
Betweenness Measures and 
Graph Partitioning 



Objectives 

• Define densely connected regions of a 
network 

• Graph partitioning 

– Algorithm to identify densely connected regions 

– breaking a network into a set of nodes densely 
connected with each other with edges 

– having sparser interconnections between the 
regions 

 



Graph partitioning example 

A co-authorships network among a set of physicists 



Graph partitioning example 

social network of a karate club 

the 2 conflicting groups 
are still heavily 
interconnected 
Need to look how edges 
between groups occur 
at lower “density” than 
edges within the groups 



Nesting of regions 

Larger regions containing several smaller 
Divisive methods: breaking first at the 7-8 edge, and then the nodes into nodes 
7 and 8 
Agglomerative methods: merge the 4 triangles and then pairs of triangles (via 
nodes 7 and 8) 



Divisive removal of Bridges 

• Simple idea: 

– remove bridges and local 
bridges 

• Problems: 

– which when several? 
(ex: in fig up 5 bridges) 

– what if none 
(ex: in fig down nodes 1-5 
and 7-11) 

 



The role of Bridges 

• Q: What bridges and local bridges are doing? 

• A: They form part of the shortest path between pairs 
of nodes in different parts of the network 



Generalize the Role of Bridges 
• Look for the edges that carry the most of “traffic” in a 

network 
– without the edge, paths between many pairs of nodes may 

have to be “re-routed” a longer way 
– edges to link different densely-connected regions 
– good candidates for removal in a divisive method 
– generalize the (local) bridges 



Traffic in a Network 
• For nodes A and B connected by a path assume 1 unit of “flow” 

– (If A and B in different connected components, flow = 0) 

• Divide flow evenly along all possible shortest paths from A to B 
– if k shortest paths from A and B, then 1/k units of flow pass along each 

• Ex: 2 shortest paths from 1 to 5, each with 1/2 units of flow 



Edge Betweenness 
• Betweenness of an edge: the total amount 

of flow it carries 
– counting flow between all pairs of nodes 

using this edge 

• Ex: 
– Edge 7-8: each pair of nodes between [1-7] 

and [8-14]; each pair with traffic = 1; total 7 
x 7 = 49 

– Edge 3-7: each pair of nodes between [1-3] 
and [4-14]; each pair with traffic = 1; total 
3 x 11 = 33 

– Edge 1-3: each pair of nodes between [1] 
and [3-14] (not node 2); each pair with 
traffic = 1; total 1 x 12 = 12 
• similar for edges 2-3, 4-6, 5-6, 9-10, 9-11, 12-13, 

and 12-14 

– Edge 1-2: each pair of nodes between [1] 
and [2] (no other); each pair with traffic = 1; 
total 1 x 1 = 1 
• similar for edges 4-5, 10-11, and 13-14 

 



Betweenness for Partitioning 

• Divisive: remove edges with high betweenness 



Betweenness of Nodes 

• Betweenness of a node: total amount of flow 
that it carries, when a unit of flow between 
each pair of nodes is divided up evenly over 
shortest paths (same as for edges) 
– nodes of high betweenness occupy critical roles in 

the network (“gatekeepers”) 

 

 



Girvan-Newman Partitioning Alg. 

Successively Deleting Edges of High Betweenness 

 



Example 1 



Example 2 



Example 3 

• Girvan-Newman 
partitions correctly 
– exception: node 9 

assigned to region of 
34 (left part) 

– at the time of conflict, 
node 9 was completing 
a four-year quest to 
obtain a black belt, 
which he could only do 
with the instructor 
(node 1) 
 



Partitioning large Social Networks 

• In real social network data, partitioning is 
easier when network is small (at most a few 
hundred nodes) 

• In large networks, nodes become much more 
“inextricable” 

• Open research problem 

 



Computing Betweenness Values 

• According to definition: consider all the 
shortest paths between all pairs of nodes 

• Computationally expensive 

• How to compute betweenness without listing 
out all such shortest paths? 

• Method based on BFS 



Method 

• For each node A: 

1. BFS starting at A 

2. Count the number of shortest paths from A to 
each other node 

3. Based on this number, determine the amount of 
flow from A to all other nodes 



Step 1: Example 

Layer 1 

Layer 2 

Layer 3 

Layer 4 



Step 2: Example 
• F and G are above I 
• All shortest-paths from A to I 

must take their last step through 
either F or G 

• To be a shortest path to I, a path 
must first be a shortest path to 
one of F or G, and then take this 
last step to I 

• The number of shortest paths 
from A to I is the number of 
shortest paths from A to F, plus 

• the number of shortest paths 
from A to G 
 
a node X is above a node Y in the breadth-first search if X is in the layer immediately 
preceding Y , and X has an edge to Y 



Step 2: Example 

• Each node in the first 
layer has only 1 
shortest path from A 

• The number of 
shortest paths to each 
other node is the sum 
of the number of 
shortest paths to all 
nodes directly above it 

• Avoid finding the 
shortest paths 
themselves! 



Step 3: Example 

• How the flow from A to all 
other nodes spreads out 
across the edges? 

• Working up from the lowest 
layers 
– 1 unit of flow arrives at K and 

an equal number of the 
shortest paths from A to K 
come through nodes I and J 
=> 1/2-unit of flow on each 
of these edges 

– 3/2 units of flow arriving at I 
(1 unit  destined for I plus 
the 1/2 passing through to 
K). These 3/2 units are 
divided in proportion 2 to 1 
between F and G => 1 unit to 
F and 1/2 to G 



Step 3: Method 

• Move bottom up 
• At each node X 

– add up all flow 
arriving from edges 
directly below X, 
plus 1 for the flow 
destined for X itself 

– Divide this up over 
the edges leading 
upward from X, in 
proportion to the 
number of shortest 
paths coming 
through each 



Summary 

• Build one BFS structures for each node 
• Determine flow values for each edge using the 

previous procedure and (3 steps) 
• Sum up the flow values of each edge in all BFS 

structures to get its betweenness value 
• Notice: we are counting the flow between each pair of 

nodes X and Y twice (once when BFS from X and once 
when BFS from Y) 
– at the end we divide everything by two  

• Usie these betweenness values to identify the edges of 
highest betweenness for purposes of removing them in 
the Girvan-Newman method 



Computing Betweennes of Nodes 

• Same procedure 

• Compute the 
outgoing 
(upwords) sum 
of flow from 
node 

– or downards 
sum + 1 


