Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision

1. Very Brief Introduction

Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff

Topics of the Lecture

1. Simultaneous Localization and Mapping from Video (Visual SLAM)
2. Image Classification and Description

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. Very Brief Introduction

Simultaneous Localization and Mapping

[source https://www.youtube.com/watch?v=bDOnn0-4Nq8]

Simultaneous Localization and Mapping from Video

- SLAM usually employs laser range scanners (lidars).
- Visual SLAM: use video sensors (cameras).
- main parts required:

1. Projective Geometry
2. Point Correspondences
3. Estimating Camera Positions (Localization)
4. Triangulation (Mapping)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. Very Brief Introduction

Image Classification and Description

A person riding a

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A little girl in a pink hat is blowing bubbles.

A skateboarder does a trick on a ramp.

A red motorcycle parked on the side of the road.

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
- parallel lines

Idea:

- add ideal points, one for each set of parallel lines / direction
- define these points as intersection of any two parallel lines
- now any two lines intersect in exactly one point
- either in a finite or in an ideal point

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$
x \in \mathbb{R}^{2}
$$

Homogeneous coordinates:

$$
\begin{aligned}
& x \in \mathbb{P}^{2}:=\mathbb{R}^{3} / \equiv \\
& \quad x \equiv y: \Longleftrightarrow \exists s \in \mathbb{R} \backslash\{0\}: s x=y, \quad x, y \in \mathbb{R}^{3}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \equiv\left(\begin{array}{c}
4 \\
8 \\
12
\end{array}\right) \text { represent the same point in } \mathbb{P}^{2} \\
& \left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) \text { represent a different point in } \mathbb{P}^{2}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

$$
a \in \mathbb{R}^{3}: \ell_{a}:=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, a_{1} x_{1}+a_{2} x_{2}+a_{3}=0\right\}
$$

- $a_{1} \neq 0$ or $a_{2} \neq 0$ (or both $a_{1}, a_{2} \neq 0$).
- $s a=\left(s a_{1}, s a_{2}, s a_{3}\right)^{T}$ encodes the same line as $a($ any $s \in \mathbb{R}, s \neq 0)$.

Homogeneous coordinates:

$$
a \in \mathbb{P}^{2}: \ell_{a}:=\left\{x \in \mathbb{P}^{2} \mid a^{T} x=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0\right\}
$$

- contains all finite points of $a^{\prime} \in \kappa^{-1}(a): \ell_{\kappa\left(a^{\prime}\right)} \supsetneqq \iota\left(\ell_{a^{\prime}}\right)$
- and the ideal point $\left(a_{2},-a_{1}, 0\right)^{T}$.
- intersection of parallel lines (same a_{1}, a_{2}, different a_{3})

Note: $\kappa: \mathbb{R}^{3} \rightarrow \mathbb{P}^{2}, a \mapsto[a]:=\left\{a^{\prime} \in \mathbb{R}^{3} \mid a^{\prime} \equiv a\right\}$.

A point on a line

A point x lies on line a iff $x^{\top} a=0$.

Intersection of two lines

Lines a and b intersect in $a \times b:=\left(\begin{array}{r}a_{2} b_{3}-a_{3} b_{2} \\ -a_{1} b_{3}+a_{3} b_{1} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$
Proof:

$$
\begin{aligned}
& a^{T}(a \times b)=a_{1} a_{2} b_{3}-a_{1} a_{3} b_{2}-a_{2} a_{1} b_{3}+a_{2} a_{3} b_{1}+a_{3} a_{1} b_{2}-a_{3} a_{2} b_{1}=0 \\
& b^{T}(a \times b)=\ldots=0
\end{aligned}
$$

Example:

$$
\begin{aligned}
& x=1: a=(-1,0,1)^{T} \\
& y=1: b=(0,-1,1)^{T} \\
& a \times b=(1,1,1)^{T}
\end{aligned}
$$

