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Bayesian Networks / 1. Incomplete Data

Complete and incomplete cases

Let V' be a set of variables. A complete
case is a function

c:V— U dom(V)
veV

with ¢(v) € dom(V') for all v € V.

A incomplete case (or a case with
missing data) is a complete case c for
a subset W C V of variables. We
denote var(c) := W and say, the values
of the variables V' \ W are missing or
not observed.

A data set D € dom(V)* that contains
complete cases only, is called
complete data; if it contains an
incomplete case, it is called
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Figure 1: Complete data for
V:={F L,B,D,H}.
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Missing value indicators

For each variable v, we can interpret its
missing of values as new random
variable M,

L, if Uobs = -,
0, otherwise

called missing value indicator of v.
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Figure 3: Incomplete data for
V .={F,L,B, D, H} and missing value
indicators.
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Bayesian Networks / 1. Incomplete Data g% %
Types of missingness / MCAR B S
Case || Vtrue | Vobserved
A variable v € V' is called missing ; n2 5
completely at random (MCAR), if the 3 2 .
probability of a missing value is 4] 4 | 4
o . 5| 3 3
(unconditionally) independent of the 6 2 5
(true, unobserved) value of v, i.e, if ; ; 1
I<Mvv Utrue) 9| 3 3
(MCAR is also called missing LA R -
unconditionally at random). 12 8 ,
13| 4 4
Example: think of an apparatus 14] 2 2
measuring the velocity v of wind that vl 2] 2

has a loose contact c. When the
contact is closed, the measurement is
recorded, otherwise it is skipped. If the
contact ¢ being closed does not depend
on the velocity v of wind, v is MCAR.

If a variable is MCAR, for each value
the probability of mlssmg is the same,

Course on Baye5|an Networks summer term 2010

Figure 4: Data with a variable v MCAR. Missing
values are stroken through.

unbiased estimator for the expectation
of viye; here

1
ﬂ(vobs):1—0(2-1+4-3+2-3+2-4)

1
=—(3-1+6-3+3-34+3-4)

15 = ﬂ('Utrue)

L), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 1. Incomplete Data N ":1 3
Types of missingness / MAR T
& & &
A variable v € V is called missing at case | ] h | case | <<% h| case |5 <*h
: o 1)1 ,.10 10| 8 1 14|8|. |2
ra.nd.om (MAR), if the.probablllty of a ololalol 11lalalil 15lalal2
missing value is conditionally 3/8/.10 124 .[1| 16|4|.|2
independent of the (true, unobserved) g ? ? 8 13]3]3]1 1; g 5 S
value of v, i.e, if 6lalslo 1905 |2
I(M. v | W 711170 20[3[3]2
(”’_"“e‘ ) 8l2|. 0 214 . |2
for some set of variables W C V' \ {v} 9ll2]2]0 22[[6|. 2

(MAR is also called missing
conditionally at random).

Example: think of an apparatus
measuring the velocity v of wind. If we
measure wind velocities at three
different heights & = 0, 1,2 and say the
apparatus has problems with height not
recording

1/3 of cases at height 0,
1/2 of cases at height 1,

Figure 5: Data with a variable v MAR
(conditionally on h).

then v is missing at random
(conditionally on h).

2/3 of cases at height 2,
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Bayesian Networks / 1. Incomplete Data gpd%
Types of missingness / MAR ey
& & &
If v depends on variables in W, then, case | <5<¥ h| case |«<¥h| case |<5]<F h
e.g., the sample mean is not an ; ”2 ; 8 1? i ; 1 1‘5‘ i ; 2
unbiased estimator, but the weighted 318 ol a7 Telal 12
mean w.r.t. W has to be used; here: 41330/ 133!3 1 1715152
2 5(1(1/0 188 .2
> fu(v|H = h)p(H = h) 6(3(3]0 195 .2
h=0 711]1]0 20313 |2
9 4 9 8|2|.|0 21 |4 .2
=25 t35- 5 +d 9220 22|56 . 2
1 . : :
F > ow Figure 5: Data with a variable v MAR
¢:1,¥,22 (conditionally on h).
6 2 3
-2 35— 44—
FIRAR TR
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Bayesian Networks / 1. Incomplete Data ;3 % 5
Types of missingness / missing systematically e
>
A variable v € V is called missing case | <[ <
systematically (or not at random), if 20
the probability of a missing value does 32
depend on its (unobserved, true) value. g 2 ;
6122
701111
. 8|2
Example: if the apparatus has AEAN
problems measuring high velocities and 10]2)2

say, €.g., misses Figure 6: Data with a variable v missing

systematically.
1/3 of all measurements of v =1,
1/2 of all measurements of v = 2, Again, the sample mean is not

