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Computer Vision 1. Very Brief Introduction

Topics of the Lecture

1. Simultaneous Localization and Mapping from Video (Visual SLAM)

2. Image Classification and Description
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Computer Vision 1. Very Brief Introduction

Simultaneous Localization and Mapping

[SOU FCe https://www.youtube.com/watch?v=bDOnn0-4Nqg8]
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Computer Vision 1. Very Brief Introduction

Simultaneous Localization and Mapping from Video

» SLAM usually employs laser range scanners (lidars).

» Visual SLAM: use video sensors (cameras).

» main parts required:

1. Projective Geometry

2. Point Correspondences

3. Estimating Camera Positions (Localization)
4. Triangulation (Mapping)
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Computer Vision 1. Very Brief Introduction

Image Classification and Description
Describes without errors _ Somewhat related to the image

R e — 3
A skateboarder does a trick A dog is jumping to catch a
frisbee.

pe rid g .
motorcycle on a dirt road.

b

—_

A group of young people Two hockey players are fighting A little girl in a pink hat is

playing a game of frisbee. over the puck. blowing bubbles. A refrigerator filled with lots of

food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parked in
across a dry grass field. on a couch. side of the road. a parking lot.

[source: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html]
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Computer Vision 2. The Projective Plane
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2. The Projective Plane
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Computer Vision 2. The Projective Plane

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

» most two lines intersect in exactly one point.

» but some two lines do not intersect.
» parallel lines

Idea:
» add ideal points, one for each set of parallel lines / direction
» define these points as intersection of any two parallel lines

» now any two lines intersect in exactly one point
» either in a finite or in an ideal point
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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Points

Inhomogeneous coordinates:
x €R?
Homogeneous coordinates:
x €P? :=R3/ =
x=yi<=3IscR\{0}:sx=y, x,yecR?
Example:

4
8 represent the same point in P2
12

represent a different point in P?

AP NOE WODNR

[ x1\ /o N\
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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

ae R34, :{<2 ) | a1x1 + axxo + a3 = 0}

» a; # 0 or a # 0 (or both a1, ay # 0).

> sa = (say, sap,sa3)’ encodes the same line as a (any s € R, s # 0).

Homogeneous coordinates:

acP?: ¢, = {x € P2 | a'x = aixq + apxo + a3xz = 0}

> contains all finite points of &’ € k71(a): L2y 2 t(La)

» and the ideal point (a2, —a1,0)7.
» intersection of parallel lines (same ay, ay, different a3)
Note: k:R3 — P2 aws [a] := {a’ € R3 | &' = a}.
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Computer Vision 2. The Projective Plane

A point on a line

A point x lies on line a iff x"a = 0.
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Computer Vision 2. The Projective Plane

Intersection of two lines

32b3 — a3b2
Lines a and b intersect in a X b := —aibs + azb;
aiby — axby

Proof:
aT(a X b) — aijasbs — ajazby, — axai1 bz + araszb; + azaiby — azaxb; =0
bT(axb)=...=0

Example:
x=1:a=(-1,01)"
y=1:b=(0,-1,1)"
ax b=(1,1,1)"

Esp. for parallel lines: by = a1, by = ap, bz # as:

a2
ax b= —a1
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9 /47



Computer Vision 2. The Projective Plane

Line joining points

The line through x and y is x X y.
Proof: exactly the same as previous slide.

Example:
x=(-1,0,1)"7

y=(0,-1,1)"
xxy=(1,1,1)"
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Computer Vision 2. The Projective Plane

Line at infinity

All ideal points form a line:
I :=(0,0,1)7 line at infinity
Proof:

for any ideal point x = (x1,x2,0)": x
for any finite (real-valued) point x = (x1,x2,1): x"l,o =1 # 0.

Ly

(0. @)

Furthermore:
» This is the only line in P? not corresponding to an Euclidean line.

