

Bayesian Networks

10. Parameter Learning / Missing Values

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems
& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks

- 1. Incomplete Data
- 2. Incomplete Data for Parameter Learning (EM algorithm)
- 3. An Example

Complete and incomplete cases

Let *V* be a set of variables. A **complete** case is a function

$$c: V \to \bigcup_{v \in V} \operatorname{dom}(V)$$

with $c(v) \in \text{dom}(V)$ for all $v \in V$.

A incomplete case (or a case with **missing data**) is a complete case c for a subset $W \subseteq V$ of variables. We denote var(c) := W and say, the values of the variables $V \setminus W$ are **missing** or not observed.

A data set $D \in dom(V)^*$ that contains complete cases only, is called complete data; if it contains an incomplete case, it is called

Figure 1: Complete data for $V := \{F, L, B, D, H\}.$

case	F	L	В	D	H
1	0	0	0	0	0
2		0	0	0	0
3	1	1	1	1	0
4	0	0		1	1
5 6	0	0	0	0	0
6	0	0	0	0	0
7	0		0		1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1		1	1

incomplete data.

Lars Schmidt Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science University of Hildesheim

1/42

Bayesian Networks / 1. Incomplete Data

Missing value indicators

For each variable v, we can interpret its missing of values as new random variable M_v ,

$$M_v := \begin{cases} 1, & \text{if } v_{\text{obs}} = ., \\ 0, & \text{otherwise} \end{cases}$$

called missing value indicator of v.

case	F	M_F	L	M_L	В	M_B	D	M_D	Н	M_H
1	0	0	0	0	0	0	0	0	0	0
2		1	0	0	0	0	0	0	0	0
3	1	0	1	0	1	0	1	0	0	0
4	0	0	0	0		1	1	0	1	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0		1	0	0		1	1	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	1	0	1	0	1	0
10	1	0	1	0		1	1	0	1	0

Figure 3: Incomplete data for $V := \{F, L, B, D, H\}$ and missing value indicators.

Types of missingness / MCAR

A variable $v \in V$ is called **missing** completely at random (MCAR), if the probability of a missing value is (unconditionally) independent of the (true, unobserved) value of v, i.e, if

$$I(M_v, v_{\mathsf{true}})$$

(MCAR is also called **missing** unconditionally at random).

Example: think of an apparatus measuring the velocity v of wind that has a loose contact c. When the contact is closed, the measurement is recorded, otherwise it is skipped. If the contact c being closed does not depend on the velocity v of wind, v is MCAR.

If a variable is MCAR, for each value the probability of missing is the same,

case	v_{true}	$v_{ m observed}$
1	<i>†</i> 1	
2	2	2
3	2	
3 4	2 4	4
5	3 2	3
6	2	2
7	1	1
7 8	4	
9	3 2	3
10	2	
11	1	1
12	B	-
13	4	4
14	4 2	4 2
15	2	2

Figure 4: Data with a variable v MCAR. Missing values are stroken through. unbiased estimator for the expectation of $v_{\rm true}$; here

$$\begin{split} \hat{\mu}(v_{\text{obs}}) &= \frac{1}{10}(2 \cdot 1 + 4 \cdot 3 + 2 \cdot 3 + 2 \cdot 4) \\ &= \frac{1}{15}(3 \cdot 1 + 6 \cdot 3 + 3 \cdot 3 + 3 \cdot 4) = \hat{\mu}(v_{\text{true}}) \end{split}$$

Course on Bayesian Networks, summer term 2010

Leabsig Sab AlbMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Incomplete Data

Types of missingness / MAR

A variable $v \in V$ is called **missing at random** (MAR), if the probability of a missing value is conditionally independent of the (true, unobserved) value of v, i.e, if

$$I(M_v, v_{\mathsf{true}} \,|\, W)$$

for some set of variables $W \subseteq V \setminus \{v\}$ (MAR is also called **missing** conditionally at random).

