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Bayesian Networks / 1. Inference in Probabilistic Networks

studfarm example

Al Ty
( Cecily )
\ J

-

ety o
( Brian )

¢ Ann
\\\\_ /'/-”--' \\\.\_\__ > \..___ -

o i ”/sf\ |
./’ Tt N il i - e \ -""---.__7___ /"_ \'\__
| Fred ) '(D(!I‘()[h}’l,' \ Eric J "“|.( Gwe¢nn )
N L SN A A

i g "s—-r\
bk ™ A y
f \ &, Y
[ Henry ) ( Irene )
\\.. }/’;‘ \‘-.._ - '/J
T
p =
(- ohn )

A

Figure 1: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

aa aA AA
aa (1,0,0) (0.5,0.5,0) (0,1,0)
aA | (0.5,0.5,0) (0.25,0.5,0.25) (0,0.5,0.5)
AA| (0,1,0) (0, 0.5,0.5) (0,0, 1)

Figure 2: p(Child | Father, Mother) for genetic in-
heritance. The numbers are the probabilities for

(aa, aA, AA) [Jen01, p. 47].

Variable disease with three states:

pure (aa) carrier (aA) sick (AA)

Genalogic graph becomes bayesian
network if

(i) each non-root vertex has condi-
tional probability distribution

p(child|father, mother)
as given in fig. 2,

(i) each root vertex has probability dis-
tribution

plaa) = .99, p(aA) = .01, p(AA) = .0
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Figure 3: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

father | aa aA AA father | aa aA father Taa aA
mother |aa aA AA|aa aA AA aa aA AA mother | aa aA | aa aA mother | aa aA | aa aA
aa i1 5 0|5 25 0|0 0 O aa 1 5.5 .25 aa T 515 I
aA o 5 1|5 5 5|1 5 0 aA 0 5|5 5 aA 0 '5 '5 3
AA 0O 0 0|0 25 5/0 5 1 AA 0 0|0 .25 . : 3

Figure 5: p(child | father, mother) in general (left),

if child cannot be sick either (right).

if father and mother cannot be sick (middle), and
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Figure 6: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

father | aa aA

mother |aa aA |aa aA
aa 1 5.5 25
aA 0O 5|5 5
AA 0O 0|0 .25

Figure 7: p(child | father, mother) if father and
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Figure 8: Probabilities without evidence. [Jen01, p. 49]
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Figure 9: Genealogical structure for the horses
in the studfarm example [Jen01, p. 47].

backward inference"
If we know, that

(i) all horses but John are not sick and
Y

venn )
4

""’(ii) John is sick (AA),
we can infer that

(iii) Henry and lIrene are carrier (aA)
with p = 1.

father jaa | aA If only Fred, Dorothy, Erik, and Gwen ex-
mother | aa aA |aa aA \ .
aa |1 515 25 isted, we could further infer that for each
aA 0 5|5 5 of them
AA 0 0|0 .25
Figure 10: p(child | father, mother) if father and 1 A — 2
mother cannot be sick. plaa) = 3’ plad) = 3
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studfarm example / "backward inference"
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Figure 11: Probabilities given evidence that John is sick (AA). [Jen01, p. 49]
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Evidence

Definition 1. Let V be a set of variables.

€ ={E C | J{v} x dom(v)
veV

is called space of evidence of V.
An element E € £ is called evidence of
V. We call
dom(F) :={v € V|3ec € dom(v) : (v,¢) € ]
the set of evidential variables and for
each evidential variable v € dom(F) we
call the unique FE, = ¢ € dom(v) with
(v,c) € E its (evidential) value.
Evidence E corresponds to the proba-

g\

Bysal

G){ﬁ\uﬂg

The set
|V(v,¢),(v,d) € E:c=c"}

Evidence is a setting of variables to spe-
cific values. "Fuzzy" or "uncertain evi-
dence" that assigns probabilities to the
;ﬁifferent values of the variables, is not
andled here.

bility distribution

epdy H dom(v) — RY
vedom(F)
(z) . L, ifVv:(v,z) e E
€ (Y om .
Sdom(£) 0, otherwise
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Evidence

Example 1. Let V := {A, B,C, D} and
dom(A) := dom(B) := {0, 1},
dom(C) := {0, 1,2} and
dom(A) := {0, 1,2, 3}.
Then
E ={(A1),(C,2)}
is an evidence with the evidential vari-

ables A and C. The evidential variable
A has value 1, the variable C value 2.
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/ example