» Two parallel lines meet at the line at infinity.
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Computer Vision 2. The Projective Plane

A model for the projective plane A
A Xz
ideal
point /
_____ >
0 o -
X1

» points correspond to rays (lines through the origin)

» lines correspond to planes through the origin. [HZ04, p. 29]
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Computer Vision 2. The Projective Plane ~

| wv g
Conics A
» A conic section (or just conic) is a curve one gets as intersection of

a cone and a plane

» ellipsis, parabola, hyperbola
» Corresponds to a curve of degree 2:
Heterogeneous coordinates:

acRo: C,={x¢e€ R? | alx12 + anxyxo + a3x22 + agx1 + asxo + ag = 0}

-::.:..'__'i‘ff;?r

Ellipse
Kreis Hyperbeln

2lschnitt]

I—lf\mf\ﬂ'ﬂhﬂf\l 1c I‘I\I\Yf’lln"\"‘ﬂc"
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Computer Vision 2. The Projective Plane

A conic joining 5 points

» Let x!,...,x° € P2 be 5 points

> in general position (i.e., never more than 2 on the same line)

» Conic parameters a have to fulfil the following system of linear

equations:

[ xixd

xix?
xix
xixd

5.5
X1 X1

1.1
X1 X

2.2
%9
e
X1 X

5.5
X1 X5

1.1
X5 X5

2.2
39
2%
Xo Xy

5.5
X5 X5

1.1
X1X3

2.2
g
s
X1X3

5.5
X1X3

1.1
X5 X3

2.2
2%
2%
Xo X3

5 4
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X33
55
X3
X3%3

5.5
X3X3
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Computer Vision 2. The Projective Plane

Degenerate Conics

Conic C degenerate: C does not have full rank.

Example: two lines C := ab” + ba' (rank 2).

» contains lines a and b.

proof: for points x on line a: x"a = 0.
~ xalsoon C: x"TCx=xTab"x+ x"ha’ x = 0.

14 / 47
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Computer Vision 2. The Projective Plane

Conic tangent lines A

The tangent line to a conic C at a point x is Cx.

Proof:
x lies on Cx: x" Cx = 0.
If there is another common point y: y"Cy =0 and y' Cx = 0.
~+ x + ay is common for all «, i.e., the whole line.
~+ C is degenerate (or there is no such y).
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3. Projective Transformations
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Computer Vision 3. Projective Transformations

Projectivity A

A map h: P? — P? is called projectivity, if
1. it is invertible and

2. it preserves lines,
i.e., whenever x, y, z are on a line, so are h(x), h(y), h(z).

Equivalently, h(x) := Hx for a non-singular H € P3*3,

Proof:
Any map h(x) := Hx is a projectivity:
Let x be a point on line a: a’ x = 0.
Then point Hx is on line H=Ta: (H1a)THx = a’ H 'Hx = a’x = 0.

Any projectivity h is of type h(x) = Hx: more difficult to show.

Note: H—T := (H~1)T.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Projective Transformations

Transformation of Lines and Conics A
The image of a line a under projectivity H is the line H= " a:
H(l2) = Iy-7,

Proof:
Let x be a point on line a: a’' x = 0.
Then point Hx is on line H1a: (H=Ta)"Hx =a"H 'Hx =a"x = 0.

T

The image of a conic C under projectivity H is the conic H=T CH™!:
H(Cc) = Cy-1cpy-1

Proof:
Let x be a point on conic C: x" Cx = 0.
Then point Hx is on conic H-TCH™Y: xTHTH=-TCH 'H 1x =0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Projective Transformations

V
A Hierarchy of Transformations A

» The projective transformations form a group (projective linear
group:
PL, := GL,/ == {H € P**3 | H invertible}
» There are several subgroups:
» affine group: last row is (0,0,1)

» Euclidean group: additionally H;. 1.2 orthogonal
» oriented Euclidean group: additionally detH =1

» These subgroups can be described two ways:
» structurally (as above)
» by invariants: objects or sets of objects mapped to themselves

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Projective Transformations e
. 2
Isometries A
X1 ecosf —sinf t X1 Rt
xy) | = | esind cosf tr X0 | = ( o7 1 )x
1 0 0 1 1

» rotation matrix R: RTR=RR" = |

» translation vector t.

» orientation preserving if ¢ = +1 (equivalent to det R = +1)
(e € {+1,—-1})
Invariants:

» length, angle, area

» line at infinity /5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Projective Transformations

Similarity Transformations A
, o
x} B SC-OSH ssinf t; X1 (SRt
X5 = ssinf scosf to X =\ o7 1 )X
1 0 0 1 1

» isotropic scaling s.