2/3 of all measurements of v = 3, unbiased; expectation can only be
estimated if we have background

i.e., the probability of a missing value knowledge about the probabilities of a
does depend on the velocity, v is missing value dependend on its true
missing systematically. value.
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Bayesian Networks / 1. Incomplete Data 3 %

Types of missingness / hidden variables b o0 S

A variable v € V is called hidden, if the case || e | lops | E | C
probability of a missing value is 1, i.e., it 1 I
is missing in all cases. 3 2 21
4| 2 2|2

. 5| 1 02
Example: say we want to measure 5l 2 210
intelligence I of probands but cannot 707 1]2
do this directly. We measure their level 8] o 2|1
. . 9| 1 2|2

of education £ and their income C 10l » 5| 1

instead. Then [ is hidden. Figure 7: Data with a hidden variable 1.

intelligence

educatio

Figure 8: Suggested dependency of variables
I, E,and C.
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types of missingness Ly

variable X

missing at random (MAR)

|

missing completely
at random (MCAR)
I(Mx, X)

¥

hidden
p(MX = 1) =1

missing systematically

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].
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Bayesian Networks / 1. Incomplete Data

complete case analysis

ol

@i SilEs
i

The simplest scheme to learn from case |F L|B D|H

incomplete data D, e.g., the vertex 1 R B

potentials (p,).cy Of a Bayesian 31 1[1 1]0

network, is complete case analysis g 8 8 : (1) ;

(also called casewise deletion): use slo olo olo

only complete cases 710 1o .1

810 0/0 0|0

. H 910 0|1 11

Deompl := {d € D |d is complete} T EEEEREERE
Figure 10: Incomplete data and data used in

complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample
Deompl @re unbiased for Dyrye.
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complete case analysis (2/2)

But for higher-dimensional data (i.e., with a larger
number of variables), complete cases might become
rare.

Let each variable have a probability for missing values of
0.05, then for 20 variables the probability of a case to be
complete is

(1 —0.05)* ~0.36

for 50 variables it is ~ 0.08, i.e., most cases are deleted.

9/42
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Bayesian Networks / 1. Incomplete Data §°IJ %
available case analysis % a0 ¥
A higher case rate can be achieved by case |F L|B D|H
available case analysis. If a quantity 1 R B
has to be estimated based on a subset 301 1/1 1]0
W C V of variables, e.g., the vertext g 8 8 : (1) (1)
potentla! p, Of a specific vertex v € V' of sloolo olo
a Bayesian network (W = fam(v)), use 7010 1o .1
8/00/0 00
only complete cases of D|y S0 0 1 17
. 101 1. 11
(D|w)compl = {d € D|w | d is complete}
Figure 11: Incomplete data and data used in
available case analysis for estimating the
potential p. (L | F') (highlighted).

If D is MCAR, estimations based on the subsample
(Dw )compl are unbiased for (D )irye-
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1. Incomplete Data
2. Incomplete Data for Parameter Learning (EM algorithm)

3. An Example
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)
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completions

Let V be a set of variables and d be an
incomplete case. A (complete) case d
with

d(v) =d(v), Vv € var(d)

is called a completion of d.

A probability distribution
d : dom(V) — [0,1]
with )
dlvar(d) _ epdd

is called a distribution of completions
of d (or a fuzzy completion of d).

G)g‘\\uﬂq i,
&
-

Ly5at"

Example If V.= {F, L, B,D,H} and
d:=(2,.,0,1,.)

an incomplete case, then
dy =(2,1,0,1,1)

dy =(2,2,0,1,0)
etc. are possible completions, but
e:=(1,1,0,1,1)

IS not.

