Strong and Weak Ties

Objectives

- How information flows through a social network
- How different nodes can play structurally distinct roles in this process
- How these structural considerations shape the evolution of the network itself over time

"Finding a job"

- Mark Granovetter (1960s)
- interviewed people who had recently changed employers
- how they discovered their new jobs?
- many learned information through personal contacts
- these contacts often described as acquaintances (weak ties) rather than close friends (strong ties)
- A bit surprising:
- your close friends have the most motivation to help
- why more distant acquaintances who are to thank?

Triadic Closure

- If B and C have a friend A in common, then edge between B and C tends to be produced
- a triangle

(a) Before B-C edge forms.

(b) After B-C edge forms.

Triadic Closure

- Observe snapshots of a social network at two distinct points in time
- Significant number of new edges form through this triangleclosing operation

(b) After new edges form.

The Clustering Coefficient

- Measure to capture triadic closure
- The clustering coefficient of a node $A, C C(A)$, is the fraction of pairs of A's friends that are connected to each other by edges
- Ex:
- Figure(a): $C C(A)=1 / 6$
- Figure(b): $C C(A)=1 / 2$
- CC ranges from 0 (when none of the
- node's friends are friends with each other) to 1 (when all of the node's friends are friends with each other)

(b) After new edges form.

Reasons for Triadic Closure

- Why B and C more likely to become friends, when they have a common friend?
- increased opportunity for B and C to meet
- B and C trust each other
- it becomes a source of latent stress in these relationships if B and C are not friends
- teenage girls who have a low clustering coefficient in their network of friends are significantly more likely to contemplate suicide

Bridges and Local Bridges

- A has 4 friends:
- C, D, and E connected to a tightly-knit group
- B reaches into a different part of the network
- B offers access to new things

Bridges and Local Bridges

- Edge $A-B$ is a bridge if deleting it causes A and B to be in different components

- Bridges are extremely rare in real social networks
- giant component, many short paths

Bridges and Local Bridges

- Edge $A-B$ is a local bridge if its endpoints A and B have nc friends in common
- deleting $A-B=>d(A, B)$ increases more than 2
- Relation with triadic closure:
- a local bridge does not belong to any triangle
- Local bridges provide their endpoints with access to parts of the network that they would otherwise be far away from

"Finding a job"

- if a node like A is going to get new information about a job, it might come often (not always) from a friend connected by a local bridge
- The closely-knit groups of close friends are eager to help, but they know roughly the same things with A
- How to connect local bridges to acquaintances?

Strong vs. Weak Ties

- Classification of links in a social network:
- strong ties (friends) vs. weak ties (acquaintances)
- Connection to triadic closure:
- if A has edges to B and C , then edge $\mathrm{B}-\mathrm{C}$ is especially likely to form if A's edges to B and C are both strong ties

The Strong Triadic Closure Property

- A violates the Strong Triadic Closure Property if:
- has strong ties to two other nodes B and C , and
- there is no edge at all (either a strong or weak tie) between B and C
- A satisfies the Strong Triadic Closure Property if it does not violate it
- Ex (figure):
- all nodes satisfy the Property
- if edge A-F were strong tie, then A and F would both violate the Property (A-G is missing)
- Strong Triadic Closure Property is too extreme to hold across all nodes of a large social network
- useful step as an abstraction to reality

Local Bridges and Weak Ties

- If A satisfies the Strong Triadic Closure

Property and is involved in at least two strong ties, then any local bridge it is involved in must be a weak tie.

- Proof. Consider A that satisfies Strong Triadic Closure Property and is involved in at least two strong ties. Suppose A is involved in a local bridge to B that is a strong tie. Contradiction:
- A-C the other strong tie
- A-B local bridge $=>A$ and B must have no friends in common => B-C edge
 must not exist
- A satisfies Strong Triadic Closure: A-B and A-C strong => B-C must exist (as weak or strong tie)

"Finding a job"

- The previous argument completes the connection between the weak ties (acquaintances) and local bridge (access to other parts of the network)
- But it is based on the assumptions of Strong Triadic Closure and is a simplification that:
- holds approximately even when the assumption is relaxed
- need to test on real-world data