Invariants:
> angle
» ratio of lengths, ratio of areas

» line at infinity /5
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Computer Vision 3. Projective Transformations K
: . N3
Affine Transformations A
X1 a1 a1z t X1 At
Xé = a1 azp b X2 = ( oT 1 )X
1 0 0 1 1

» A non-singular, decompose via SVD:

A=ROR-0) (g ) RO)

» non-isotropic scaling with axis ¢

rotation

deformation [H Z04, p. 40]
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Computer Vision 3. Projective Transformations

Projective Transformations A
/ 3 3 "
X2 = a1 azp b X = T x
/ v V3

» v moves the line at infinity /.

Invariants:

> ratio of ratios of lengths of parallel line segments (cross ratio)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Projective Transformations

Similary, Affine & Projective Transformations / Exampl(

a) similarity  b) affine c) projective
circles circles ellipsis conic
squares squares diamond quadrangle
parallel lines parallel parallel converging
orthogonal linnes | orthogonal non-orthogonal  non-orthogonal
[HZ04, p. 37]
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Computer Vision 3. Projective Transformations

Projective Transformations / Decomposition

A t [ sR t K 0 I 0
vl v /)L 07T 1 o7 1 vl w
A= sRK +tv’

» K upper triangular matrix with det K =1
» valid for vz # 0

» unique if s is chosen s > 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Projective Transformations

Summary of Projective Transformations

Group Matrix Distortion Invariant properties
Concurrency, collinearity, order of contact:

" hi1 hi2 his ﬂ Intersection (1 pt contact); tangency (2 pt con-
gré)j?ctlve [ hoy  hos  hos ] tact); inflections
0 ha1 hza  has (3 pt contact with line); tangent discontinuities
and cusps. crossratio (ratio of ratio of lengths).
a 4 ; Parallelism, ratio of areas, ratio of lengths on
Affine a” a” . Q collinear or parallel lines (e.g. midpoints), lin-
6 dof (2)1 82 e ear combinations of vectors (e.g. centroids).
D The line at infinity, ...
]

Ratio of lengths, angle. Thecircular points, I, J
(see section 2.7.3).

T sri1 Sriz g
Similarit
4 dof y [ STo1  ST92 ty ]

. rin T2ty
Etéc;l;dean [ ro1 Ton iy ] Q Length, area
0 0 1 ]

[HZ04, p. 44]
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Computer Vision 4. Recovery of Affine Properties from Images

Outline A

4. Recovery of Affine Properties from Images
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Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine and Metric Properties

Decomposition of general projective transformation:

(70 )=(5 1) (e ) (o )

1. undo proper projective transformation (affine rectification):

» then original and image differ only by an affine transformation
» ~~ measure affine properties of the original in the image
(= properties invariant under affine transformations)

» parallel lines, ratio of lengths on parallel lines

2. undo proper affine transformation (metric rectification):
» then original and image differ only by a similarity transformation
» ~~ measure metric properties of the original in the image
(= properties invariant under similarity transformations)
» angles, ratio of lengths

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. Recovery of Affine Properties from Images
: : N3
Recovery of Affine Properties A

Undo proper projective transformation:

( / 0 ) X1 X1
T : X2 —> X2
"4 V3
0 Vix1 + vox2
0 V1
— 1
lo =1 0 H(l‘;{/v?’):— Vo
1 3 3\ 1

» maps line at infinity to finite line (vi,v2,1)7
» to undo:
> locate image (v1, v, 1)7 of line at infinity
: : / 0
1 _
» undo by applying the inverse H™* = ( VT v 1w )

14 V3 0 1/V3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. Recovery of Affine Properties from Images

Syage
Recovery of Affine Properties / Example A

) HZ04, p. 50
Now we can measure area ratios ! | ]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. Recovery of Affine Properties from Images

SR
Recovery of Affine Properties / Algorithm A

1: procedure RECTIFY-AFFINE-TWO-PARALLELS(al, a2, bt, b? € P?)

