Bayesian Networks

10. Parameter Learning / Missing Values

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems
\& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

3. An Example

2003

Let V be a set of variables. A complete case is a function

$$
c: V \rightarrow \bigcup_{v \in V} \operatorname{dom}(V)
$$

with $c(v) \in \operatorname{dom}(V)$ for all $v \in V$.

A incomplete case (or a case with

 missing data) is a complete case c for a subset $W \subseteq V$ of variables. We denote $\operatorname{var}(c):=W$ and say, the values of the variables $V \backslash W$ are missing or not observed.A data set $D \in \operatorname{dom}(V)^{*}$ that contains complete cases only, is called
complete data; if it contains an incomplete case, it is called incomplete data.

case	F	L	B	D	H
1	0	0	0	0	0
2	0	0	0	0	0
3	1	1	1	1	0
4	0	0	1	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	0	0	1	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	0	1	1

Figure 1: Complete data for $V:=\{F, L, B, D, H\}$.

case	F	L	B	D	H
1	0	0	0	0	0
2	.	0	0	0	0
3	1	1	1	1	0
4	0	0	.	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	.	0	.	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	.	1	1

Figure 2: Incomplete data for

Bayesian Networks / 1. Incomplete Data
Missing value indicators
For each variable v, we can interpret its missing of values as new random variable M_{v},

$$
M_{v}:= \begin{cases}1, & \text { if } v_{\mathrm{obs}}=. \\ 0, & \text { otherwise }\end{cases}
$$

called missing value indicator of v.

case	F	M_{F}	L	M_{L}	B	M_{B}	D	M_{D}	H	M_{H}
1	0	0	0	0	0	0	0	0	0	0
2	.	1	0	0	0	0	0	0	0	0
3	1	0	1	0	1	0	1	0	0	0
4	0	0	0	0	.	1	1	0	1	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	.	1	0	0	.	1	1	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	1	0	1	0	1	0
10	1	0	1	0	.	1	1	0	1	0

Figure 3: Incomplete data for $V:=\{F, L, B, D, H\}$ and missing value indicators.

case	$v_{\text {true }}$	$v_{\text {observed }}$
1	1	.
2	2	2
3	2	.
4	4	4
5	3	3
6	2	2
7	1	1
8	4	.
9	3	3
10	2	.
11	1	1
12	3	.
13	4	4
14	2	2
15	2	2

Figure 4: Data with a variable v MCAR. Missing values are stroken through.
unbiased estimator for the expectation of $v_{\text {true }}$; here

$$
\begin{aligned}
\hat{\mu}\left(v_{\text {obs }}\right) & =\frac{1}{10}(2 \cdot 1+4 \cdot 3+2 \cdot 3+2 \cdot 4) \\
& =\frac{1}{15}(3 \cdot 1+6 \cdot 3+3 \cdot 3+3 \cdot 4)=\hat{\mu}\left(v_{\text {true }}\right)
\end{aligned}
$$

the probability of missing is the same, ads sonrart Course on Bayesian Networks, summer term 2010
Bayesian Networks / 1. Incomplete Data

Types of missingness / MAR
A variable $v \in V$ is called missing at random (MAR), if the probability of a missing value is conditionally independent of the (true, unobserved) value of v, i.e, if

$$
I\left(M_{v}, v_{\text {true }} \mid W\right)
$$

for some set of variables $W \subseteq V \backslash\{v\}$ (MAR is also called missing conditionally at random).

Example: think of an apparatus measuring the velocity v of wind. If we measure wind velocities at three different heights $h=0,1,2$ and say the apparatus has problems with height not recording
$1 / 3$ of cases at height 0 ,
$1 / 2$ of cases at height 1 ,
$2 / 3$ of cases at height 2 ,

Types of missingness / MAR

case			$\overbrace{0}^{20}$	case			h	case	*	No	h
1	\dagger	.	0	10	B		1	14	B		2
2	2	2	0	11	4	4	1	15	4	4	2
3	B	.	0	12	4		1	16	4		2
4	3	3	0	13	3	3	1	17	5	5	2
5	1	1	0					18	B		2
6	3	3	0					19	5		2
7	1	1	0					20	3	3	2
8	2		0					21	4	.	2
9	2	2	0					22	5	.	2

Figure 5: Data with a variable v MAR (conditionally on h).