Esp. for parallel lines: $b_{1}=a_{1}, b_{2}=a_{2}, b_{3} \neq a_{3}$:

$$
a \times b \equiv\binom{a_{2}}{-a_{1}}
$$

Line joining points

The line through x and y is $x \times y$.
Proof: exactly the same as previous slide.
Example:

$$
\begin{aligned}
x & =(-1,0,1)^{T} \\
y & =(0,-1,1)^{T} \\
x \times y & =(1,1,1)^{T}
\end{aligned}
$$

Line at infinity

All ideal points form a line:

$$
I_{\infty}:=(0,0,1)^{T} \quad \text { line at infinity }
$$

Proof:
for any ideal point $x=\left(x_{1}, x_{2}, 0\right)^{T}: x^{\top} l_{\infty}=0$.
for any finite (real-valued) point $x=\left(x_{1}, x_{2}, 1\right): x^{\top} I_{\infty}=1 \neq 0$.

Furthermore:

- This is the only line in \mathbb{P}^{2} not corresponding to an Euclidean line.
- Two parallel lines meet at the line at infinity.

A model for the projective plane

- points correspond to rays (lines through the origin)
- lines correspond to planes through the origin.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Conics

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
- ellipsis, parabola, hyperbola
- Corresponds to a curve of degree 2 :

Heterogeneous coordinates:
$a \in \mathbb{R}^{6}: \mathbf{C}_{a}:=\left\{x \in \mathbb{R}^{2} \mid a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+a_{4} x_{1}+a_{5} x_{2}+a_{6}=0\right\}$

A conic joining 5 points

- Let $x^{1}, \ldots, x^{5} \in \mathbb{P}^{2}$ be 5 points
- in general position (i.e., never more than 2 on the same line)
- Conic parameters a have to fulfil the following system of linear equations:

$$
\left(\begin{array}{cccccc}
x_{1}^{1} x_{1}^{1} & x_{1}^{1} x_{2}^{1} & x_{2}^{1} x_{2}^{1} & x_{1}^{1} x_{3}^{1} & x_{2}^{1} x_{3}^{1} & x_{3}^{1} x_{3}^{1} \\
x_{1}^{2} x_{1}^{2} & x_{1}^{2} x_{2}^{2} & x_{2}^{2} x_{2}^{2} & x_{1}^{2} x_{3}^{2} & x_{2}^{2} x_{3}^{2} & x_{3}^{2} x_{3}^{2} \\
x_{1}^{3} x_{1}^{3} & x_{1}^{3} x_{2}^{3} & x_{2}^{3} x_{2}^{3} & x_{1}^{3} x_{3}^{3} & x_{2}^{3} x_{3}^{3} & x_{3}^{3} x_{3}^{3} \\
x_{1}^{4} x_{1}^{4} & x_{1}^{4} x_{2}^{4} & x_{2}^{4} x_{2}^{4} & x_{1}^{4} x_{3}^{4} & x_{2}^{4} x_{3}^{4} & x_{3}^{4} x_{3}^{4} \\
x_{1}^{5} x_{1}^{5} & x_{1}^{5} x_{2}^{5} & x_{2}^{5} x_{2}^{5} & x_{1}^{5} x_{3}^{5} & x_{2}^{5} x_{3}^{4} & x_{3}^{5} x_{3}^{5}
\end{array}\right) a=0
$$

Degenerate Conics

Conic C degenerate: C does not have full rank.
Example: two lines $C:=a b^{T}+b a^{T}$ (rank 2).

- contains lines a and b.
proof: for points x on line $a: x^{\top} a=0$.
$\rightsquigarrow x$ also on $C: x^{T} C x=x^{T} a b^{T} x+x^{T} b a^{T} x=0$.

Conic tangent lines

The tangent line to a conic C at a point x is $C x$.

Proof:

x lies on $C x: x^{\top} C x=0$.
If there is another common point $y: y^{\top} C y=0$ and $y^{\top} C x=0$. $\rightsquigarrow x+\alpha y$ is common for all α, i.e., the whole line.
$\rightsquigarrow C$ is degenerate (or there is no such y).

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images
7. Organizational Stuff

Projectivity

A map $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is called projectivity, if

1. it is invertible and
2. it preserves lines,
i.e., whenever x, y, z are on a line, so are $h(x), h(y), h(z)$.

