Strong and Weak Ties

Objectives

- How information flows through a social network
- How different nodes can play structurally distinct roles in this process
- How these structural considerations shape the evolution of the network itself over time

"Finding a job"

- Mark Granovetter (1960s)
 - interviewed people who had recently changed employers
 - how they discovered their new jobs?
 - many learned information through personal contacts
 - these contacts often described as acquaintances (weak ties) rather than close friends (strong ties)
- A bit surprising:
 - your close friends have the most motivation to help
 - why more distant acquaintances who are to thank?

Triadic Closure

- If B and C have a friend A in common, then edge between B and C tends to be produced
 - a triangle

(a) Before B-C edge forms.

⁽b) After B-C edge forms.

Triadic Closure

- Observe snapshots of a social network at two distinct points in time
- Significant number of new edges form through this triangleclosing operation

(a) Before new edges form.

The Clustering Coefficient

- Measure to capture triadic closure
- The clustering coefficient of a node A, CC(A), is the fraction of pairs of A's friends that are connected to each other by edges
- Ex:
 - Figure(a): CC(A) = 1/6
 - Figure(b): $CC(A) = \frac{1}{2}$
- CC ranges from 0 (when none of the
- node's friends are friends with each other) to 1 (when all of the node's friends are friends with each other)

(a) Before new edges form.

Reasons for Triadic Closure

- Why B and C more likely to become friends, when they have a common friend?
 - increased opportunity for B and C to meet
 - B and C trust each other
 - it becomes a source of latent stress in these relationships if B and C are not friends
 - teenage girls who have a low clustering coefficient in their network of friends are significantly more likely to contemplate suicide

Bridges and Local Bridges

- A has 4 friends:
 - C, D, and E connected to a tightly-knit group
 - B reaches into a different part of the network
 - B offers access to new things

Bridges and Local Bridges

- Edge A-B is a bridge if deleting it causes A and B to be in different components
- Bridges are extremely rare in real social networks
 - giant component,
 many short paths

Bridges and Local Bridges

- Edge A-B is a local bridge if its endpoints A and B have nc friends in common
 - deleting A-B => d(A,B)
 increases more than 2
- Relation with triadic closure:
 - a local bridge does not belong to any triangle
- Local bridges provide their endpoints with access to parts of the network that they would otherwise be far away from

"Finding a job"

- if a node like A is going to get new information about a job, it might come often (not always) from a friend connected by a local bridge
- The closely-knit groups of close friends are eager to help, but they know roughly the same things with A
- How to connect local bridges to acquaintances?

Strong vs. Weak Ties

- Classification of links in a social network:
 - strong ties (friends)
 vs. weak ties
 (acquaintances)
- Connection to triadic closure:
 - if A has edges to B and C, then edge B-C is especially likely to form if A's edges to B and C are both strong ties

The Strong Triadic Closure Property

- A violates the Strong Triadic Closure Property if:
 - has strong ties to two other nodes B and C, and
 - there is no edge at all (either a strong or weak tie) between B and C
- A satisfies the Strong Triadic Closure Property if it does not violate it
- Ex (figure):
 - all nodes satisfy the Property
 - if edge A-F were strong tie, then A and F would both violate the Property (A-G is missing)
- Strong Triadic Closure Property is too extreme to hold across all nodes of a large social network
 - useful step as an abstraction to reality

Local Bridges and Weak Ties

- If A satisfies the Strong Triadic Closure Property and is involved in at least two strong ties, then any local bridge it is involved in must be a weak tie.
- Proof. Consider A that satisfies Strong Triadic Closure Property and is involved in at least two strong ties. Suppose A is involved in a local bridge to B that is a strong tie. Contradiction:
 - A-C the other strong tie
 - A-B local bridge => A and B must have no friends in common => B-C edge must not exist
 - A satisfies Strong Triadic Closure: A-B and A-C strong => B-C must exist (as weak or strong tie)

"Finding a job"

- The previous argument completes the connection between the weak ties (acquaintances) and local bridge (access to other parts of the network)
- But it is based on the assumptions of Strong Triadic Closure and is a simplification that:
 - holds approximately even when the assumption is relaxed
 - need to test on real-world data