Example: think of an apparatus measuring the velocity v of wind. If we measure wind velocities at three different heights h=0,1,2 and say the apparatus has problems with height not recording

1/3 of cases at height 0,

1/2 of cases at height 1,

2/3 of cases at height 2,

	. 9	800	<i>Y</i> 0,		9	, %	or so		. 9	800	<i>Y</i> 0,
case	24.2	100	h	case	343	200	h	case	242	100	h
1	<i>†</i> 1		0	10	В		1	14	В		2
2	2	2	0	11	4	4	1	15	4	4	2
3	B		0	12	4		1	16	4		2
4	3	3	0	13	3	3	1	17	5	5	2
5	1	1	0					18	B		2
6	3	3	0					19	5		2
7	1	1	0					20	3	3	2
8	2		0					21	4		2
9	2	2	0					22	5		2

Ó,

Figure 5: Data with a variable v MAR (conditionally on h).

then v is missing at random (conditionally on h).

Types of missingness / MAR

Young 2003

If v depends on variables in W, then, e.g., the sample mean is not an unbiased estimator, but the weighted mean w.r.t. W has to be used; here:

$$\begin{split} &\sum_{h=0}^{2} \hat{\mu}(v|H=h)p(H=h)\\ =&2\cdot\frac{9}{22}+3.5\cdot\frac{4}{22}+4\cdot\frac{9}{22}\\ \neq&\frac{1}{11}\sum_{\substack{i=1,\dots,22\\v_i\neq .}}v_i\\ =&2\cdot\frac{6}{11}+3.5\cdot\frac{2}{11}+4\cdot\frac{3}{11} \end{split}$$

	. 9	800	<i>Y</i> 0,		9	, %	or so			800	100
case	24.2	100	h	case	343	200	h	case	200	100	h
1	<i>†</i> 1		0	10	В		1	14	В		2
2	2	2	0	11	4	4	1	15	4	4	2
3	В		0	12	4		1	16	4		2
4	3	3	0	13	3	3	1	17	5	5	2
5	1	1	0					18	В		2
6	3	3	0					19	5		2
7	1	1	0					20	3	3	2
8	2		0					21	4		2
9	2	2	0					22	5		2

Figure 5: Data with a variable v MAR (conditionally on h).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 5/42

Bayesian Networks / 1. Incomplete Data

Types of missingness / missing systematically

A variable $v \in V$ is called **missing** systematically (or not at random), if the probability of a missing value does depend on its (unobserved, true) value.

Example: if the apparatus has problems measuring high velocities and say, e.g., misses

1/3 of all measurements of v=1, 1/2 of all measurements of v=2, 2/3 of all measurements of v=3,

i.e., the probability of a missing value does depend on the velocity, \boldsymbol{v} is missing systematically.

			δ
case	37,7	200	
1	<i>†</i> 1		
2	1	1	
3	2 8		
3 4 5 6			
5	3	3	
I	2	2	
7	1	1	
8	2		
9	B 2		
10	2	2	

Figure 6: Data with a variable v missing systematically.

Again, the sample mean is not unbiased; expectation can only be estimated if we have background knowledge about the probabilities of a missing value dependend on its true value.

Types of missingness / hidden variables

A variable $v \in V$ is called **hidden**, if the probability of a missing value is 1, i.e., it is missing in all cases.

Example: say we want to measure intelligence I of probands but cannot do this directly. We measure their level of education E and their income C instead. Then I is hidden.

case	I_{true}	I_{obs}	$\mid E \mid$	C
1	<i>†</i> 1		0	0
2	2		1	2
3	2		2	1
4	2 2		2	2 0
5 6	<i>†</i> 1		0	2
6	2		0 2	0
7	<i>†</i> 1		1	2
8	0		2	1
9	<i>†</i> 1		2	2
10	2		2	1

Figure 7: Data with a hidden variable I.

Figure 8: Suggested dependency of variables I, E, and C.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 1. Incomplete Data

types of missingness

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].

complete case analysis

The simplest scheme to learn from incomplete data D, e.g., the vertex potentials $(p_v)_{v\in V}$ of a Bayesian network, is **complete case analysis** (also called **casewise deletion**): use only complete cases

 $D_{\mathsf{compl}} := \{d \in D \,|\, d \text{ is complete}\}$

case	F	L	В	D	Н
1	0	0	0	0	0
2		0	0	0	0
	1	1	1	1	0
4	0	0		1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0		0		1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1		1	1

Figure 10: Incomplete data and data used in complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample D_{compl} are unbiased for D_{true} .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 9/42

Bayesian Networks / 1. Incomplete Data

complete case analysis (2/2)

But for higher-dimensional data (i.e., with a larger number of variables), complete cases might become rare.