Assume dom(v) :={0,1,2} forallv € V.
The potential

d: dom(V) — [0,1]

5, fzp=225=0,
and zp =1

0, otherwise

is the uniform distribution of

(xv)’UEV =

completions of d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL),\I’r%t'it'u{yE:W/WIV& Institte for 'Computer Science, University of Hildesheim
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learning from "fuzzy cases"

Given a bayesian network structure

G = (V, E) on a set of variables V and
a "fuzzy data set" D < pdf(V)* of "fuzzy
cases" (pdfs ¢ on V). Learning the
parameters of the bayesian network
from "fuzzy cases” D means to find
vertex potentials (p,).cr S.t. the
maximum likelihood criterion, i.e.,
the probability of the data given the
bayesian network is maximal:

find (p,)veys.t. p(D) is maximal,
where p denotes the JPD build from
(pv>v6V- Here,

rD) =111 11

qeD veV zedom(fam(v))

fam(v) (o,
(pofa))r

aP%
S .12
Z &
T

Lemma 1. p(D) is maximal iff

ZqED qlfaum(v)(g37 y)
ZqED qlpa(’“) (y)

(if there is a ¢ € D with ¢'?*) > 0,
otherwise p,(z|y) can be choosen
arbitrarily — p(D) does not depend on

it).

pu(zly) =

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) g‘p %
Maximum likelihood estimates ® 2008 ¥

If D is incomplete data, in general we are looking for

(i) distributions of completions D and
(i) vertex potentials (p,),cv,

that are
(i) compatible, i.e.,

= infer, d)

’LEV(

for all d € D and s.t.

(i) the probability, that the completed data D has been
generated from the bayesian network specified by
(py)vev, is maximal:

p()eev. D) =T[T] I (pelx)™™"®

deD veV zedom(fam(v))

(with the usual constraints that Imp, C [0, 1] and
> edom(pa(e Po(@]y) = Lfor allv € V and z € dom(v)).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 14/42

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) i, %
Maximum likelihood estimates o

2003

G’\'\,‘\\u Mgy (/

Unfortunately this is

e a2 non-linear,
¢ high-dimensional,
e for bayesian networks in general even non-convex

optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent,
Newton-Raphson, BFGS, etc.) could be used to search
local maxima of this probability function.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)
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Example

Let the following bayesian network structure and training
data given.

o
Q
(%]
(]

oNeNolly-

- O 00O - = =200

A——>B

—_
QO OWONOOOITRWN =
—_ - - .
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Optimization Problem (1/3) ey
case| A|B | weight A——B
1100 1
201 1
3/01 1 0 =p(A=1)
7,110 1 m=pB=1|A=1)
810 1 n=p(B=1]A=0
911 1 1
411 |1 ay
4101 1—ay
5610 2 as
5600 2(1—as)
1001 |1 B0
1011 0| 1— 0

p(D) —gAtaut2as (1 . 9)3+(1—a4)+2(1—a5) n%+a4+ﬁw (1 . 771)2—&-2 as+(1—/50)
n§+(1_0‘4) (1 o 772)1—|—2(1—oz5)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) g% %
Optimization Problem (2/3) B S

From parameters

m=p(B=1A=1)
m=p(B=1]A=0)

we can compute distributions of completions:

pB=1|A=1)pA=1) _ 0m
DwenPB=1[A=a)p(A=a) On+(1—-0)n,

ar=p(A=1|B=1)=

_ _ . pB=0[A=1)pA=1) 0(1—m)
=A== 0 = = A= apA=a 80 —m)+ (=01 —n)

fro=pB=1]A=1) =m

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 18/42
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) : % %
Optimization Problem (3/3) Py

g e,

5

o

Substituting a4, a5 and Fyg in p(D), finally yields:
0 0 (1—nq)
p(D) =" i )

6— 0 _ 0(1-m1)
. (1 — 9) On1+(1=0)ny = 0 (1—n1)+(1-6)(1-m2)

il
-m H9n1+(1*9)n2 tm

6 (1-m) _
)3+29(1—n1)+(1—9)(1—?72) n

(1—=m
0m

. 7723_97/1+(1*9)T/2

. (1 — 772) 0 (1=np)+(1-0)(1—n2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) g‘p %
. : VA
EM algorithm 5

For bayesian networks a widely used technique to search
local maxima of the probability function p is
Expectation-Maximization (EM, in essence a gradient
descent).

At the beginning, (p,),cy are initialized, e.g., by complete,
by available case analysis, or at random.

Then one computes alternating
expectation or E-step:

d :=inferg,, . (d), Vde D

veV<

(forcing the compatibility constraint) and
maximization or M-step:

(pU)UGV Wlth maXimal p((pv>v€V7 D)
keeping D fixed.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) g%’s’%
EM algorithm B

The E-step is implemented using an inference algorithm,
e.g., clustering [Lau95]. The variables with observed
values are used as evidence, the variables with missing
values form the target domain.