The probability distribution correspond-
ing to F'is
epdp(A=1,C=2)=1

and
epdp(A=a,C=¢)=0

for all other values a of A or c of C.
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Entering evidence
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Let V' be a set of variables and ¢ be a | If ¢ is a JPD, then ¢z is the probabil-
potential on a subset of V. Let E be ev- | ity distribution on the non-evidential vari-

idence of V. ables dom(q) \ dom(F) for outcomes that
We call conform to E (i.e., have value E, for
each variable v € dom(F)).
: dom(v) —RT
1 H (©) 0 Warning: ¢z should not be confused
vedom(g)\dom(E) . . - . )
(z) —q(z, E) with the conditional probability distribu-
vedom(g)\dom(E) ’ tion ¢/o™(%)_ In sloppy notation for £ =
. {(vi,¢1), ..y (Un, )}
with
qp = q(z,v1=cl,...,v, = ¢,)
(2, B)(v) = Ty, !f v € dom(g) \ dom(E)| 54
E,, ifvedom(F) | dom(E)
q ZQ({E|U1,...,’UTL)

the potential ¢ given evidence F.
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Inferencing e

Given a JPD p on a set of variables V | (iii) joint distribution of several variable

and evidenve Eon V. For a given set of variables W C V
We distinguish three types of inference infering the marginal 1/ based on
targets: E w.r.t. p means to compute
(1) a single variable: For a given vari-
able v € V infering v based on E p(W|E) = M ~ p(W, E)
w.r.t. p means to compute p(E)
plvlE) = p;?:E? ~ p(v, E) or (ps) 1"

or (more exactly) (pg)*°.

(ii) several variables separately: For

a given set of variables W C V' in- | Normalizing is necessary, as ps in gen-

fering 1V separately based on ' | ¢r3 is not a probability distribution, even
w.r.t. p means to compute if p is.

p(v|E) = p](;g,g) ~p,E), YveW
or (pg)*l0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Inferencing / JPD as one large table ® a0 ¥
If p is given as one large table, infering Pain| Y N
the marginal W based on E means Weightloss | - ¥ NN
Vomiing| Y N| Y N|Y N/ Y N
Adeno Y |220 220 25 25[95 95|10 10
N| 4 9 5 12|31 76|50 113

(i) select the subtable indexed by F,

(ii) aggregate to W, i.e., sum over all
variables V' \ dom(FE) \ W,

(iil) normalize.

If we observe the evidence V =Y, then

Figure 12: JPD p given as one large table.

Pain| Y N
Weightloss| Y N| Y N
Adeno Y 220 25|95 10
NI 4 5/31 50

Figure 13: Subtable for £ = {(V,Y)}: distribu-
tion pr before normalization.

pladeno=Y |V =Y) = "p(adeno=Y, W = w, P = q|V =Y

w,q
220+ 25+ 95+ 10 _350_080
9224+ 304+ 126460 440
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Inferencing / JPD as product of potentials

If p is given as product of potentials, i.e.,

p=q]"
qe@
the problem becomes more interesting.

Naive approach: we reduce the prob-
lem to inference w.r.t. p as one large ta-
ble by explicitly computing p and then
doing inference as on the former slide,

actually computing
(pp)VW = H g)\0) )10
qe@

Naive approach,: we

(i) enter evidence in the factors first,
l.e., compute gz, and then

(i) compute pz as product of the gz’s

H q)0)

qeq

¢W|®
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product of potentials / naive approach

PainY[.52| WeithlossY[.75| VomitingY | .44 |

P w \'/
A
Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y | .982 .961|.833 .676|.754 .556 |.167 .081

Figure 14: Bayesian Network for adeno JPD.

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y .169 .210 .048 .049|.119 .112|.009 .005
N |.003 .009|.010 .024 |.039 .090 .044 .062

Figure 15: JPD of Bayesian Network for adeno JPD.

4,

G){ﬁ\uﬂg

g\

g TSI,
ol & s,

G

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Bayesian Networks, winter term 2013/14

Bayesian Networks / 1. Inference in Probabilistic Networks

product of potentials / naive approach

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
AdenoY | .169 .210|.048 .049 |.119 .112|.009 .005
N |.003 .009 | .010 .024|.039 .090|.044 .062

Figure 16: JPD p given as one large table.