Let each variable have a probability for missing values of 0.05, then for 20 variables the probability of a case to be complete is

$$(1 - 0.05)^{20} \approx 0.36$$

for 50 variables it is ≈ 0.08 , i.e., most cases are deleted.

available case analysis

A higher case rate can be achieved by **available case analysis**. If a quantity has to be estimated based on a subset $W\subseteq V$ of variables, e.g., the vertext potential p_v of a specific vertex $v\in V$ of a Bayesian network ($W=\mathrm{fam}(v)$), use only complete cases of $D|_W$

 $(D|_W)_{\mathsf{compl}} = \{d \in D|_W \mid d \text{ is complete}\}$

case	F	L	В	D	Н
1	0	0	0	0	0
2		0	0	0	0
3	1	1	1	1	0
4	0	0		1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0		0		1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1		1	1

Figure 11: Incomplete data and data used in available case analysis for estimating the potential $p_L(L \mid F)$ (highlighted).

If D is MCAR, estimations based on the subsample $(D_W)_{\text{compl}}$ are unbiased for $(D_W)_{\text{true}}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks

- 1. Incomplete Data
- 2. Incomplete Data for Parameter Learning (EM algorithm)
- 3. An Example

completions

Let V be a set of variables and d be an incomplete case. A (complete) case \bar{d} with

$$\bar{d}(v) = d(v), \quad \forall v \in \text{var}(d)$$

is called a **completion of** d.

A probability distribution

$$\bar{d}: \operatorname{dom}(V) \to [0,1]$$

with

$$\bar{d}^{\downarrow \mathrm{var}(d)} = \mathsf{epd}_d$$

is called a distribution of completions of d (or a fuzzy completion of d).

Example If
$$V:=\{F,L,B,D,H\}$$
 and
$$d:=(2,.,0,1,.)$$

an incomplete case, then

$$\bar{d}_1 := (2, 1, 0, 1, 1)$$

 $\bar{d}_2 := (2, 2, 0, 1, 0)$

etc. are possible completions, but

$$e := (1, 1, 0, 1, 1)$$

is not.

Assume $dom(v) := \{0, 1, 2\}$ for all $v \in V$. The potential

$$ar{d}: \mathrm{dom}(V)
ightarrow [0,1] \ (x_v)_{v \in V}
ightarrow egin{cases} rac{1}{9}, & ext{if } x_F = 2, x_B = 0, \ & ext{and } x_D = 1 \ 0, & ext{otherwise} \end{cases}$$

is the uniform distribution of

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

learning from "fuzzy cases"

Given a bayesian network structure G:=(V,E) on a set of variables V and a "fuzzy data set" $D\in pdf(V)^*$ of "fuzzy cases" (pdfs q on V). Learning the parameters of the bayesian network from "fuzzy cases" D means to find vertex potentials $(p_v)_{v\in V}$ s.t. the maximum likelihood criterion, i.e., the probability of the data given the bayesian network is maximal:

find $(p_v)_{v \in V} s.t.$ p(D) is maximal, where p denotes the JPD build from $(p_v)_{v \in V}$. Here,

$$p(D) := \prod_{q \in D} \prod_{v \in V} \prod_{x \in \text{dom}(\text{fam}(v))} (p_v(x))^{q^{\downarrow \text{fam}(v)}(x)}$$

Lemma 1. p(D) is maximal iff

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\downarrow \operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\downarrow \operatorname{pa}(v)}(y)}$$

(if there is a $q \in D$ with $q^{\downarrow pa(v)} > 0$, otherwise $p_v(x|y)$ can be choosen arbitrarily -p(D) does not depend on it).

Maximum likelihood estimates

If D is incomplete data, in general we are looking for

- (i) distributions of completions \bar{D} and
- (ii) vertex potentials $(p_v)_{v \in V}$,

that are

(i) compatible, i.e.,

$$\bar{d} = \mathsf{infer}_{(p_v)_{v \in V}}(d)$$

for all $\bar{d} \in \bar{D}$ and s.t.

(ii) the probability, that the completed data \bar{D} has been generated from the bayesian network specified by $(p_v)_{v \in V}$, is maximal:

$$p((p_v)_{v \in V}, \bar{D}) := \prod_{\bar{d} \in \bar{D}} \prod_{v \in V} \prod_{x \in \text{dom}(\text{fam}(v))} (p_v(x))^{\bar{d}^{\downarrow \text{fam}(v)}(x)}$$

(with the usual constraints that
$$\mathrm{Im} p_v \subseteq [0,1]$$
 and $\sum_{y \in \mathrm{dom}(\mathrm{pa}(v))} p_v(x|y) = 1$ for all $v \in V$ and $x \in \mathrm{dom}(v)$).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Maximum likelihood estimates

Unfortunately this is

- a non-linear,
- high-dimensional,
- for bayesian networks in general even non-convex optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent, Newton-Raphson, BFGS, etc.) could be used to search local maxima of this probability function.