The M-step is implemented using lemma 2:

oo(aly) = 2zeep @ Y)
v ' ZqED qlpd(v) (y)

See [BKS97] and [FKO03] for further optimizations aiming
at faster convergence.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Example s
Let the following bayesian network Using complete case analysis we
structure and training data given. estimate (1st M-step)
A>—><B p(A) = (0.5, 05)
case|A|B and
110|0 Al0 1
2|01 p(B|A) = B =10/0.333 0.667
301 110.667 0.333
g g) Then we estimate the distributions of
5 0 completions (1st E-step)
21110 case | B |p(A=0) |p(A=1)
810 41| 0.667 | 0.333
911 1 56|/ 0| 0.333 | 0.667
10| 1 case | A p(B=0) p(B=1)
101 0.667 | 0.333

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) g% %
g 3

example / second & third step

From that we estimate (2nd M-step) From that we estimate (3rd M-step)
p(A) = (0.433,0.567) p(A) = (0.420,0.580)
and
and Al0 1
A0 1 p(B|A) = B =10[0.378 0.710
p(B|A) = B =0]0.385 0.706 110.622 0.290
1/0.615 0.294 etc.
Then we estimate the distributions of 5
completions (2nd E-step)
case | B|p(A=0) | p(A=1) "
41| 0.615 | 0.385 e
56| 0| 0.294 | 0.706 =
case | A | p(B=0) p(B=1) 3
101 0.706 | 0.294
Figure 12: Convergence 0f the EM algorithm
(black p(A=1), red p(B=1|A=0), green

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL)Hr\Rﬁé HWW & tnstitute for Computer Science, University of Hildesheim
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Bayesian Networks

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

3. An Example
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Naive Bayesian Network

Definition 1. Let V be a set of variables and let C' € V be
a variable called target variable.
The bayesian network structure on V defined by the set

of edges
E={CX)|XeVX#C}

is called naive bayesian network with target C.

Naive bayesian networks typically are used as classifiers
for C' and thus called naive bayesian classifier.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 3. An Example g% %
Naive Bayesian Network ket

A naive bayesian network encodes both,

e strong dependency assumptions:
there are no two variables that are independent, i.e.,

~I(X,Y) VXY

e strong independency assumptions:
each pair of variables is conditionally independent
given a very small set of variables:

I[(X,Y|C) VX,Y #£C

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 25/42
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Bayesian Networks / 3. An Example %%ﬂ
Naive Bayesian Network Py

G’\'\,‘\\u L)

Learning a Naive Bayesian Network means to estimate
p(C) and  p(X;[C)

Inferencing in a Naive Bayesian Network means to
compute
p(C|X1 :$1,...,Xn:xn>
which is due to Bayes formula:
p(Xl =Ty - aXn = Tn | C>p<C>
Xi=x1,..., X, =x,) =
p(C| 1 Iy, y <A, xn) p(X1 :.Tl,...,Xn:In>
L =2C)p(C)
PG =21, Xy = @)
= ([ pXi = =1 C)p(C)©

Be careful,
p(Xi =21, Xy =) £ [[p(Xi = )

in general and we do not have access to this probability
easily.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Bayesian Networks / 3. An Example

The UCI mushroo

UCI Mushroom Data

m data contains 23 attributes of 8124

different mushrooms. LS

SELS
N N
> FS 9 L
o A I . &
¢ & € L. FFs s & &s
QTS S5 LA BILELL eSS
TSS9 TS SSISLSSLLRF »
PETOE FRS OCEEL LRSI L
J SOV N NSO NN S XY QOQQ
SEFRLONYINT,0.0.9,0.9 5 &L D
QOO OUNVOOY O D909 a0 9| X3¢ ToQ |
1/p x|s njitp/fcnklee/ssww/pwopksu
2lexsytafclbklecilsswwpwopnng
3lebjswitl|fcbnec|sswwpwopnnm
4 pxywitpfcinneelsswwpwopksu
Sexsgfnfwbktesswwpwoenayg
6lexyytafclbnecsswwpwopkng

edible: e = edible, p = poisonous

cap-shape: b=bell, c=conical,
etc

x=convex, f=flat, k=knobbed, s=sunken

E\Fsvs'chmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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UCI Mushroom Data / Missing Values

Mushroom has missing values:

e in variable X, = stalk-root,
starting at case 3985.

cases
4000 2000
|

6000
|

8000
|

I I I I
5 10 15 20

attributes
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Learning Task

We want to learn target C' = edible based on all the other
attributes, X, ..., Xy, = cap-shape, ..., habitat.