Types of missingness / missing systematically

A variable $v \in V$ is called missing systematically (or not at random), if the probability of a missing value does depend on its (unobserved, true) value.

Example: if the apparatus has problems measuring high velocities and say, e.g., misses
$1 / 3$ of all measurements of $v=1$, $1 / 2$ of all measurements of $v=2$, $2 / 3$ of all measurements of $v=3$,
i.e., the probability of a missing value does depend on the velocity, v is missing systematically.

case	*	N
1	1	
2	1	1
3	2	.
4	B	.
5	3	3
6	2	2
7	1	1
8	2	
9	3	.
10	2	2

Figure 6: Data with a variable v missing systematically.

Again, the sample mean is not unbiased; expectation can only be estimated if we have background knowledge about the probabilities of a missing value dependend on its true value.

A variable $v \in V$ is called hidden, if the probability of a missing value is 1 , i.e., it is missing in all cases.

Example: say we want to measure intelligence I of probands but cannot do this directly. We measure their level of education E and their income C instead. Then I is hidden.

case	$I_{\text {true }}$	$I_{\text {obs }}$	E	C
1	1	\cdot	0	0
2	2	.	1	2
3	2	.	2	1
4	2	.	2	2
5	1	.	0	2
6	2	.	2	0
7	1	.	1	2
8	0	.	2	1
9	1	.	2	2
10	2	.	2	1

Figure 7: Data with a hidden variable I.

Figure 8: Suggested dependency of variables I, E, and C.

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].

2003

The simplest scheme to learn from incomplete data D, e.g., the vertex potentials $\left(p_{v}\right)_{v \in V}$ of a Bayesian network, is complete case analysis (also called casewise deletion): use only complete cases

$$
D_{\text {compl }}:=\{d \in D \mid d \text { is complete }\}
$$

case	F	L	B	D	H
1	0	0	0	0	0
2	.	0	0	0	0
3	1	1	1	1	0
4	0	0	.	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	.	0	.	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	.	1	1

Figure 10: Incomplete data and data used in complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample $D_{\text {compl }}$ are unbiased for $D_{\text {true }}$.

But for higher-dimensional data (i.e., with a larger number of variables), complete cases might become rare.

Let each variable have a probability for missing values of 0.05 , then for 20 variables the probability of a case to be complete is

$$
(1-0.05)^{20} \approx 0.36
$$

for 50 variables it is ≈ 0.08, i.e., most cases are deleted.

A higher case rate can be achieved by available case analysis. If a quantity has to be estimated based on a subset $W \subseteq V$ of variables, e.g., the vertext potential p_{v} of a specific vertex $v \in V$ of a Bayesian network ($W=\mathrm{fam}(v)$), use only complete cases of $\left.D\right|_{W}$
$\left(\left.D\right|_{W}\right)_{\text {compl }}=\left\{\left.d \in D\right|_{W} \mid d\right.$ is complete $\}$

case	F	L	B	D	H
1	0	0	0	0	0
2	.	0	0	0	0
3	1	1	1	1	0
4	0	0	.	1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0	.	0	.	1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1	.	1	1

Figure 11: Incomplete data and data used in available case analysis for estimating the potential $p_{L}(L \mid F)$ (highlighted).

If D is MCAR, estimations based on the subsample $\left(D_{W}\right)_{\text {compl }}$ are unbiased for $\left(D_{W}\right)_{\text {true }}$.

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

3. An Example

Let V be a set of variables and d be an incomplete case. A (complete) case \bar{d} with

$$
\bar{d}(v)=d(v), \quad \forall v \in \operatorname{var}(d)
$$

is called a completion of d.
A probability distribution

$$
\bar{d}: \operatorname{dom}(V) \rightarrow[0,1]
$$

with

$$
\bar{d}^{\operatorname{var}(d)}=\mathrm{epd}_{d}
$$

is called a distribution of completions of d (or a fuzzy completion of d).