Weak Ties and Local Bridges in Real Data

- Onnela et al.: traces of digital communication ("who-talks-to-whom" data)
 - cell phone records
 - 20% of a national population
 - 18-week observation period
 - a giant component (84%)
- How to measure weak ties and local bridges?
 - use the speaking time as strength
 - generalize definition of local bridge

Generalizing Weak Ties and Local Bridges

- So far sharp dichotomies:
 - an edge is either a strong tie or a weak tie, and
 it is either a local bridge or it isn't
- For real data we need smoother gradations:
 - strength of an edge the total number of minutes between the two ends of the edge
 - neighborhood overlap of edge A-B:
 - N(A), N(B) are neighbors of A and B, resp.
 - O(A-B) = |N(A) ∩ N(B)| / |N(A) ∪ N(B)|
 - We don't count A or B themselves

Generalizing Weak Ties and Local Bridges

- Ex(figure):
 - -O(A-F) = 1/6
- Overlap(A-B) = 0 =>
 A-B a local bridge
- Allows for "almost" local bridges
 - A-F vs. A-E
 - O(A-E) = 2/4

Weak Ties and Local Bridges in Real Data

- How the overlap of an edge depends on its strength?
- Lower overlap (almost local bridges) tend to have weaker strength
 - verifies theory
 - deviation at the end of the plot: people using cell-phones in unusual fashions

overlap as a function of strength (percentile)

Weak Ties and Local Bridges in Real Data

- How to test whether weak ties link together different tightly-knit communities that each contain a large number of stronger ties?
- Onnela et al. provided an indirect analysis:
 - deleted edges one at a time, starting with strongest ties => the giant component shrank steadily
 - deleted edges one at a time, starting with weakest ties
 => the giant component shrank more rapidly
- Verifies the theoretical expectation:
 - weak ties provide the more crucial connective structure for holding together communities

Tie Strength and Social Media

- Large lists of friends in social-networking tools
- How many of these correspond to strong and weak ties?
- Tie strengths can provide an important perspective on on-line social activity

Tie Strength on Facebook

Cameron and Marlow:

weaker

- To what extent each social link is actually used for social interaction beyond being listed?
- stronger 3 categories of links (usage over a 1-month period)
 - mutual communication: user both sent and receive messages from the friend
 - one-way communication: user sent messages to the friend (regardless if replied)
 - maintained relationship: user followed information of the friend (regardless of messages)
 - "following information": clicking on content via Facebook's News Feed service or visiting the friend's profile
 - Categories not mutually exclusive:
 - mutual communication always belongs subset of one-way communication

Example for a sample Facebook user

- Restricting to stronger ties thins out the network
- Triadic closure:
 - in upper and right part of "All Friends"
 - Maintained:
 - upper survives (current friends)
 - right hot (earlier friends, e.g., school)

Active Friendships in Facebook

- Users report large numbers of friends
 up to 500
- Mutual communication (strong ties):
 - between 10 and 20
- Maintained (weak ties)
 - under 50

number of friends a user declares

Passive Engagement

- The power of media like Facebook:
 - maintained relationships (weak ties) enable passive engagement
 - keep up with friends by reading news about them (even) in the absence of communication
- Weak tie are middle ground between:
 - the strongest ties (mutual communication) and
 - inactive ties (friends only listed)
 - If only mutual communication allowed:
 - small list of friends (like those we call regularly)
- Weak ties maintain the social network highly connected:
 - everyone is passively engaged with each other and events/news propagate very quickly

Tie Strength on Twitter

- Huberman, Romero, and Wu:
 - Strong ties of a user A:
 - users that A directly communicates through tweets
 - Weak ties of a user A:
 - users that A follows without direct communication
- Below 50 strong ties even for over 1000 followees (weak ties)

number of a user's strong ties vs. weak ties

Reasons for weak ties

- Strong ties require investment of time and effort
- Both are constrained => we reach a limit
- "Dunbar's number" = 150
 - Strong ties limited by the size of the human brain
- Weak ties pose milder constraints
 - they need to be established but not necessarily maintained continuously
 - easier accumulate large numbers of weak ties

Understanding how on-line media affect social networks is a complex research problem (still open)