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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example

Figure 1: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

aa aA AA
aa (1, 0, 0) (0.5, 0.5, 0) (0, 1, 0)
aA (0.5, 0.5, 0) (0.25, 0.5, 0.25) (0, 0.5, 0.5)
AA (0, 1, 0) (0, 0.5, 0.5) (0, 0, 1)

Figure 2: p(Child | Father, Mother) for genetic in-
heritance. The numbers are the probabilities for
(aa, aA, AA) [Jen01, p. 47].

Variable disease with three states:

pure (aa) carrier (aA) sick (AA)

Genalogic graph becomes bayesian
network if

(i) each non-root vertex has condi-
tional probability distribution

p(child|father,mother)

as given in fig. 2,

(ii) each root vertex has probability dis-
tribution

p(aa) = .99, p(aA) = .01, p(AA) = .0
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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example

Figure 3: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

aa aA AA
aa (1, 0, 0) (0.5, 0.5, 0) (0, 1, 0)
aA (0.5, 0.5, 0) (0.25, 0.5, 0.25) (0, 0.5, 0.5)
AA (0, 1, 0) (0, 0.5, 0.5) (0, 0, 1)

Figure 4: p(Child | Father, Mother) for genetic in-
heritance. The numbers are the probabilities for
(aa, aA, AA) [Jen01, p. 47].

father aa aA AA
mother aa aA AA aa aA AA aa aA AA

aa 1 .5 0 .5 .25 0 0 0 0
aA 0 .5 1 .5 .5 .5 1 .5 0
AA 0 0 0 0 .25 .5 0 .5 1

father aa aA
mother aa aA aa aA

aa 1 .5 .5 .25
aA 0 .5 .5 .5
AA 0 0 0 .25

father aa aA
mother aa aA aa aA

aa 1 .5 .5 1
3

aA 0 .5 .5 2
3

Figure 5: p(child | father, mother) in general (left), if father and mother cannot be sick (middle), and
if child cannot be sick either (right).
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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example / "forward inference"

Figure 6: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

father aa aA
mother aa aA aa aA

aa 1 .5 .5 .25
aA 0 .5 .5 .5
AA 0 0 0 .25

Figure 7: p(child | father, mother) if father and
mother cannot be sick.

p(aa) = 0.99 · 0.99
+ 2 · 1

2
· 0.99 · 0.01

+
1

4
· 0.01 · 0.01

=0.990025

p(aA) = + 2 · 1
2
· 0.99 · 0.01

+
1

2
· 0.01 · 0.01

=0.00995

p(AA) = +
1

4
· 0.01 · 0.01

=0.000025
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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example / "forward inference"2.2 Determining the Conditional Probabilities 49

K

John
Sie 0.04
Cai 0.881
Pur 99.081

FIGDRE 2.14. The stud farm model with initial probabilities.

K

John
Sie 100.00
Cai
Pur

FIGDRE 2.15. Stud farm probabilities given that John is siek.

Figure 8: Probabilities without evidence. [Jen01, p. 49]
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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example / "backward inference"

Figure 9: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

father aa aA
mother aa aA aa aA

aa 1 .5 .5 .25
aA 0 .5 .5 .5
AA 0 0 0 .25

Figure 10: p(child | father, mother) if father and
mother cannot be sick.

If we know, that

(i) all horses but John are not sick and

(ii) John is sick (AA),

we can infer that

(iii) Henry and Irene are carrier (aA)
with p = 1.

If only Fred, Dorothy, Erik, and Gwen ex-
isted, we could further infer that for each
of them

p(aa) =
1

3
, p(aA) =

2

3
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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example / "backward inference"

2.2 Determining the Conditional Probabilities 49

K

John
Sie 0.04
Cai 0.881
Pur 99.081

FIGDRE 2.14. The stud farm model with initial probabilities.

K

John
Sie 100.00
Cai
Pur

FIGDRE 2.15. Stud farm probabilities given that John is siek.Figure 11: Probabilities given evidence that John is sick (AA). [Jen01, p. 49]
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Bayesian Networks / 1. Inference in Probabilistic Networks

Evidence

Definition 1. Let V be a set of variables. The set
E := {E ⊆

⋃

v∈V
{v} × dom(v) | ∀(v, c), (v, c′) ∈ E : c = c′}

is called space of evidence of V .
An element E ∈ E is called evidence of
V . We call
dom(E) := {v ∈ V | ∃c ∈ dom(v) : (v, c) ∈ E}
the set of evidential variables and for
each evidential variable v ∈ dom(E) we
call the unique Ev := c ∈ dom(v) with
(v, c) ∈ E its (evidential) value.
Evidence E corresponds to the proba-
bility distribution

Evidence is a setting of variables to spe-
cific values. "Fuzzy" or "uncertain evi-
dence" that assigns probabilities to the
different values of the variables, is not
handled here.

epdE :
∏

v∈dom(E)

dom(v) → R+
0

(x)v∈dom(E) 7→
{
1, if ∀v : (v, x) ∈ E

0, otherwise
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14 7/22

Bayesian Networks / 1. Inference in Probabilistic Networks

Evidence / example

Example 1. Let V := {A,B,C,D} and
dom(A) := dom(B) := {0, 1},

dom(C) := {0, 1, 2} and
dom(A) := {0, 1, 2, 3}.