Equivalently, $h(x):=H x$ for a non-singular $H \in \mathbb{P}^{3 \times 3}$.
Proof:
Any map $h(x):=H x$ is a projectivity:
Let x be a point on line a : $a^{T} x=0$.
Then point $H x$ is on line $H^{-T} a$: $\left(H^{-1} a\right)^{T} H x=a^{\top} H^{-1} H x=a^{T} x=0$.
Any projectivity h is of type $h(x)=H x$: more difficult to show.

Note: $H^{-T}:=\left(H^{-1}\right)^{T}$.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Transformation of Lines and Conics

The image of a line a under projectivity H is the line $H^{-T} a$:

$$
H\left(I_{a}\right)=I_{H-T_{a}}
$$

Proof:
Let x be a point on line $a: a^{T} x=0$.
Then point $H x$ is on line $H^{-1} a:\left(H^{-T} a\right)^{T} H x=a^{T} H^{-1} H x=a^{T} x=0$.

The image of a conic C under projectivity H is the conic $\mathrm{H}^{-T} \mathrm{CH}^{-1}$:

$$
H\left(\mathbf{C}_{C}\right)=\mathbf{C}_{H^{-\top} C H^{-1}}
$$

Proof:
Let x be a point on conic C : $x^{\top} C x=0$.
Then point $H x$ is on conic $H^{-T} C H^{-1}: x^{\top} H^{\top} H^{-T} C H^{-1} H^{-1} x=0$

A Hierarchy of Transformations

- The projective transformations form a group (projective linear group:

$$
\mathrm{PL}_{n}:=\mathrm{GL}_{n} / \equiv=\left\{H \in \mathbb{P}^{3 \times 3} \mid H \text { invertible }\right\}
$$

- There are several subgroups:
- affine group: last row is $(0,0,1)$
- Euclidean group: additionally $H_{1: 2,1: 2}$ orthogonal
- oriented Euclidean group: additionally $\operatorname{det} H=1$
- These subgroups can be described two ways:
- structurally (as above)
- by invariants: objects or sets of objects mapped to themselves

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Isometries

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\epsilon \cos \theta & -\sin \theta & t_{1} \\
\epsilon \sin \theta & \cos \theta & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
R & t \\
0^{T} & 1
\end{array}\right) x
$$

- rotation matrix $R: R^{T} R=R R^{T}=1$
- translation vector t.
- orientation preserving if $\epsilon=+1$ (equivalent to $\operatorname{det} R=+1$) $(\epsilon \in\{+1,-1\})$

Invariants:

- length, angle, area
- line at infinity I_{∞}

Similarity Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{1} \\
s \sin \theta & s \cos \theta & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
s R & t \\
0^{T} & 1
\end{array}\right) x
$$

- isotropic scaling s.

Invariants:

- angle
- ratio of lengths, ratio of areas
- line at infinity I_{∞}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Affine Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
0^{T} & 1
\end{array}\right) x
$$

- A non-singular, decompose via SVD:

$$
A=R(\theta) R(-\phi)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) R(\phi)
$$

- non-isotropic scaling with axis ϕ

[HZO4, p. 40]

Projective Transformations

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
v^{\top} & v_{3}
\end{array}\right) \times
$$

- v moves the line at infinity I_{∞}

Invariants:

- ratio of ratios of lengths of parallel line segments (cross ratio)

Similary, Affine \& Projective Transformations / Example

circles
squares
parallel lines
orthogonal linnes

a) similarity	b) affine	c) projective
circles	ellipsis	conic
squares	diamond	quadrangle
parallel	parallel	converging
orthogonal	non-orthogonal	non-orthogonal

Projective Transformations / Decomposition

$$
\left(\begin{array}{cc}
A & t \\
v^{T} & v_{3}
\end{array}\right)=\left(\begin{array}{cc}
s R & t \\
0^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
K & 0 \\
0^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
v^{T} & v_{3}
\end{array}\right)
$$

$$
A=s R K+t v^{T}
$$

- K upper triangular matrix with $\operatorname{det} K=1$
- valid for $v_{3} \neq 0$
- unique if s is chosen $s>0$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Summary of Projective Transformations

