
Power Laws and Rich-Get-Richer 
Phenomena 



Objectives 

• Examine phenomena related to popularity 

• Specific instance: popularity of Web pages in 
terms of number of in-links 

• Power-law distribution of number of in-links 

• Simple model to explain why power-laws 
emerge 

• Approximate mathematical analysis of the 
model 

 



Popularity as a Network Phenomenon 

• Popularity is characterized by extreme 
imbalances 
– almost everyone goes through life known only to 

people in their immediate social circles, 

– a few people achieve wider visibility, and 

– a very, very few attain global name recognition 

• Analogous things could be said of books, 
movies, or almost anything that commands an 
audience 

 



Popularity as a Network Phenomenon 

• How can we quantify these imbalances? 

• Why do they arise? 

• Are they somehow intrinsic to the whole idea 
of popularity? 



Popularity in Web 

• Focus on the Web as a concrete domain in which 
it is possible to measure popularity very 
accurately 
– difficult to estimate the number of people who have 

heard of Barack Obama or Bill Gates 
– easy to count the number of links to high-profile Web 

sites such as Google, Amazon, or Wikipedia 

• Number of in-links to a Web page as a measure of 
the page’s popularity 
– but as just an example of a much broader 

phenomenon 



Basic question 

 

 

As a function of k, what fraction of pages 
on the Web have k in-links? 



A Simple Hypothesis: 
The Normal Distribution 

The probability of observing a value that exceeds the mean by more 
than c times the standard deviation decreases exponentially in c 

 = 0 
 = 1 



Central Limit Theorem 

• Why is normal distribution ubiquitous across the 
natural sciences? 

• Central Limit Theorem: if we take any sequence 
of small independent random quantities, then in 
the limit their sum (or average) will be distributed 
according to the normal distribution 

• Ex: 
– perform repeated measurements of a physical 

quantity, the the variations are the cumulative result 
of many independent sources of error in each trial, 
then the distribution of measured values is normal 



The Normal Distribution in the Web 

• How would this apply in the Web? 

– Assume that each page decides independently at random 
whether to link to any other given page 

– The number of in-links to a given page is the sum of many 
independent random quantities (i.e. the presence or 
absence of a link from each other page), 

– We’d expect it to be normally distributed 

– The number of pages with k in-links should decrease 
exponentially in k, as k grows large 

The conclusion is not verified by reality, 
because the assumption is not valid 



Power Laws 

• What does reality say? 
– The fraction of Web pages that have k in-links is 

approximately proportional to 1/k2 

– recurring finding in studies over many different Web 
snapshots, taken at different points in the Web’s history 

• Why is this so different from the normal distribution? 
– exponential decrease: e-k2 

or e-k 
or 2-k 

– power law: k-2 

– Ex: k = 1000 
• exp -> 0 

• power law -> 10-6 



Power Laws 

• What does this mean? 
– With power laws it’s possible to see very large values of k 
– Remember: large values of popularity are likely to arise 

• Where else do we observe power laws? 
Fractions of: 
– telephone numbers receiving k calls per day (1/k2) 
– Books bought by k people (1/k3) 
– scientific papers receiving k citations (1/k3) 

 
• As normal distribution is widespread in natural 

sciences, power laws dominate when we measure a 
type of popularity 



Power Laws 

• Quick test for whether a dataset exhibits a 
power-law distribution 
– f(k) be the fraction of items that have value k 

– test if f(k) =a/kc for some a and c 

– f(k) =ak-c 

– log f(k) = log(ak-c) = loga - c logk 

• What does this mean? 
– loglog plot: plot log f(k) as a function of logk, 

– then we should see a straight line: −c will be the slope, 
and loga will be the y-intercept 

 



loglog plot 
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loglog plot 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-800

-700

-600

-500

-400

-300

-200

-100

0

 

 

e
-k

e
-k

2

k
-2



loglog plot of in-links in Web 



What causes power laws? 

• We need a simple explanation for what is 
causing power laws? 

• loglog of in-links in Web: a straight line for 
much of the distribution 

– even when many utterly uncontrollable factors 
come into play in the formation of Web links 

• What underlying process is keeping the line so 
straight? 



Rich-Get-Richer Models 
(1) Pages are created in order, and named 1, 2, 3, . . . ,N. 

 

(2) When page j is created, it produces a link to an earlier Web page according 
to the following probabilistic rule (which is controlled by a single number p 
between 0 and 1). 

 

 (a) With probability p, page j chooses a page i uniformly at random from 
among all earlier pages, and creates a link to this page i. 

 

 (b) With probability 1−p, page j instead chooses a page i uniformly at 
random from among all earlier pages, and creates a link to the page that i 
points to. 

 

 (c) This describes the creation of a single link from page j; one can repeat 
this process to create multiple, independently generated links from page j. 
(However, to keep things simple, we will suppose that each page creates 
just one outbound link.) 