Then
E := {(A, 1), (C, 2)}

is an evidence with the evidential vari-
ables A and C. The evidential variable
A has value 1, the variable C value 2.

The probability distribution correspond-
ing to E is

epdE(A = 1, C = 2) = 1

and
epdE(A = a, C = c) = 0

for all other values a of A or c of C.
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Bayesian Networks / 1. Inference in Probabilistic Networks

Entering evidence

Let V be a set of variables and q be a
potential on a subset of V . Let E be ev-
idence of V .
We call

qE :
∏

v∈dom(q)\dom(E)

dom(v) →R+
0

(x)v∈dom(q)\dom(E) 7→q(x,E)

with

(x,E)(v) :=

{
xv, if v ∈ dom(q) \ dom(E)

Ev, if v ∈ dom(E)

the potential q given evidence E.

If q is a JPD, then qE is the probabil-
ity distribution on the non-evidential vari-
ables dom(q) \ dom(E) for outcomes that
conform to E (i.e., have value Ev for
each variable v ∈ dom(E)).

Warning: qE should not be confused
with the conditional probability distribu-
tion q| dom(E). In sloppy notation for E =
{(v1, c1), . . . , (vn, cn)}:

qE = q(x, v1 = c1, . . . , vn = cn)

and

q| dom(E) = q(x | v1, . . . , vn)
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Bayesian Networks / 1. Inference in Probabilistic Networks

Inferencing

Given a JPD p on a set of variables V
and evidenve E on V .
We distinguish three types of inference
targets:
(i) a single variable: For a given vari-

able v ∈ V infering v based on E
w.r.t. p means to compute

p(v|E) =
p(v, E)

p(E)
∼ p(v, E)

or (more exactly) (pE)↓v|∅.

(ii) several variables separately: For
a given set of variables W ⊆ V in-
fering W separately based on E
w.r.t. p means to compute

p(v|E) =
p(v, E)

p(E)
∼ p(v, E), ∀v ∈ W

or (pE)↓v|∅

(iii) joint distribution of several variables:
For a given set of variables W ⊆ V
infering the marginal W based on
E w.r.t. p means to compute

p(W |E) =
p(W,E)

p(E)
∼ p(W,E)

or (pE)↓W |∅

Normalizing is necessary, as pE in gen-
eral is not a probability distribution, even
if p is.
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Bayesian Networks / 1. Inference in Probabilistic Networks

Inferencing / JPD as one large table

If p is given as one large table, infering
the marginal W based on E means

(i) select the subtable indexed by E,

(ii) aggregate to W , i.e., sum over all
variables V \ dom(E) \W ,

(iii) normalize.

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 220 220 25 25 95 95 10 10

N 4 9 5 12 31 76 50 113

Figure 12: JPD p given as one large table.

Pain Y N
Weightloss Y N Y N

Adeno Y 220 25 95 10
N 4 5 31 50

Figure 13: Subtable for E = {(V, Y )}: distribu-
tion pE before normalization.

If we observe the evidence V = Y , then

p(adeno=Y |V = Y ) =
∑

w,q

p(adeno=Y,W = w,P = q|V = Y )

=
220 + 25 + 95 + 10

224 + 30 + 126 + 60
=

350

440
= 0.80

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14 11/22

Bayesian Networks / 1. Inference in Probabilistic Networks

Inferencing / JPD as product of potentials

If p is given as product of potentials, i.e.,

p := (
∏

q∈Q
q)|∅

the problem becomes more interesting.

Naive approach: we reduce the prob-
lem to inference w.r.t. p as one large ta-
ble by explicitly computing p and then
doing inference as on the former slide,
actually computing

(pE)
↓W |∅ = (((

∏

q∈Q
q)|∅)E)

↓W |∅

Naive approach2: we

(i) enter evidence in the factors first,
i.e., compute qE, and then

(ii) compute pE as product of the qE’s

(pE)
↓W |∅ = ((

∏

q∈Q
qE)
↓W |∅)
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Bayesian Networks / 1. Inference in Probabilistic Networks

product of potentials / naive approach

Pain Y .52 Weithloss Y .75 Vomiting Y .44

P W V

A
Pain Y N

Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y .982 .961 .833 .676 .754 .556 .167 .081

Figure 14: Bayesian Network for adeno JPD.

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y .169 .210 .048 .049 .119 .112 .009 .005

N .003 .009 .010 .024 .039 .090 .044 .062

Figure 15: JPD of Bayesian Network for adeno JPD.
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Bayesian Networks / 1. Inference in Probabilistic Networks

product of potentials / naive approach

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y .169 .210 .048 .049 .119 .112 .009 .005

N .003 .009 .010 .024 .039 .090 .044 .062

Figure 16: JPD p given as one large table.

Pain Y N
Weightloss Y N Y N

Adeno Y .169 .048 .119 .009
N .003 .010 .039 .044

Figure 17: Subtable for E = {(V, Y )}: distribution pE before normalization.