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$	\square	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{ccc}a_{11} & a_{12} & t_{x} \\ a_{21} & a_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	\square.	Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), lin- ear combinations of vectors (e.g. centroids). The line at infinity, l_{∞}.
Similarity 4 dof	$\left[\begin{array}{ccc}s r_{11} & s r_{12} & t_{x} \\ s r_{21} & s r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	\square	Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc}r_{11} & r_{12} & t_{x} \\ r_{21} & r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	\square	Length, area

Outline

1. Very Brief Introduction

2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine and Metric Properties

Decomposition of general projective transformation:

$$
\left(\begin{array}{cc}
A & t \\
v^{T} & v_{3}
\end{array}\right)=\left(\begin{array}{cc}
s R & t \\
0^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
K & 0 \\
0^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
l & 0 \\
v^{T} & v_{3}
\end{array}\right)
$$

1. undo proper projective transformation (affine rectification):

- then original and image differ only by an affine transformation
- \rightsquigarrow measure affine properties of the original in the image (= properties invariant under affine transformations)
- parallel lines, ratio of lengths on parallel lines

2. undo proper affine transformation (metric rectification):

- then original and image differ only by a similarity transformation
- \rightsquigarrow measure metric properties of the original in the image (= properties invariant under similarity transformations)
- angles, ratio of lengths

Recovery of Affine Properties

Undo proper projective transformation:

$$
\begin{aligned}
&\left(\begin{array}{cc}
1 & 0 \\
v^{T} & v_{3}
\end{array}\right):\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right) \mapsto\left(\begin{array}{c}
x_{1} \\
x_{2} \\
v_{1} x_{1}+v_{2} x_{2}
\end{array}\right) \\
& l_{\infty}:=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \mapsto\binom{-v / v_{3}}{1 / v_{3}}=\frac{1}{v_{3}}\left(\begin{array}{c}
v_{1} \\
v_{2} \\
1
\end{array}\right)
\end{aligned}
$$

- maps line at infinity to finite line $\left(v_{1}, v_{2}, 1\right)^{T}$
- to undo:
- locate image $\left(v_{1}, v_{2}, 1\right)^{T}$ of line at infinity
- undo by applying the inverse $H^{-1}=\left(\begin{array}{cc}1 & 0 \\ -v^{\top} / v_{3} & 1 / v_{3}\end{array}\right)$

Note: Lines transform by $H^{-T}:\left(\begin{array}{cc}1 & 0 \\ v^{\top} & V_{3}\end{array}\right)^{-T}=\left(\begin{array}{cc}1 & -v / V_{3} \\ 0 & 1 / V_{3}\end{array}\right)$.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine Properties / Example

a

Recovery of Affine Properties / Algorithm

1: procedure RECTIFY-AFFINE-TWO-PARALLELS $\left(a^{1}, a^{2}, b^{1}, b^{2} \in \mathbb{P}^{2}\right)$
2: $\quad s^{1}:=a^{1} \times a^{2}$
\triangleright compute intersection of parallels a^{1}, a^{2}

3: $\quad s^{2}:=b^{1} \times b^{2} \quad \triangleright$ compute intersection of parallels b^{1}, b^{2}
4: $\quad l_{\infty}:=s^{1} \times s^{2} \quad \triangleright$ compute image of line at infinity
5: $\quad H^{-1}:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -I_{\infty, 1} / l_{\infty, 3} & -I_{\infty, 2} / l_{\infty, 3} & 1 / I_{\infty, 3}\end{array}\right)$
\triangleright compute inverse
6: return H^{-1}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Angles in the Projective Plane