Example If $V:=\{F, L, B, D, H\}$ and

$$
d:=(2, ., 0,1, .)
$$

an incomplete case, then

$$
\begin{aligned}
& \bar{d}_{1}:=(2,1,0,1,1) \\
& \bar{d}_{2}:=(2,2,0,1,0)
\end{aligned}
$$

etc. are possible completions, but

$$
e:=(1,1,0,1,1)
$$

is not.
Assume $\operatorname{dom}(v):=\{0,1,2\}$ for all $v \in V$. The potential
$\bar{d}: \operatorname{dom}(V) \rightarrow[0,1]$

$$
\left(x_{v}\right)_{v \in V} \mapsto\left\{\begin{array}{lc}
\frac{1}{9}, & \text { if } x_{F}=2, x_{B}=0 \\
\quad \text { and } x_{D}=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

is the uniform distribution of
completions of d.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm) learning from "fuzzy cases"

Given a bayesian network structure $G:=(V, E)$ on a set of variables V and a "fuzzy data set" $D \in \operatorname{pdf}(V)^{*}$ of "fuzzy cases" (pdfs q on V). Learning the parameters of the bayesian network from "fuzzy cases" D means to find vertex potentials $\left(p_{v}\right)_{v \in V}$ s.t. the maximum likelihood criterion, i.e., the probability of the data given the bayesian network is maximal:
find $\left(p_{v}\right)_{v \in V}$ s.t. $p(D)$ is maximal, where p denotes the JPD build from $\left(p_{v}\right)_{v \in V}$. Here,

$$
p(D):=\prod_{q \in D} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))}\left(p_{v}(x)\right)^{q^{\operatorname{tam}(v)}(x)}
$$

Lemma 1. $p(D)$ is maximal iff

$$
p_{v}(x \mid y):=\frac{\sum_{q \in D} q^{\lfloor\operatorname{lam}(v)}(x, y)}{\sum_{q \in D} q^{\lfloor\operatorname{pa}(v)}(y)}
$$

(if there is a $q \in D$ with $q^{\lfloor\mathrm{pa}(v)}>0$, otherwise $p_{v}(x \mid y)$ can be choosen arbitrarily - $p(D)$ does not depend on it).

2003

If D is incomplete data, in general we are looking for
(i) distributions of completions \bar{D} and
(ii) vertex potentials $\left(p_{v}\right)_{v \in V}$,
that are
(i) compatible, i.e.,

$$
\bar{d}=\operatorname{infer}_{\left(p_{v}\right)_{v \in V}}(d)
$$

for all $\bar{d} \in \bar{D}$ and s.t.
(ii) the probability, that the completed data \bar{D} has been generated from the bayesian network specified by $\left(p_{v}\right)_{v \in V}$, is maximal:

$$
p\left(\left(p_{v}\right)_{v \in V}, \bar{D}\right):=\prod_{\bar{d} \in \bar{D}} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))}\left(p_{v}(x)\right)^{\bar{d}^{\bar{l} \operatorname{tam}(v)}(x)}
$$

(with the usual constraints that $\operatorname{Im} p_{v} \subseteq[0,1]$ and $\sum_{y \in \operatorname{dom}(\mathrm{pa}(v))} p_{v}(x \mid y)=1$ for all $v \in V$ and $\left.x \in \operatorname{dom}(v)\right)$.

Unfortunately this is

- a non-linear,
- high-dimensional,
- for bayesian networks in general even non-convex
optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent, Newton-Raphson, BFGS, etc.) could be used to search local maxima of this probability function.

Example

Let the following bayesian network structure and training data given.

case	A	B
1	0	0
2	0	1
3	0	1
4	.	1
5	.	0
6	.	0
7	1	0
8	1	0
9	1	1
10	1	.