Weak Ties and Local Bridges in Real Data

- Onnela et al.: traces of digital communication ("who-talks-to-whom" data)
- cell phone records
- 20\% of a national population
- 18-week observation period
- a giant component (84\%)
- How to measure weak ties and local bridges?
- use the speaking time as strength
- generalize definition of local bridge

Generalizing Weak Ties and Local Bridges

- So far sharp dichotomies:
- an edge is either a strong tie or a weak tie, and
- it is either a local bridge or it isn't
- For real data we need smoother gradations:
- strength of an edge the total number of minutes between the two ends of the edge
- neighborhood overlap of edge $A-B$:
- $N(A), N(B)$ are neighbors of A and B, resp.
- $O(A-B)=|N(A) \cap N(B)| /|N(A) \cup N(B)|$
- We don't count A or B themselves

Generalizing Weak Ties and Local Bridges

- Ex(figure):
$-O(A-F)=1 / 6$
- Overlap(A-B) = 0 => A-B a local bridge
- Allows for "almost" local bridges
- A-F vs. A-E
- $O(A-E)=2 / 4$

Weak Ties and Local Bridges in Real Data

- How the overlap of an edge depends on its strength?
- Lower overlap (almost local bridges) tend to have weaker strength
- verifies theory
- deviation at the end of the plot: people using cell-phones in unusual fashions

Weak Ties and Local Bridges in Real Data

- How to test whether weak ties link together different tightly-knit communities that each contain a large number of stronger ties?
- Onnela et al. provided an indirect analysis:
- deleted edges one at a time, starting with strongest ties $=>$ the giant component shrank steadily
- deleted edges one at a time, starting with weakest ties => the giant component shrank more rapidly
- Verifies the theoretical expectation:
- weak ties provide the more crucial connective structure for holding together communities

Tie Strength and Social Media

- Large lists of friends in social-networking tools
- How many of these correspond to strong and weak ties?
- Tie strengths can provide an important perspective on on-line social activity

Tie Strength on Facebook

- Cameron and Marlow:
- To what extent each social link is actually used for social interaction beyond being listed?
stronger - 3 categories of links (usage over a 1-month period)
- mutual communication: user both sent and receive messages from the friend
- one-way communication: user sent messages to the friend (regardless if replied)
- maintained relationship: user followed information of the friend (regardless of messages)
- "following information": clicking on content via Facebook's News Feed service or visiting the friend's profile
- Categories not mutually exclusive:
- mutual communication always belongs subset of one-way communication

Example for a sample Facebook user

- Restricting to stronger ties thins out the network
- Triadic closure:
- in upper and right part of "All Friends"
- Maintained:
- upper survives (current friends)
- right hot (earlier friends, e.g., school)

Maintained Relationships

One-way Communication

Mutual Communication

Active Friendships in Facebook

- Users report large numbers of friends
- up to 500
- Mutual communication (strong ties):
- between 10 and 20
- Maintained (weak ties)
- under 50

Passive Engagement

- The power of media like Facebook:
- maintained relationships (weak ties) enable passive engagement
- keep up with friends by reading news about them (even) in the absence of communication
- Weak tie are middle ground between:
- the strongest ties (mutual communication) and
- inactive ties (friends only listed)
- If only mutual communication allowed:
- small list of friends (like those we call regularly)
- Weak ties maintain the social network highly connected:
- everyone is passively engaged with each other and events/news propagate very quickly

Tie Strength on Twitter

- Huberman, Romero, and Wu:
- Strong ties of a user A:
- users that A directly communicates through tweets
- Weak ties of a user A:
- users that A follows without direct communication
- Below 50 strong ties even for over 1000 followees (weak ties)

number of a user's strong ties vs. weak ties

Reasons for weak ties

- Strong ties require investment of time and effort
- Both are constrained $=>$ we reach a limit
- "Dunbar's number" = 150
- Strong ties limited by the size of the human brain
- Weak ties pose milder constraints
- they need to be established but not necessarily maintained continuously
- easier accumulate large numbers of weak ties

Understanding how on-line media affect social networks is a complex research problem (still open)