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images

7. Organizational Stuff

Circular Points

A conic

$$
C:=\left(\begin{array}{ccc}
a_{1} & a_{2} / 2 & a_{4} / 2 \\
a_{2} / 2 & a_{3} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{6}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & 0 & a_{4} / 2 \\
0 & a_{1} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{6}
\end{array}\right)
$$

is a circle if $a_{1}=a_{3}$ and $a_{2}=0$.
Ideal points $x=\left(x_{1}, x_{2}, 0\right)^{T}$ on a circle:

$$
x^{T} C x=a_{1} x_{1}^{2}+a_{1} x_{2}^{2}=0
$$

are exactly the circular points:

$$
I:=\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right), \quad J:=\left(\begin{array}{c}
1 \\
-i \\
0
\end{array}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Angles in the Projective Plane

Line Conics

$C \in \operatorname{Sym}\left(\mathbb{P}^{3 \times 3}\right)$ defines a point conic via

$$
\mathbf{C}_{C}:=\left\{x \in \mathbb{P}^{2} \mid x^{\top} C x=0\right\}
$$

It also can be used to define a line conic / dual conic:

$$
\mathbf{C}_{C}^{*}:=\left\{a \in \mathbb{P}^{2} \mid a^{T} C a=0\right\}
$$

(where a denotes a line)

Adjugate of a Matrix

For a square matrix $A \in \mathbb{R}^{n \times n}$,

$$
A^{*} \in \mathbb{R}^{n \times n} \text { with } A_{i, j}^{*}:=(-1)^{i+j} \operatorname{det} A_{-j,-i}
$$

is called its adjugate A^{*}.
It holds:

- for any $A: A^{*} A=A A^{*}=(\operatorname{det} A) I$
- A^{*} is continuous in A.
- if A is invertible, the adjoint is the scaled inverse: $A^{*}=(\operatorname{det} A) A^{-1}$
- if A is not invertible, the adjoint nullifies $A: A^{*} A=A A^{*}=0$
- the adjugate is the transposed of the cofactor matrix.

Note: $A_{-j,-i}$ denotes the matrix A with row j and column i removed.
The adjugate is also called adjoint.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Angles in the Projective Plane

Dual Conic

For any point conic $C \in \operatorname{Sym}\left(\mathbb{P}^{3 \times 3}\right)$, the set of tangent lines

- forms a line conic,
- parametrized by the adjugate C^{*} :

$$
\left\{a \in \mathbb{P}^{2} \mid a \text { tangent to } C\right\}=\mathbf{C}_{C^{*}}^{*}
$$

Dual Conic to the Circular Points

Dual conic to the circular points (degenerate):

$$
C_{\infty}^{*}:=I J^{T}+J I^{T}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- contains exactly all lines through the circular points I or J.
- transforms as $H C^{*} H^{T}: H\left(\mathbf{C}_{C^{*}}^{*}\right)=\mathbf{C}_{H C^{*} H^{T}}^{*}$.
- fixed under projectivity H iff H is a similarity.
- 4 dof (general C has 5 , minus 1 due to $\operatorname{det} C=0$)
- I_{∞} is the null vector of C_{∞}^{*}.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Angels in the Projective Plane

Angels are defined as:

$$
\cos \theta(a, b):=\frac{a^{T} C_{\infty}^{*} b}{\sqrt{\left(a^{T} C_{\infty}^{*} a\right)\left(b^{T} C_{\infty}^{*} b\right)}}, \quad a, b \in \mathbb{P}^{2}
$$

- for the canonical C_{∞}^{*}, conincides with the Euclidean definition:

$$
\cos \theta(a, b):=\frac{a^{T} b}{\sqrt{\left(a^{T} a\right)\left(b^{T} b\right)}}, \quad a, b \in \mathbb{R}^{2}
$$

- stays invariant under projective transformation:

$$
\begin{aligned}
& a^{\prime}=H^{-T} a, \quad b^{\prime}=H^{-T} b, \quad C_{\infty}^{* \prime}=H C_{\infty}^{*} H^{T} \\
& a^{\prime T} C_{\infty}^{* \prime} b^{\prime}=a^{T} H^{-1} H C_{\infty}^{*} H^{T} H^{-T} b=a^{T} C_{\infty}^{*} b
\end{aligned}
$$

