Bayesian Networks - Exercise Sheet 1

Nicolas Schilling
schilling@ismll.de

April 21, 2015

Solutions need to be handed in until Monday, April 27th, 2013 at 12:00

Exercise 1: Events and Conditional Probabilities (12P)

a) Consider two distinguishable dices that are being rolled simultaneously. Let $\Omega:=\{1, \ldots, 6\}^{2}$ be the event space of all (i, j) tuples. Let $X: \Omega \rightarrow \mathbb{N}$ be a random variable defined by:

$$
X:(i, j) \mapsto i+j
$$

For the upcoming examples, write down their set of elementary events (all $e \in \Omega$) and compute the probability. Note that not all events need to involve X.

- A : Rolling the same number twice
- $B: X<4$
- $C: X \leq 4$
- $D: X$ is an even number
- E : The first dice shows the number 2

Now compute the following conditional probabilities:

- $P(D \mid A)$ and $P(A \mid D)$
- $P(C \mid A)$ and $P(A \mid C)$
- $P(E \mid C)$ and $P(C \mid E)$
- Are A and C conditionally independent given B ? Explain your answer in detail.
b) A Skat Game consists of 16 red cards (hearts, diamonds) and 16 black cards (spades, clubs). Of every color there are 8 cards which are in descending order ace, king, queen, jack, 10, $9,8,7$. Let the event A denote drawing an ace out of a full stack of cards. Your friend Tom draws cards and gives hints. Do the hints help in deducing if he drew an ace? Explain your answers in detail.
- Tom draws a card and says it is of clubs.
- Tom draws a card and says it is not a queen.
- Tom draws a card and says it is red.
- Tom draws a card and says the card is lower than a jack.

Exercise 2: Marginalizing a Joint Probability Distribution (8P)

The cold is an annoying disease and has very many symptoms. Three of these symptoms are nausea, a sore throat and a headache. In the table below, there are the results of 280 patients.
a) Copy the table from below and write down the relative probabilities, i.e. make a table of the joint probability distribution $P(C, N, S, H)$.
b) Write down the following marginal distributions $P(N), P(S)$ and $P(H)$.
c) How many patients were suffering from a cold but did not suffer from headaches?