2: st = al x a° > compute intersection of parallels at, a®

3: s?2 = bl x b? > compute intersection of parallels b, b2

4: loo 1= s x s? > compute image of line at infinity
1 0 0

5: H™1 .= 0 1 0 > compute inverse

_/oo,l//oo,3 — oo,2//oo,3 1//00,3
6: return H~1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 5. Angles in the Projective Plane

Outline A

5. Angles in the Projective Plane
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Computer Vision 5. Angles in the Projective Plane

Circular Points

A conic
ap  a/2 as/? ay 0 a4/2
C=| a/2 a3 a5/2 | = 0 ay as/2
as/2 as/2 ag ar/2 as/2  ag

is a circle if a1 = a3 and a» = 0.
- _ T . .
|deal points x = (x1,x2,0)" on a circle:
x"Cx=aix? +a;x5 =0

are exactly the circular points:

1 1
| = i, Ji= —i
0 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 5. Angles in the Projective Plane

Line Conics

C € Sym(P3%3) defines a point conic via

Cc={xeP?|x"Cx=0}

It also can be used to define a line conic / dual conic:
Ci:={acP?’|a’'Ca=0}

(where a denotes a line)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 5. Angles in the Projective Plane

Adjugate of a Matrix A

For a square matrix A € R"*",
A* € R™™ with Af; == (—1)"H det A_; _;
is called its adjugate A*.

It holds:
» for any A: A*A = AA* = (det A)l
» A* is continuous in A.
» if Ais invertible, the adjoint is the scaled inverse: A* = (det A)A™!
» if Ais not invertible, the adjoint nullifies A: A*A= AA* =0

» the adjugate is the transposed of the cofactor matrix.

Note: A_; _; denotes the matrix A with row j and column / removed.
The adjugate is also called adjoint.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 5. Angles in the Projective Plane

. NS
Dual Conic A
For any point conic C € Sym(IP3*3), the set of tangent lines

» forms a line conic,
» parametrized by the adjugate C*:

{a € P? | a tangent to C} = C%.

HZ04, p. 32]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
34 / 47



Computer Vision 5. Angles in the Projective Plane

Dual Conic to the Circular Points

Dual conic to the circular points (degenerate):

Cro="+J" =

o o
o = O
o O O

» contains exactly all lines through the circular points / or J.
> transforms as HC*H': H(C¢.) = Chr.pyr.

» fixed under projectivity H iff H is a similarity.

» 4 dof (general C has 5, minus 1 due to det C = 0)

>

Iso is the null vector of CZ.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 5. Angles in the Projective Plane

Angels in the Projective Plane
Angels are defined as:

aT b

. a,beP?
V(a7 CxLa) (b7 CLb)

cosf(a, b) :=

» for the canonical CZ,, conincides with the Euclidean definition:
alb
V/(aTa) (b7b)’

» stays invariant under projective transformation:

cosf(a, b) := a,bcR?

d=H"Ta, ¥=HTbh C./=HCHT
aTC 'y =a"H'HC HTH "Tb=a' CLb

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
36 / 47



Computer Vision 6. Recovery of Metric Properties from Images

Outline A

6. Recovery of Metric Properties from Images
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Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties

» assume there is no pure projective transformation
(i.e., affine rectification already done).

» need only to find pure affine transformation:

H, = ( O;g- (1) ) , with K upper triangular

» under H, we get C*' as

* * KKT O
Cr':= H,C HI = ( o7 o )

1. find symmetric matrix S 1= KK
2. find K via Cholesky decomposition of S

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 6. Recovery of Metric Properties from Images e

: : N3

Recovery of Metric Properties (2/2) d
» for two lines &', b’ that are orthogonal in the original:

0=2a"C:'b =al," Shy.
= 3/151,1b/1 + 3/151’2bé + 8/252,1b/1 -+ 8/252,21)/2
= a1 b1S11 4 (a1by + a5b1)S12 + a5 b5S520

AN AN AN AN T
= (a1 b1, a1by + a5 by, a2b2)(51,1, 51,2, 52,2)

we get 1 linear constraint in s := (51,1,51,2,52,2)7_. .