Rich-Get-Richer Models 

• Copying mechanism in (2b) implements “rich-get-richer” dynamics 
– when you copy the decision of a random earlier page, the probability 

that you end up linking to some page  is directly proportional to the 
total number of pages that currently link to  

• We can equivalently write: 
(2) ... 
 
(b) With probability 1 − p, page j chooses a page  with probability 

proportional to ’s current number of in-links, and creates a link to . 
 
• Why “Rich-get-richer” (a.k.a. preferential attachment)? the 

probability that page  experiences an increase in popularity is 
directly proportional to ’s current popularity 



Analysis of Rich-Get-Richer 
• Probabilistic model: 

– we have specified a randomized process that runs for 
N steps (as the N pages are created one at a time) 

– we determine the expected number of pages with k 
in-links at the end of the process 

• Random variable Xj(t) is the number of in-links to 
a node j at a time step t  j 
– Initial condition: Xj(j) = 0, because node j starts with 

no in-links when it is first created at time j 

– probability that node t + 1 links to node j is: 



Analysis of Rich-Get-Richer 

• Approximate the probabilistic model with a 
deterministic model (no clear proof for the 
probabilistic) 

– time runs not in discrete steps but continuously in 
[0,N] 

– Xj(t) is approximated by a continuous function of 
time xj(t) 

 

 



Analysis of Rich-Get-Richer 

  

 

 

Set q = 1-p 



Analysis of Rich-Get-Richer 

 
 
 
 
 

• With the probabilistic model: For a given value of k, 
and a time t, what fraction of all nodes have at least k 
in-links at time t? 

• With the approximate model:  For a given value of k, 
and a time t, what fraction of all functions xj(t) satisfy  
xj(t)  k? 
 

  



Analysis of Rich-Get-Richer 

 

The fraction of values j, out of total t values, that that satisfy this is: 

This fraction approximates the fraction of nodes F(k) with 
at least k in-links. We want to approximate the fraction of 
nodes f(k) with exactly k in-links: 

f(k) = -dF(k)/dk 
 



Analysis of Rich-Get-Richer 

0  p  1 

• If p close to 1 -> no copying -> exponent tends to infinity -> nodes with very large 
numbers of in-links become increasingly rare 

• If p close to 0 -> exponent becomes 2 -> allowing for many nodes with very large 
numbers of in-links 

• We see why exponent close to 2 has been observed in real measurements in Web 

Differentiating we get 

The fraction of nodes f(k) with k in-links is proportional to 

This a power law with exponent 



The Unpredictability of Rich-Get-
Richer Effects 

• Once an item becomes well established, the rich-get-
riche push it even higher 

• But the initial stages of its rise to popularity is a 
relatively fragile thing 
– random effects early in the process 
– Ex: if we could roll time back 15 years, and then run history 

forward again, would the Harry Potter books again sell 
hundreds of millions of copies? 

• If history were to be replayed multiple times, a power-
law distribution of popularity emerges each of these 
times, but it’s far from clear that the most popular 
items would always be the same 



The Unpredictability of Rich-Get-
Richer Effects 

• Salgankik, Dodds, and Watts study: 
– They created a music download site with 48 obscure songs of varying quality 
– Visitors were presented with a list of the songs and given the opportunity to 

listen to them 
– Each visitor was also shown a table listing the current “download count” for 

each song 
– At the end of a session, visitors were given the opportunity to download 

copies of the songs that they liked 

• Simulate the “history replayed multiple times”: 
– upon arrival they were actually being assigned (without knowing) at random 

to one of eight “parallel” copies of the site 
– The parallel copies started out identically, with the same songs and with each 

song having a download count of zero 
– Each parallel copy then evolved differently as users arrived 

 
• Goal: observe what happens to the popularities of 48 songs when history 

runs forward eight different times 
 
 



The Unpredictability of Rich-Get-
Richer Effects 

• Results of the study: 
– The “market share” (popularity measured through 

downloads) of the different songs varied considerably 
across the different parallel copies 

– Although the best songs never ended up at the bottom 
and the worst songs never ended up at the top 

• Second goal: is feedback producing greater inequality 
in outcomes (copying -> power-laws) 
– Assigned some users to a ninth version of the site with no 

feedback about download counts 
– Result: significantly less variation in the market share of 

different songs 



Conclusion 

• This was a simple model 
• Goal is not to capture all reasons why people create links on the 

Web, but to show that a simple and natural principle behind link 
creation leads directly to power laws 

• Rich-get-richer models can suggest a basis for power laws in a wide 
array of settings 
– Ex: populations of cities have been observed to follow a power law 

distribution 
– Why? once formed, a city grows in proportion to its current size simply 

as a result of people having children -> a rich-get-richer model 

• Finding similar laws governing Web page popularity, city 
populations, gene copies, river sizes, etc. is quite mysterious 

• If one views all these as outcomes of processes exhibiting rich-get- 
richer effects, then the picture starts to become clearer 