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff

Recovery of Metric Properties

- assume there is no pure projective transformation (i.e., affine rectification already done).
- need only to find pure affine transformation:

$$
H_{a}:=\left(\begin{array}{cc}
K & 0 \\
0^{T} & 1
\end{array}\right), \quad \text { with } K \text { upper triangular }
$$

- under H_{a} we get $C_{\infty}^{*}{ }^{\prime}$ as

$$
C_{\infty}^{* \prime}:=H_{a} C_{\infty}^{*} H_{a}^{T}=\left(\begin{array}{cc}
K K^{T} & 0 \\
0^{T} & 0
\end{array}\right)
$$

1. find symmetric matrix $S:=K K^{T}$
2. find K via Cholesky decomposition of S

Recovery of Metric Properties (2/2)

- for two lines a^{\prime}, b^{\prime} that are orthogonal in the original:

$$
\begin{aligned}
0 & =a^{\prime T} C_{\infty}^{*} b^{\prime}=a_{1: 2}^{\prime}{ }^{T} S b_{1: 2} \\
& =a_{1}^{\prime} S_{1,1} b_{1}^{\prime}+a_{1}^{\prime} S_{1,2} b_{2}^{\prime}+a_{2}^{\prime} S_{2,1} b_{1}^{\prime}+a_{2}^{\prime} S_{2,2} b_{2}^{\prime} \\
& =a_{1}^{\prime} b_{1}^{\prime} S_{1,1}+\left(a_{1}^{\prime} b_{2}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}\right) S_{1,2}+a_{2}^{\prime} b_{2}^{\prime} S_{2,2} \\
& =\left(a_{1}^{\prime} b_{1}^{\prime}, a_{1}^{\prime} b_{2}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}, a_{2}^{\prime} b_{2}^{\prime}\right)\left(S_{1,1}, S_{1,2}, S_{2,2}\right)^{T}
\end{aligned}
$$

we get 1 linear constraint in $s:=\left(S_{1,1}, S_{1,2}, S_{2,2}\right)^{T}$. .

- for two pairs of lines that are orthogonal in the original we get 2 linear constraints for 3 variables

$$
\left(\begin{array}{ccc}
a_{1}^{\prime} b_{1}^{\prime} & a_{1}^{\prime} b_{2}^{\prime}+a_{2}^{\prime} b_{1}^{\prime} & a_{2}^{\prime} b_{2}^{\prime} \\
c_{1}^{\prime} d_{1}^{\prime} & c_{1}^{\prime} d_{2}^{\prime}+c_{2}^{\prime} d_{1}^{\prime} & c_{2}^{\prime} d_{2}^{\prime}
\end{array}\right) s
$$

where $s \neq 0$ has to be identified only up to a factor.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties / Algorithm

1: procedure

RECTIFY-METRIC-TWO-ORTHOGONALS $\left(a^{1}, a^{2}, b^{1}, b^{2} \in \mathbb{P}^{2}\right)$
2: $\quad A:=\left(\begin{array}{lll}a_{1}^{1} a_{1}^{2} & a_{1}^{1} a_{2}^{2}+a_{2}^{1} a_{1}^{2} & a_{2}^{1} a_{2}^{2} \\ b_{1}^{1} b_{1}^{2} & b_{1}^{1} b_{2}^{2}+b_{2}^{1} b_{1}^{2} & b_{2}^{1} b_{2}^{2}\end{array}\right)$
3: \quad find $s \neq 0: A s=0$ \triangleright find $C_{\infty}^{*}:=\left(\begin{array}{ccc}s_{1} & s_{2} & 0 \\ s_{2} & s_{3} & 0 \\ 0 & 0 & 0\end{array}\right)$
4: $\quad K:=\operatorname{cholesky}\left(\left(\begin{array}{ll}s_{1} & s_{2} \\ s_{2} & s_{3}\end{array}\right)\right)$ \triangleright find $H:=\left(\begin{array}{cc}K & 0 \\ 0^{T} & 1\end{array}\right)$
5: $\quad H^{-1}:=\left(\begin{array}{ccc}1 / K_{1,1} & -1 /\left(K_{1,2} K_{2,2}\right) & 0 \\ 0 & 1 / K_{2,2} & 0 \\ 0 & 0 & 1\end{array}\right)$
\triangleright compute inverse
6: return H^{-1}

