
$$

Figure 25: Minimal DAG-representations of I [CGH97, p. 240].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim Course on Bayesian Networks, winter term 2013/14

Representations always exist (e.g., trivial).

Minimal representations always exist (e.g., start with trivial and drop edges successively).

	Markov network (undirected)		Bayesian network (directed) minimal	
faithful	minimal	faithful		
general JPD	may not be	may not	may not be	may not
	unique	exist	unique	exist
non-extreme JPD	unique	may not	unique up	may not
		exist	to ordering	exist

Definition 17．A pair $\left(G:=(V, E),\left(p_{v}\right)_{v \in V}\right)$ consisting of
（i）a directed graph G on a set of vari－ ables V and
（ii）a set of conditional probability dis－ tributions

$$
p_{X}: \operatorname{dom}(X) \times \prod_{Y \in \operatorname{pa}(X)} \operatorname{dom}(Y) \rightarrow \mathbb{R}_{0}^{+}
$$

at the vertices $X \in V$ conditioned on its parents（called（conditional） vertex probability distributions） is called a bayesian network．
Thus，a bayesian network encodes
（i）a joint probability distribution factor－ ized as

$$
p=\prod_{X \in V} p(X \mid \operatorname{pa}(X))
$$

ars anc Course on Bayesian Networks，winter term 2013／14
（ii）conditional independency state－ ments

$$
I_{G}(X, Y \mid Z) \Rightarrow I_{p}(X, Y \mid Z)
$$

G represents p ，but not necessarily faith－ fully．

Fiqure 26：Example for a bavesian network．

Types of probabilistic networks

Figure 27：Types of probabilistic networks．
[CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. Expert Systems and Probabilistic Network Models. Springer, New York, 1997.
[VP90] Thomas Verma and Judea Pearl. Causal networks: semantics and expressiveness. In Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, and John F. Lemmer, editors, Uncertainty in Artificial Intelligence 4, pages 69-76. North-Holland, Amsterdam, 1990.