$A \longrightarrow B$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)
Optimization Problem (1/3)

case	A	B	weight
1	0	0	1
2	0	1	1
3	0	1	1
7	1	0	1
8	1	0	1
9	1	1	1
4	1	1	α_{4}
4	0	1	$1-\alpha_{4}$
5,6	1	0	$2 \alpha_{5}$
5,6	0	0	$2\left(1-\alpha_{5}\right)$
10	1	1	β_{10}
10	1	0	$1-\beta_{10}$

$$
\begin{gathered}
\mathbf{A} \longrightarrow \mathbf{B} \\
\theta=p(A=1) \\
\eta_{1}=p(B=1 \mid A=1) \\
\eta_{2}=p(B=1 \mid A=0)
\end{gathered}
$$

$$
\begin{aligned}
p(D)= & \theta^{4+\alpha_{4}+2 \alpha_{5}}(1-\theta)^{3+\left(1-\alpha_{4}\right)+2\left(1-\alpha_{5}\right)} \eta_{1}^{1+\alpha_{4}+\beta_{10}}\left(1-\eta_{1}\right)^{2+2 \alpha_{5}+\left(1-\beta_{10}\right)} \\
& \cdot \eta_{2}^{2+\left(1-\alpha_{4}\right)}\left(1-\eta_{2}\right)^{1+2\left(1-\alpha_{5}\right)}
\end{aligned}
$$

From parameters

$$
\begin{aligned}
\theta & =p(A=1) \\
\eta_{1} & =p(B=1 \mid A=1) \\
\eta_{2} & =p(B=1 \mid A=0)
\end{aligned}
$$

we can compute distributions of completions:
$\alpha_{4}=p(A=1 \mid B=1)=\frac{p(B=1 \mid A=1) p(A=1)}{\sum_{a \in A} p(B=1 \mid A=a) p(A=a)}=\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}$
$\alpha_{5}=p(A=1 \mid B=0)=\frac{p(B=0 \mid A=1) p(A=1)}{\sum_{a \in A} p(B=0 \mid A=a) p(A=a)}=\frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}$
$\beta_{10}=p(B=1 \mid A=1) \quad=\eta_{1}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

Substituting α_{4}, α_{5} and β_{10} in $p(D)$, finally yields:

$$
\begin{aligned}
p(D)= & \theta^{4+\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}+2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}} \\
& \cdot(1-\theta)^{6-\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}-2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}} \\
& \cdot \eta_{1}^{1+\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}+\eta_{1}} \\
& \cdot\left(1-\eta_{1}\right)^{3+2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}-\eta_{1}} \\
& \cdot \eta_{2}^{3-\frac{\theta \eta_{1}}{\theta \eta_{1}+(1-\theta) \eta_{2}}} \\
& \cdot\left(1-\eta_{2}\right)^{3-2 \frac{\theta\left(1-\eta_{1}\right)}{\theta\left(1-\eta_{1}\right)+(1-\theta)\left(1-\eta_{2}\right)}}
\end{aligned}
$$

For bayesian networks a widely used technique to search local maxima of the probability function p is
Expectation-Maximization (EM, in essence a gradient descent).

At the beginning, $\left(p_{v}\right)_{v \in V}$ are initialized, e.g., by complete, by available case analysis, or at random.

Then one computes alternating expectation or E-step:

$$
\bar{d}:=\operatorname{infer}_{\left(p_{v}\right)_{v \in V}}(d), \quad \forall d \in D
$$

(forcing the compatibility constraint) and maximization or M-step:

$$
\left(p_{v}\right)_{v \in V} \text { with maximal } p\left(\left(p_{v}\right)_{v \in V}, \bar{D}\right)
$$

keeping \bar{D} fixed.

The E-step is implemented using an inference algorithm, e.g., clustering [Lau95]. The variables with observed values are used as evidence, the variables with missing values form the target domain.

The M-step is implemented using lemma 2:

$$
p_{v}(x \mid y):=\frac{\sum_{q \in D} q^{\lfloor\operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\lfloor\operatorname{pa}(v)}(y)}
$$

See [BKS97] and [FK03] for further optimizations aiming at faster convergence.