» for two pairs of lines that are orthogonal in the original we get
2 linear constraints for 3 variables

<a’1b’1 ay b, + a,bj a’2b§>

S
! g/ ! g/ ! g/ ! g/
ad; qd,+cd; cd,

where s = 0 has to be identified only up to a factor.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 6. Recovery of Metric Properties from Images _
Recovery of Metric Properties / Algorithm %
1: procedure
RECTIFY-METRIC-TWO-ORTHOGONALS(al, a2, bt, b? € P?)
. a= (43 33041 33)
| bib{ bibs + byby bybs
51 S 0
3: finds#0: As =0 >find C =] 2 s3 0
0O 0 O
4 K= choIesky(( 2 z )) > find H := ( OKT 2 )
1/Kiin —1/(Ki2Kz2) O
5: H-L.= 0 1/Ka2 0 > compute inverse
0 0 1

6: return H—1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties / Example

a) affine rectified image b) metric rectified image

Now we can measure angles and length ratios !
[HZ04, p. 57]
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7. Organizational Stuff
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Computer Vision 7. Organizational Stuff

Exercises and Tutorials

» There will be a weekly sheet with 4 exercises
handed out each Tuesday in the lecture.
1st sheet will be handed out Thu. 23.4. in the tutorial.

» Solutions to the exercises can be
submitted until next Tuesday noon
1st sheet is due Tue. 28.4.

» Exercises will be corrected.

» Tutorials each Thursday 2pm—4pm,
1st tutorial at Thur. 23.4.

» Successful participation in the tutorial gives up to 10% bonus points
for the exam.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 7. Organizational Stuff

v _-
Exam and Credit Points A

» There will be a written exam at end of term
(2h, 4 problems).

» The course gives 6 ECTS (242 SWS).

» The course can be used in

» IMIT MSc. / Informatik / Gebiet KI & ML
» Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
» as well as in both BSc programs.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
42 / 47



Computer Vision 7. Organizational Stuff e
Some Text Books A

» Simon J. D. Prince (2012):
Computer Vision: Models, Learning, and Inference,
Cambridge University Press.

» Richard Szeliski (2011):
Computer Vision, Algorithms and Applications,
Springer.

» David A. Forsyth, Jean Ponce (22012, 2007):
Computer Vision, A Modern Approach,
Prentice Hall.

» Richard Hartley, Andrew Zisserman (2004):
Multiple View Geometry in Computer Vision,
Cambridge University Press.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 7. Organizational Stuff

Sy
Some First Computer Vision Software A

» Open Computer Vision Library (OpenCV)
C+—+ library

has wrappers for Python & Octave
originally developed by Intel

v3.0 beta, 11/2014; http://opencv.org

vV v.v Y

Public data sets:

> ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 7. Organizational Stuff

‘B

Summary (1/3) A
» The projective plane P? is an extension of the Euclidean plane with

ideal points.

» Points and lines in P? are parametrized by homogenuous
coordinates.

» Each two parallels intersect in an ideal point,
all ideal points form the line at infinity /...

» Each circle contains two ideal points, the circular points,
all lines through the circular points form the dual conic to the
circular points CZ_.

» Conics are curves of order 2 (hyperbolas, parabolas, ellipsis),
parametrized by a symmetric matrix C containing all points x with

xTCx =0.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 7. Organizational Stuff BT
Summary (2/3) e

» Projectivities H are invertibles mappings of P2 onto P? that preserve
lines.

» Lines a transform via H~T a, conics C via H-TCH L.

» There exist several subgroups of the group of projectivities:

» Isometries rotate and translate figures.
> preserving lengths

» Similarities additionally (isotropic) scale figures.
» preserving ratio of lengths, angle

» Affine transforms additionally non-isotropic scale figures.
» preserving ratio of lengths on parallel lines, parallel lines

» Projectivities additionally move the line at infinity.

> preserving cross ratio

» Any projectivity can be decomposed into a chain of
an pure projectivie, a pure affine transform and a similarity.
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Summary (3/3) A |

» Images distorted by an projective transformation can be rectified
(i.e., undoes the projective transformation).

» Affine rectification

» undoes a proper projective transformation
» moves the line at infinity back to its canonical position.
» allows to measure affine properties:

» ratio of lengths on parallel lines, parallel lines

> requires, e.g., two pairs of parallel lines.

» Metric rectification

» undoes a proper affine transformation

» moves the dual conic to the circular points back to its canonical
position.

» allows to measure metric properties:

> angles, ratio of lengths

> requires, e.g., two pairs of orthogonal lines.
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Further Readings

» [HZ04, ch. 1 and 2].
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