Example

Let the following bayesian network structure and training data given.

case	Α	В
1	0	0
2	0	1
2	0	1
4		1
4 5 6		0
6		0
7	1	0
8	1	0
9	1	1
10	1	

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Optimization Problem (1/3)

case	Α	В	weight
1	0	0	1
2	0	1	1
2 3 7	0	1	1
7	1	0	1
8	1	0	1
9	1	1	1
4	1	1	α_4
4	0	1	$1-\alpha_4$
5,6	1	0	$2\alpha_5$
5,6	0	0	$2(1-\alpha_5)$
10	1	1	β_{10}
10	1	0	$1-\beta_{10}$

$$\theta = p(A = 1)$$
 $\eta_1 = p(B = 1 | A = 1)$
 $\eta_2 = p(B = 1 | A = 0)$

$$p(D) = \theta^{4+\alpha_4+2\alpha_5} (1-\theta)^{3+(1-\alpha_4)+2(1-\alpha_5)} \eta_1^{1+\alpha_4+\beta_{10}} (1-\eta_1)^{2+2\alpha_5+(1-\beta_{10})} \cdot \eta_2^{2+(1-\alpha_4)} (1-\eta_2)^{1+2(1-\alpha_5)}$$

Optimization Problem (2/3)

From parameters

$$\theta = p(A = 1)$$

 $\eta_1 = p(B = 1 \mid A = 1)$
 $\eta_2 = p(B = 1 \mid A = 0)$

we can compute distributions of completions:

$$\alpha_4 = p(A = 1 \mid B = 1) = \frac{p(B = 1 \mid A = 1) p(A = 1)}{\sum_{a \in A} p(B = 1 \mid A = a) p(A = a)} = \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2}$$

$$\alpha_5 = p(A = 1 \mid B = 0) = \frac{p(B = 0 \mid A = 1) p(A = 1)}{\sum_{a \in A} p(B = 0 \mid A = a) p(A = a)} = \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}$$

$$\beta_{10} = p(B = 1 \mid A = 1)$$

$$= \eta_1$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Optimization Problem (3/3)

Substituting α_4, α_5 and β_{10} in p(D), finally yields:

$$\begin{split} p(D) = & \theta^{4 + \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} + 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)}} \\ & \cdot \left(1 - \theta\right)^{6 - \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} - 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)}} \\ & \cdot \eta_1^{1 + \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} + \eta_1} \\ & \cdot \left(1 - \eta_1\right)^{3 + 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)} - \eta_1} \\ & \cdot \eta_2^{3 - \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2}} \\ & \cdot \left(1 - \eta_2\right)^{3 - 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)}} \end{split}$$

EM algorithm

For bayesian networks a widely used technique to search local maxima of the probability function p is **Expectation-Maximization** (EM, in essence a gradient descent).

At the beginning, $(p_v)_{v \in V}$ are initialized, e.g., by complete, by available case analysis, or at random.

Then one computes alternating expectation or E-step:

$$ar{d} := \mathsf{infer}_{(p_v)_{v \in V}}(d), \quad \forall d \in D$$

(forcing the compatibility constraint) and maximization or M-step:

$$(p_v)_{v \in V}$$
 with maximal $p((p_v)_{v \in V}, \bar{D})$

keeping \bar{D} fixed.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 20/42

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

EM algorithm

The E-step is implemented using an inference algorithm, e.g., clustering [Lau95]. The variables with observed values are used as evidence, the variables with missing values form the target domain.

The M-step is implemented using lemma 2:

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\downarrow \operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\downarrow \operatorname{pa}(v)}(y)}$$

See [BKS97] and [FK03] for further optimizations aiming at faster convergence.

Example

Let the following bayesian network structure and training data given.