Adeno Y .345
N .096

Figure 18: Aggregate subtable for E = {(V, Y )}.
If we observe the evidence V = Y , then

p(adeno=Y |V = Y ) =
∑

w,q

p(adeno=Y,W = w,P = q|V = Y )

=
.345

.345 + .096
= 0.782
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Bayesian Networks / 1. Inference in Probabilistic Networks

product of potentials / naive approach2

Pain Y .52 Weithloss Y .75 Vomiting Y .44—— 1.0

P W V

A
Pain Y N

Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y .982 .961 .833 .676 .754 .556 .167 .081

Figure 19: Bayesian Network for adeno JPD.

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y .384 0 .109 0 .270 0 .020 0

N .007 0 .023 0 .089 0 .100 0

Figure 20: JPD of Bayesian Network for adeno JPD with evidenve V = Y entered.
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Bayesian Networks / 1. Inference in Probabilistic Networks

Overview of inference methods [Guo and Hsu 2001]

(i) exact inference:

(a) Polytree algorithm
(b) conditioning
(c) clustering
(d) arc reversal
(e) variable elimination

(ii) approximate inference:

(a) stochastic sampling

(b) model simplification

(c) search-based

(d) loopy propagation

(iii) symbolic inference.
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Bayesian Networks / 2. Variable elimination

Aggregating products

Doing inference using the naive
approach2,

(pE)
↓W |∅ = ((

∏

q∈Q
qE)
↓W |∅)

we compute a large table as product of
qE and then aggregate to W .

Question: can we aggregate the factors
and then multiply the aggregates?

(pq)↓W
?
= p↓Wq↓W

In general, this equation does not hold,
as
(pq)↓W (x) =

∑

y∈∏X∈dom(pq)\W dom(X)

p(x, y)q(x, y)

but

But it is true for dom(p) ∩ dom(q) ⊆ W ,
i.e., if p and q have no common variables
except those in W .

Lemma 1. Let p and q be two potentials
on a subset of variables V . Let W ⊆ V
a subset of the variables.
If dom(p) ∩ dom(q) ⊆ W then

(pq)↓W = p↓Wq↓W

(p↓Wq↓W )(x) = (
∑

y∈∏X∈dom(p)\W dom(X)

p(x, y))·(
∑

y∈∏X∈dom(q)\W dom(X)

q(x, y))
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Bayesian Networks / 2. Variable elimination

Variable elimination

We can make use of this observation for
simplifying (

∏
q∈Q q)↓W :

(i) choose a variable v ∈ V \W , clearly

(
∏

q∈Q
q)↓W = ((

∏

q∈Q
q)↓cv)↓W

i.e., we can eliminate variable v first,

(ii) let
R := {q ∈ Q | v ∈ dom(q)}

be all potentials which’s domain
contains v and

q′ :=
∏

q∈R
q, qrest =

∏

q∈Q\R
q

(iii) Then
dom(q′) ∩ dom(qrest) ⊆ V \ {v}

and thus
(
∏

q∈Q
q)↓W = (qrest · q′↓cv)↓W

i.e., we replace the potentials R by

q′↓cv

After this replacement, the variable
v is eliminated from the potentials
Q′ := Q \R ∪ {q′↓cv}.
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Bayesian Networks / 2. Variable elimination

Variable elimination

1 inference-varelim(Q : set of potentials,W : set of variables) :
2 while

⋃
q∈Q dom(q) \W 6= ∅ do

3 choose v ∈ ⋃
q∈Q dom(q) \W arbitrarily

4 Q := eliminate-variable(Q, v)
5 od
6 return (

∏
q∈Q q)|∅

7 eliminate-variable(Q : set of potentials, v : variable) :
8 R := {q ∈ Q | v ∈ dom(q)}
9 q′ := (

∏
q∈R q)↓cv

10 return Q \R ∪ {q′}

Also known as bucket elimination.

Useful if the set W of variables to infer separately is small.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14 19/22



Bayesian Networks / 2. Variable elimination

example

Example 2. Let (G, (pv)v∈V ) be the fol-
lowing Bayesian network

A

B C

D E F

The conditional probabilities are
Q := {p(A), p(B|A), p(C|A), p(D|B),

p(E|B,C), p(F |C)}

We want to compute the marginal p(D)
given evidence on F . Thus we add
epd(F ) to Q.

For the elimination sequence

F,E,C,A,B

the following steps have to be per-
formed:

{A,B, /C}

{ /A,B}

{ /B,D} {B,C, /E} {C, /F}

p(C|A)

p(A), p(B|A)

p(D|B)

p(E|B,C) p(F |C), epd(F )
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Bayesian Networks / 2. Variable elimination

example

For the elimination sequence
A,B,C,E, F

the following steps have to be performed:

{ /A,B,C}

{ /B,C,D,E} { /C,D,E, F}

{D, /E,F}

{D, /F}

p(A), p(B|A), p(C|A)

p(D|B), p(E|B,C) p(F |C)

epd(F )
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