Recovery of Metric Properties / Example

a

b
a) affine rectified image
b) metric rectified image

Now we can measure angles and length ratios!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision
7. Organizational Stuff

Outline

1. Very Brief Introduction

2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff

Exercises and Tutorials

- There will be a weekly sheet with 4 exercises handed out each Tuesday in the lecture. 1st sheet will be handed out Thu. 23.4. in the tutorial.
- Solutions to the exercises can be submitted until next Tuesday noon 1st sheet is due Tue. 28.4.
- Exercises will be corrected.
- Tutorials each Thursday 2pm-4pm, 1st tutorial at Thur. 23.4.
- Successful participation in the tutorial gives up to 10% bonus points for the exam.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Exam and Credit Points

- There will be a written exam at end of term (2h, 4 problems).
- The course gives 6 ECTS (2+2 SWS).
- The course can be used in
- IMIT MSc. / Informatik / Gebiet KI \& ML
- Wirtschaftsinformatik MSc / Informatik / Gebiet KI \& ML
- as well as in both BSc programs.

Some Text Books

- Simon J. D. Prince (2012):

Computer Vision: Models, Learning, and Inference, Cambridge University Press.

- Richard Szeliski (2011): Computer Vision, Algorithms and Applications, Springer.
- David A. Forsyth, Jean Ponce (${ }^{2} 2012,2007$): Computer Vision, A Modern Approach, Prentice Hall.
- Richard Hartley, Andrew Zisserman (2004):

Multiple View Geometry in Computer Vision, Cambridge University Press.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Some First Computer Vision Software

- Open Computer Vision Library (OpenCV)
- C++ library
- has wrappers for Python \& Octave
- originally developed by Intel
- v3.0 beta, 11/2014; http://opencv.org

Public data sets:

- ...

Summary (1/3)

- The projective plane \mathbb{P}^{2} is an extension of the Euclidean plane with ideal points.
- Points and lines in \mathbb{P}^{2} are parametrized by homogenuous coordinates.
- Each two parallels intersect in an ideal point, all ideal points form the line at infinity l_{∞}.
- Each circle contains two ideal points, the circular points, all lines through the circular points form the dual conic to the circular points C_{∞}^{*}.
- Conics are curves of order 2 (hyperbolas, parabolas, ellipsis), parametrized by a symmetric matrix C containing all points x with $x^{T} C x=0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 7. Organizational Stuff

Summary (2/3)

- Projectivities H are invertibles mappings of \mathbb{P}^{2} onto \mathbb{P}^{2} that preserve lines.
- Lines a transform via $\mathrm{H}^{-T} a$, conics C via $\mathrm{H}^{-T} \mathrm{CH}^{-1}$.
- There exist several subgroups of the group of projectivities:
- Isometries rotate and translate figures.
- preserving lengths
- Similarities additionally (isotropic) scale figures.
- preserving ratio of lengths, angle
- Affine transforms additionally non-isotropic scale figures.
- preserving ratio of lengths on parallel lines, parallel lines
- Projectivities additionally move the line at infinity.
- preserving cross ratio
- Any projectivity can be decomposed into a chain of an pure projectivie, a pure affine transform and a similarity.

Summary (3/3)

- Images distorted by an projective transformation can be rectified (i.e., undoes the projective transformation).
- Affine rectification
- undoes a proper projective transformation
- moves the line at infinity back to its canonical position.
- allows to measure affine properties:
- ratio of lengths on parallel lines, parallel lines
- requires, e.g., two pairs of parallel lines.
- Metric rectification
- undoes a proper affine transformation
- moves the dual conic to the circular points back to its canonical position.
- allows to measure metric properties:
- angles, ratio of lengths
- requires, e.g., two pairs of orthogonal lines.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision

Further Readings

- [HZO4, ch. 1 and 2].

References

Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.
Cambridge university press, 2004.