We split the dataset randomly in

7124 training cases plus 1000 test cases

class distribution:

actual = e | 529
p|471

Accuracy of constant classifier (always predicts majority
class e):

acc = 0.529

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Complete Case Analysis

Learning only from the 4942 complete cases (out of
7124), we are quite successful on the 702 complete test

cases:
confusion matrix:
predicted=| e p
actual = e 433 3
P 0| 266

acc = 0.9957
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But the classifier deterioriates dramatically, once
evaluated on all 1000 cases, thereof 298 containing
missing values:

confusion matrix:
predicted=| e p
actual=e 516| 13
p| 201|270

acc = 0.786
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p(Xo=0b]C)=0
as Xy = b occurrs only with X;; = . !

For the whole dataset:
Xo=| b e|g h|k njo p |r uj|w y
M, =false| 0 0 656 720|408 984 0 1384 |24 480 966 22
=true|1728 96| 96 12 | 0 64 64 108 | 0 12 236 64
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Available Case Analysis ey

If we use available case analysis, this problem is fixed.
confusion matrix:

predicted=| e p

actual=e 523, 6

pl 0471

acc = (0.994

EM for predictor variables in Naive Bayesian Networks
always converges to the available case estimates (easy
exercise; compute the update formula).
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Variable Importance / Mutual Information ey

Definition 2. mutual information of two random variables X and Y:

B oy pX =2Y =y)
MIX,Y)= Y pX=zY W Y v =y

r€dom X,

yedomY
X [MI(X,C) X [MI(X,C)
X1 10.04824 X12|0.28484
X2 10.02901 X13]0.27076

X3 |0.03799 X1410.24917
X4 10.19339 X15/0.24022
X5 [0.90573 X16{0.00000
X6 [0.01401 X1710.02358
X7 10.10173 X18|0.03863
X8 [0.23289 X19/0.31982
X9 10.41907 X20/0.48174
X10{0.00765 X21/0.20188
X11/0.09716 X2210.15877
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Pruned Network Ly

If we use the 4 variables with highest mutual information only,

e X5 = odor
e X20 = spore-print-color
e X9 = gill-color

e X19 = ring-type
we still get very good results.

confusion matrix:
predicted=| e p
actual = e | 529 0

p 6465

acc = 0.994
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Pruned Network

File  Options
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Fresh random split.

all variables: X5, Xo, Xi9, and Xyy: X1, Xy, X5, and Xy:
predicted=| e| p predicted=| e p predicted=| e p
actual = e | 541 4 actual=e |544| O actual = e 419|126
P 11454 p| 8447 p| 101|354
acc = .995 acc = .992 acc = .773
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Naive Bayesian Network / Cluster Analysis ey

Naive Bayesian Networks also could be used for cluster
analysis.

The unknown cluster membership is modelled by a
hidden variable C' called latent class.

EM algorithm is used to "learn" fuzzy cluster
memberships.

Naive Bayesian Networks used this way are a specific
instance of so called model-based clustering.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Bayesian Networks, summer term 2010 38/42



. TSI,
guersher

Bayesian Networks / 3. An Example

AU
(_}\.\ S (g
“aysent

Naive Bayesian Network / Cluster Analysis % e

Each cluster contains "similar cases", i.e., cases that
contain cooccurring patterns of values.

X#H Data 1: *** Scatterplot *** [=loixl| | X~ Data 1: *** Scatierplot *** [l

File  Onptions File  Options

random clustered
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Summary 2008

e To learn parameters from data with missing values, sometimes
simple heuristics as complete or available case analysis can
be used.

e Alternatively, one can define a joint likelihood for
distributions of completions and parameters.

e In general, this gives rise to a nonlinear optimization
problem.

But for given distributions of completions, maximum
likelihood estimates can be computed analytically.

¢ To solve the ML optimization problem, one can employ the
expectation maximization (EM) algorithm:
— parameters — completions (expectation; inference)
— completions — parameters (maximization; parameter
learning)
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