A)—	->	B
case	Α	В
1	0	0
	0 0 0	1
3	0	1
4		1
2 3 4 5 6		0
6		0
7	1	0
7 8 9	1	0 0 1
9	1	1
10	1	

Using complete case analysis we estimate (1st M-step)

$$p(A) = (0.5, 0.5)$$

and

$$p(B|A) = \begin{array}{c|c} A & 0 & 1 \\ \hline B = 0 & 0.333 & 0.667 \\ 1 & 0.667 & 0.333 \end{array}$$

Then we estimate the distributions of completions (1st E-step)

case	В	p(A=0)	p(A=1)
4	1	0.667	0.333
5,6	0	0.333	0.667
case	Α	p(B=0)	p(B=1)
10	1	0.667	0.333

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

example / second & third step

From that we estimate (2nd M-step)

$$p(A) = (0.433, 0.567)$$

and

$$p(B|A) = \begin{array}{c|c} A & 0 & 1 \\ \hline B = 0 & 0.385 & 0.706 \\ 1 & 0.615 & 0.294 \end{array}$$

Then we estimate the distributions of completions (2nd E-step)

case			p(A=1)
4	1	0.615	0.385
5,6	0	0.294	0.706
case	Α	p(B=0)	p(B=1)
10	1	0.706	0.294

From that we estimate (3rd M-step)

$$p(A) = (0.420, 0.580)$$

and

$$p(B|A) = \begin{array}{c|c} A & 0 & 1 \\ \hline B = 0 & 0.378 & 0.710 \\ 1 & 0.622 & 0.290 \end{array}$$

etc.

Figure 12: Convergence of the EM algorithm (black p(A=1), red p(B=1|A=0), green

- 1. Incomplete Data
- 2. Incomplete Data for Parameter Learning (EM algorithm)
- 3. An Example

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. An Example

Naive Bayesian Network

Definition 1. Let V be a set of variables and let $C \in V$ be a variable called **target variable**.

The bayesian network structure on ${\mathcal V}$ defined by the set of edges

$$E := \{ (C, X) \mid X \in \mathcal{V}, X \neq C \}$$

is called **naive bayesian network with target** C.

Naive bayesian networks typically are used as classifiers for C and thus called **naive bayesian classifier**.

Naive Bayesian Network

A naive bayesian network encodes both,

strong dependency assumptions:
 there are no two variables that are independent, i.e.,

$$\neg I(X,Y) \quad \forall X,Y$$

 strong independency assumptions:
 each pair of variables is conditionally independent given a very small set of variables:

$$I(X, Y|C) \quad \forall X, Y \neq C$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 25/42

Bayesian Networks / 3. An Example

Naive Bayesian Network

Learning a Naive Bayesian Network means to estimate

$$p(C)$$
 and $p(X_i \mid C)$

Inferencing in a Naive Bayesian Network means to compute

$$p(C \mid X_1 = x_1, \dots, X_n = x_n)$$

which is due to Bayes formula:

$$p(C \mid X_1 = x_1, \dots, X_n = x_n) = \frac{p(X_1 = x_1, \dots, X_n = x_n \mid C) p(C)}{p(X_1 = x_1, \dots, X_n = x_n)}$$

$$= \frac{\prod_i p(X_i = x_i \mid C) p(C)}{p(X_1 = x_1, \dots, X_n = x_n)}$$

$$= (\prod_i p(X_i = x_i \mid C) p(C))^{|C|}$$

Be careful,

$$p(X_1 = x_1, \dots, X_n = x_n) \neq \prod_i p(X_i = x_i)$$

in general and we do not have access to this probability easily.

UCI Mushroom Data

The UCI mushroom data contains 23 attributes of 8124 different mushrooms.

edible: e = edible, p = poisonous

cap-shape: b=bell, c=conical, x=convex, f=flat, k=knobbed, s=sunken

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 27/42

Bayesian Networks / 3. An Example

UCI Mushroom Data / Missing Values

Mushroom has missing values:

 in variable X₁₁ = stalk-root, starting at case 3985.

Learning Task

We want to learn target C = edible based on all the other attributes, $X_1, \ldots, X_{22} =$ cap-shape, \ldots , habitat.

We split the dataset randomly in

7124 training cases plus 1000 test cases

class distribution:

Accuracy of constant classifier (always predicts majority class e):

$$acc = 0.529$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 29/42

Bayesian Networks / 3. An Example

Complete Case Analysis

Learning only from the 4942 complete cases (out of 7124), we are quite successful on the 702 complete test cases:

confusion matrix:

$$acc = 0.9957$$

Complete Case Analysis

But the classifier deterioriates dramatically, once evaluated on all 1000 cases, thereof 298 containing missing values:

confusion matrix:

predicted =	е	р
actual = e	516	13
р	201	270

$$acc = 0.786$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

$$p(X_9 = b \mid C) = 0$$

as $X_9 = b$ occurrs only with $X_{11} = .$!