Pain Y N
Weightloss Y N Y N
Adeno Y |.169 .048|.119 .009
N .003 .010/.039 .044

Figure 17: Subtable for £ = {(V,Y)}: distribution pr before normalization.

Adeno Y |.345
N |.096

Figure 18: Aggregate subtable for £ = {(V,Y)}.
If we observe the evidence V =Y, then

pladeno=Y |V =Y) =Y "p(adeno=Y, W = w, P = q|V =Y
w,q

34
345 + 096

13/22
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product of potentials / naive approach,

PainY[.52| Weithloss Y [.75| VomitingY [ 44—1.0 |

Pain Y N
Weightloss Y N Y N
Vomiting Y N Y N Y N Y N
Adeno Y | .982 .961|.833 .676|.754 .556 |.167 .081

Figure 19: Bayesian Network for adeno JPD.

Pain Y

Weightloss Y N N
Vomiting Y N Y N N Y N
Adeno Y |.384 0/.109 0/.270 0/.020 O
N .007 0/.023 0/.089 0|.100 O

Figure 20: JPD of Bayesian Network for adeno JPD with evidenve IV = Y entered.
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Overview of inference methods [Guo and Hsu 2001]

(i) exact inference: (ii) approximate inference:

a) Polytree algorithm
b) conditioning

c) clustering

d) arc reversal

e) variable elimination

a) stochastic sampling
b) model simplification

( (
i ()

( (c) search-based

( (d) loopy propagation

(iii) symbolic inference.
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1. Inference in Probabilistic Networks

2. Variable elimination
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Aggregating products B

Doing inference wusing the naive
approachg,
o)V — H g5) V)
q€Q

we compute a large table as product of
qr and then aggregate to .

Question: can we aggregate the factors

But it is true for dom(p) N dom(q) C W,
i.e., if pand ¢ have no common variables
except those in W,

Lemma 1. Let p and g be two potentials
on a subset of variables V. LetW C V
a subset of the variables.

If dom(p) N dom(q) C W then

and then multiply the aggregates? (pg)*"" = p™ "
?
(pg)™ = p"gt"
In general, this equation does not hold,
as
(pg)™ (x) = > plz, y)q(z, )
yeHXEdom(pq)\W’ dom(X)
but
(™" ) () = ( > (@, y)) > q(z,y))
yeHXedom(p)\I/V dom(X) yeHXedom(q)\W dom(X)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Variable elimination ® a0

We can make use of this observation for
simplifying (IT,co ¢)"":
(i) choose a variable v € V' \ W, clearly
T = Qo™
qeq) qeq
i.e., we can eliminate variable v first,
(i) let
R:={q€Q|vedom(q)}

be all potentials which’s domain
contains v and

ql ZZHCL Qrest = H q

l.e., we replace the potentials R by

1.cv

q

After this replacement, the variable
v is eliminated from the potentials

Q/ — Q \ RU {q/m}}_

q€R qEQ\R
(iii) Then
dom(q’) N dom(grest) € V' \ {v}
and thus
W / w
(JT o™ = (grest - ¢*)*
geqQ)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Variable elimination e
1 inference-varelim(Q) : set of potentials, W : set of variables) :
2 while | J ., dom(q) \ W # () do
3 choose v € |, dom(q) \ W arbitrarily
4 () := eliminate-variable(Q, v)
5 od
0
s return (T, q)'
7 eliminate-variable((Q) : set of potentials, v : variable) :
8 R:={qe@Q|vedom(q)}
9 ¢ = (Tlen )"
0 return Q \ RU {¢'}
Also known as bucket elimination.
Useful if the set I of variables to infer separately is small.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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example

Example 2. Let (G, (p,).cv) be the fol- | For the elimination sequence
lowing Bayesian network
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F,E,C,A B
the following steps have to be per-
formed:
The conditional probabilities are (4). p(BIA
Q = {p(A), p(B|A), p(C|A),p(D|B), | """
E|B,C),p(F|C
p(E|B,C), p(F|C)} o)
We want to compute the marginal p(D) p(E[B,C) p(F|C),epd(F)

given evidence on F. Thus we add
epd(F) to Q.
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example ® 2008
For the elimination sequence
A B,C,E,F
the following steps have to be performed:
p(A),p(B[A), p(C|A
p(D|B),p(E|B,C) p(F|C)
epd(F)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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