Example

Let the following bayesian network structure and training data given.

case	A	B
1	0	0
2	0	1
3	0	1
4	.	1
5	.	0
6	.	0
7	1	0
8	1	0
9	1	1
10	1	

Using complete case analysis we estimate (1st M-step)

$$
p(A)=(0.5,0.5)
$$

and

$$
p(B \mid A)=\begin{array}{l|ll|}
A & 0 & 1 \\
\hline B=0 & 0.333 & 0.667 \\
1 & 0.667 & 0.333 \\
\hline
\end{array}
$$

Then we estimate the distributions of completions (1st E-step)

case	B	$p(A=0)$	$p(A=1)$
4	1	0.667	0.333
5,6	0	0.333	0.667
case	A	$p(B=0)$	$p(B=1)$
10	1	0.667	0.333

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010
Bayesian Networks / 2. Incomplete Data for Parameter Learning (EM algorithm)

From that we estimate (2nd M-step)

$$
p(A)=(0.433,0.567)
$$

and

$$
p(B \mid A)=\begin{array}{l|ll|}
A & 0 & 1 \\
\hline B=0 & 0.385 & 0.706 \\
1 & 0.615 & 0.294 \\
\hline
\end{array}
$$

Then we estimate the distributions of completions (2nd E-step)

case	B	$p(A=0)$	$p(A=1)$
4	1	0.615	0.385
5,6	0	0.294	0.706
case	A	$p(B=0)$	$p(B=1)$
10	1	0.706	0.294

From that we estimate (3rd M-step)

$$
p(A)=(0.420,0.580)
$$

and

$$
p(B \mid A)=\begin{array}{l|ll|}
A & 0 & 1 \\
\hline B=0 & 0.378 & 0.710 \\
1 & 0.622 & 0.290 \\
\hline
\end{array}
$$

etc.

Figure 12: Convergence ${ }^{\text {siof }} \mathrm{f}$ the EM algorithm (black $p(A=1)$, red $p(B=1 \mid A=0)$, green

1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

3. An Example

Definition 1. Let \mathcal{V} be a set of variables and let $C \in \mathcal{V}$ be a variable called target variable.
The bayesian network structure on \mathcal{V} defined by the set of edges

$$
E:=\{(C, X) \mid X \in \mathcal{V}, X \neq C\}
$$

is called naive bayesian network with target C.

Naive bayesian networks typically are used as classifiers for C and thus called naive bayesian classifier.

2003

A naive bayesian network encodes both,

- strong dependency assumptions:
there are no two variables that are independent, i.e.,

$$
\neg I(X, Y) \quad \forall X, Y
$$

- strong independency assumptions: each pair of variables is conditionally independent given a very small set of variables:

$$
I(X, Y \mid C) \quad \forall X, Y \neq C
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Learning a Naive Bayesian Network means to estimate

$$
p(C) \quad \text { and } \quad p\left(X_{i} \mid C\right)
$$

Inferencing in a Naive Bayesian Network means to compute

$$
p\left(C \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

which is due to Bayes formula:

$$
\begin{aligned}
p\left(C \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =\frac{p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid C\right) p(C)}{p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)} \\
& =\frac{\prod_{i} p\left(X_{i}=x_{i} \mid C\right) p(C)}{p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)} \\
& =\left(\prod_{i} p\left(X_{i}=x_{i} \mid C\right) p(C)\right)^{\mid C}
\end{aligned}
$$

Be careful,

$$
p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \neq \prod_{i} p\left(X_{i}=x_{i}\right)
$$

in general and we do not have access to this probability easily.

The UCI mushroom data contains 23 attributes of 8124 different mushrooms．

edible： $\mathrm{e}=$ edible， $\mathrm{p}=$ poisonous
cap－shape：$b=b e l l, c=c o n i c a l, x=c o n v e x, f=f l a t, k=k n o b b e d, ~ s=s u n k e n ~$

Mushroom has missing values：
－in variable $X_{11}=$ stalk－root， starting at case 3985.

2003

We want to learn target $C=$ edible based on all the other attributes, $X_{1}, \ldots, X_{22}=$ cap-shape, \ldots, habitat.
We split the dataset randomly in
7124 training cases plus 1000 test cases
class distribution:

actual $=\mathrm{e}$	529
p	471

Accuracy of constant classifier (always predicts majority class e):

$$
\mathrm{acc}=0.529
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Learning only from the 4942 complete cases (out of 7124), we are quite successful on the 702 complete test cases:
confusion matrix:

predicted $=$	e	p
actual $=\mathrm{e}$	433	3
p	0	266

$$
\text { acc }=0.9957
$$

But the classifier deterioriates dramatically, once evaluated on all 1000 cases, thereof 298 containing missing values:
confusion matrix:

predicted $=$	e	p
actual $=\mathrm{e}$	516	13
p	201	270

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

Diagnostics:

$$
p\left(X_{9}=b \mid C\right)=0
$$

as $X_{9}=b$ occurs only with $X_{11}=.!$

For the whole dataset:

$X_{9}=$	b	e	g	h	k	n	o	p	r	u	w	y
$M_{11}=$ false	0	0	656	720	408	984	0	1384	24	480	966	22
$=$ true	1728	96	96	12	0	64	64	108	0	12	236	64

2003

If we use available case analysis, this problem is fixed. confusion matrix:

predicted $=$	e	p
actual $=\mathrm{e}$	523	6
p	0	471

$$
\mathrm{acc}=0.994
$$

EM for predictor variables in Naive Bayesian Networks always converges to the available case estimates (easy exercise; compute the update formula).

Definition 2. mutual information of two random variables X and Y :

$$
\operatorname{MI}(X, Y):=\sum_{\substack{x \in \operatorname{dom} X, y \in \operatorname{dom} Y}} p(X=x, Y=y) \operatorname{lb} \frac{p(X=x, Y=y)}{p(X=x) p(Y=y)}
$$

X	$\operatorname{MI}(X, C)$	X	$\operatorname{MI}(X, C)$
X1	0.04824	X12	0.28484
X2	0.02901	X13	0.27076
X3	0.03799	X14	0.24917
X4	0.19339	X15	0.24022
X5	0.90573	X16	0.00000
X6	0.01401	X17	0.02358
X7	0.10173	X18	0.03863
X8	0.23289	X19	0.31982
X9	0.41907	X20	0.48174
X10	0.00765	X21	0.20188
X11	0.09716	X22	0.15877

If we use the 4 variables with highest mutual information only,

- X5 = odor
- X20 = spore-print-color
- X9 = gill-color
- X19 = ring-type
we still get very good results.
confusion matrix:

predicted $=$	e	p
actual $=\mathrm{e}$	529	0
p	6	465

$$
\mathrm{acc}=0.994
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

2003

Fresh random split.
all variables:

predicted $=$	e	p
actual $=\mathrm{e}$	541	4
p	1	454
acc $=.995$		

X_{5}, X_{9}, X_{19}, and X_{20} :

predicted $=$	e	p
actual = e	544	0
p	8	447
acc $=.992$		

X_{1}, X_{2}, X_{3}, and X_{4} :

predicted $=$	e	p
actual $=\mathrm{e}$	419	126
p	101	354

acc $=.773$

Naive Bayesian Networks also could be used for cluster analysis.

The unknown cluster membership is modelled by a hidden variable C called latent class.

EM algorithm is used to "learn" fuzzy cluster memberships.

Naive Bayesian Networks used this way are a specific instance of so called model-based clustering.

Each cluster contains "similar cases", i.e., cases that contain cooccurring patterns of values.

random

clustered

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI \& Institute for Computer Science, University of Hildesheim Course on Bayesian Networks, summer term 2010

39/42
Bayesian Networks / 3. An Example

2003

- To learn parameters from data with missing values, sometimes simple heuristics as complete or available case analysis can be used.
- Alternatively, one can define a joint likelihood for distributions of completions and parameters.
- In general, this gives rise to a nonlinear optimization problem.
But for given distributions of completions, maximum
likelihood estimates can be computed analytically.
- To solve the ML optimization problem, one can employ the expectation maximization (EM) algorithm:
- parameters \rightarrow completions (expectation; inference)
- completions \rightarrow parameters (maximization; parameter learning)
[BKS97] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian networks. In Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI), 1997.
[FK03] J. Fischer and K. Kersting. Scaled cgem: A fast accelerated em. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, editors, Proceedings of the Fourteenth European Conference on Machine Learning (ECML-2003), pages 133-144, Cavtat, Croatia, 2003.
[Lau95] S. L. Lauritzen. The em algorithm for graphical association models with missing data. Computational Statistics \& Data Analysis, 19:191-201, 1995.
[LR87] R. J. A. Little and D. B. Rubin. Statistical analysis with missing data. Wiley, New York, 1987.

