
Betweenness Measures and
Graph Partitioning

Objectives

• Define densely connected regions of a
network

• Graph partitioning

– Algorithm to identify densely connected regions

– breaking a network into a set of nodes densely
connected with each other with edges

– having sparser interconnections between the
regions

Graph partitioning example

A co-authorships network among a set of physicists

Graph partitioning example

social network of a karate club

the 2 conflicting groups
are still heavily
interconnected
Need to look how edges
between groups occur
at lower “density” than
edges within the groups

Nesting of regions

Larger regions containing several smaller
Divisive methods: breaking first at the 7-8 edge, and then the nodes into nodes
7 and 8
Agglomerative methods: merge the 4 triangles and then pairs of triangles (via
nodes 7 and 8)

Divisive removal of Bridges

• Simple idea:

– remove bridges and local
bridges

• Problems:

– which when several?
(ex: in fig up 5 bridges)

– what if none
(ex: in fig down nodes 1-5
and 7-11)

The role of Bridges

• Q: What bridges and local bridges are doing?

• A: They form part of the shortest path between pairs
of nodes in different parts of the network

Generalize the Role of Bridges
• Look for the edges that carry the most of “traffic” in a

network
– without the edge, paths between many pairs of nodes may

have to be “re-routed” a longer way
– edges to link different densely-connected regions
– good candidates for removal in a divisive method
– generalize the (local) bridges

Traffic in a Network
• For nodes A and B connected by a path assume 1 unit of “flow”

– (If A and B in different connected components, flow = 0)

• Divide flow evenly along all possible shortest paths from A to B
– if k shortest paths from A and B, then 1/k units of flow pass along each

• Ex: 2 shortest paths from 1 to 5, each with 1/2 units of flow

Edge Betweenness
• Betweenness of an edge: the total amount

of flow it carries
– counting flow between all pairs of nodes

using this edge

• Ex:
– Edge 7-8: each pair of nodes between [1-7]

and [8-14]; each pair with traffic = 1; total 7
x 7 = 49

– Edge 3-7: each pair of nodes between [1-3]
and [4-14]; each pair with traffic = 1; total
3 x 11 = 33

– Edge 1-3: each pair of nodes between [1]
and [3-14] (not node 2); each pair with
traffic = 1; total 1 x 12 = 12
• similar for edges 2-3, 4-6, 5-6, 9-10, 9-11, 12-13,

and 12-14

– Edge 1-2: each pair of nodes between [1]
and [2] (no other); each pair with traffic = 1;
total 1 x 1 = 1
• similar for edges 4-5, 10-11, and 13-14

Betweenness for Partitioning

• Divisive: remove edges with high betweenness

Betweenness of Nodes

• Betweenness of a node: total amount of flow
that it carries, when a unit of flow between
each pair of nodes is divided up evenly over
shortest paths (same as for edges)
– nodes of high betweenness occupy critical roles in

the network (“gatekeepers”)

Girvan-Newman Partitioning Alg.

Successively Deleting Edges of High Betweenness

Example 1

Example 2

Example 3

• Girvan-Newman
partitions correctly
– exception: node 9

assigned to region of
34 (left part)

– at the time of conflict,
node 9 was completing
a four-year quest to
obtain a black belt,
which he could only do
with the instructor
(node 1)

Partitioning large Social Networks

• In real social network data, partitioning is
easier when network is small (at most a few
hundred nodes)

• In large networks, nodes become much more
“inextricable”

• Open research problem

Computing Betweenness Values

• According to definition: consider all the
shortest paths between all pairs of nodes

• Computationally expensive

• How to compute betweenness without listing
out all such shortest paths?

• Method based on BFS

Method

• For each node A:

1. BFS starting at A

2. Count the number of shortest paths from A to
each other node

3. Based on this number, determine the amount of
flow from A to all other nodes

Step 1: Example

Layer 1

Layer 2

Layer 3

Layer 4

Step 2: Example
• F and G are above I
• All shortest-paths from A to I

must take their last step through
either F or G

• To be a shortest path to I, a path
must first be a shortest path to
one of F or G, and then take this
last step to I

• The number of shortest paths
from A to I is the number of
shortest paths from A to F, plus

• the number of shortest paths
from A to G

a node X is above a node Y in the breadth-first search if X is in the layer immediately
preceding Y , and X has an edge to Y

Step 2: Example

• Each node in the first
layer has only 1
shortest path from A

• The number of
shortest paths to each
other node is the sum
of the number of
shortest paths to all
nodes directly above it

• Avoid finding the
shortest paths
themselves!

Step 3: Example

• How the flow from A to all
other nodes spreads out
across the edges?

• Working up from the lowest
layers
– 1 unit of flow arrives at K and

an equal number of the
shortest paths from A to K
come through nodes I and J
=> 1/2-unit of flow on each
of these edges

– 3/2 units of flow arriving at I
(1 unit destined for I plus
the 1/2 passing through to
K). These 3/2 units are
divided in proportion 2 to 1
between F and G => 1 unit to
F and 1/2 to G

Step 3: Method

• Move bottom up
• At each node X

– add up all flow
arriving from edges
directly below X,
plus 1 for the flow
destined for X itself

– Divide this up over
the edges leading
upward from X, in
proportion to the
number of shortest
paths coming
through each

Summary

• Build one BFS structures for each node
• Determine flow values for each edge using the

previous procedure and (3 steps)
• Sum up the flow values of each edge in all BFS

structures to get its betweenness value
• Notice: we are counting the flow between each pair of

nodes X and Y twice (once when BFS from X and once
when BFS from Y)
– at the end we divide everything by two

• Usie these betweenness values to identify the edges of
highest betweenness for purposes of removing them in
the Girvan-Newman method

Computing Betweennes of Nodes

• Same procedure

• Compute the
outgoing
(upwords) sum
of flow from
node

– or downards
sum + 1