For the whole dataset:

~								р				- 1
$M_{11} = false$			l									- 1
= true	1728	96	96	12	0	64	64	108	0	12	236	64

Available Case Analysis

If we use available case analysis, this problem is fixed. confusion matrix:

$$\begin{array}{c|ccc} predicted = & e & p \\ \hline actual = e & 523 & 6 \\ \hline p & 0 & 471 \\ \hline \end{array}$$

$$acc = 0.994$$

EM for predictor variables in Naive Bayesian Networks always converges to the available case estimates (easy exercise; compute the update formula).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. An Example

Variable Importance / Mutual Information

Definition 2. mutual information of two random variables X and Y:

$$\mathrm{MI}(X,Y) := \sum_{\substack{x \in \mathrm{dom}\, X, \\ y \in \mathrm{dom}\, Y}} p(X=x,Y=y) \, \mathrm{lb} \, \frac{p(X=x,Y=y)}{p(X=x) \, p(Y=y)}$$

X	MI(X,C)		Χ	MI(X,C)
X1	0.04824	_	X12	0.28484
X2	0.02901		X13	0.27076
X3	0.03799	-	X14	0.24917
X4	0.19339		X15	0.24022
X5	0.90573	_	X16	0.00000
X6	0.01401		X17	0.02358
X7	0.10173	_	X18	0.03863
X8	0.23289		X19	0.31982
X9	0.41907		X20	0.48174
X10	0.00765	_	X21	0.20188
X11	0.09716	_	X22	0.15877

Pruned Network

If we use the 4 variables with highest mutual information only,

- X5 = odor
- X20 = spore-print-color
- X9 = gill-color
- X19 = ring-type

we still get very good results. confusion matrix:

predicted =	е	р
actual = e	529	0
р	6	465

$$acc = 0.994$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. An Example

ersität kijjdeshevij

Pruned Network

Pruned Network

Fresh random split.

all variables:

predicted =	е	р
actual = e	541	4
р	1	454

$$acc = .995$$

$X_5, X_9, X_{19}, \text{ and } X_{20}$:					
predicted =	е	р			
actual = e	544	0			
р	8	447			
acc = .992					

$$X_1, X_2, X_3, \text{ and } X_4$$
:

predicted =	е	р
actual = e	419	126
р	101	354

$$acc = .773$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 37/42

Bayesian Networks / 3. An Example

Naive Bayesian Network / Cluster Analysis

Naive Bayesian Networks also could be used for cluster analysis.

The unknown cluster membership is modelled by a hidden variable C called **latent class**.

EM algorithm is used to "learn" fuzzy cluster memberships.

Naive Bayesian Networks used this way are a specific instance of so called **model-based clustering**.

Naive Bayesian Network / Cluster Analysis

Each cluster contains "similar cases", i.e., cases that contain cooccurring patterns of values.

random clustered

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010 39/42

Bayesian Networks / 3. An Example

Summary

- To learn parameters from data with missing values, sometimes simple heuristics as complete or available case analysis can be used.
- Alternatively, one can define a joint likelihood for distributions of completions and parameters.
- In general, this gives rise to a nonlinear optimization problem.
 - But for given distributions of completions, **maximum likelihood estimates** can be computed analytically.
- To solve the ML optimization problem, one can employ the expectation maximization (EM) algorithm:
 - parameters → completions (expectation; inference)
 - completions → parameters (maximization; parameter learning)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 3. An Example

References

- [BKS97] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian networks. In *Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI)*, 1997.
- [FK03] J. Fischer and K. Kersting. Scaled cgem: A fast accelerated em. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, editors, *Proceedings of the Fourteenth European Conference on Machine Learning (ECML-2003)*, pages 133–144, Cavtat, Croatia, 2003.
- [Lau95] S. L. Lauritzen. The em algorithm for graphical association models with missing data. *Computational Statistics & Data Analysis*, 19:191–201, 1995.
- [LR87] R. J. A. Little and D. B. Rubin. *Statistical analysis with missing data*. Wiley, New York, 1987.