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Computer Vision 1. Very Brief Introduction

Topics of the Lecture

1. Simultaneous Localization and Mapping from Video (Visual SLAM)

2. Image Classification and Description

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 30
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[source https://www.youtube.com/watch?v=bDOnn0-4Nq8]
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Computer Vision 1. Very Brief Introduction

Simultaneous Localization and Mapping from Video

I SLAM usually employs laser range scanners (lidars).

I Visual SLAM: use video sensors (cameras).

I main parts required:

1. Projective Geometry
2. Point Correspondences
3. Estimating Camera Positions (Localization)
4. Triangulation (Mapping)
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Computer Vision 1. Very Brief Introduction

Image Classification and Description

[source: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html]
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Computer Vision 2. The Projective Plane

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

I most two lines intersect in exactly one point.
I but some two lines do not intersect.

I parallel lines

Idea:

I add ideal points, one for each set of parallel lines / direction

I define these points as intersection of any two parallel lines
I now any two lines intersect in exactly one point

I either in a finite or in an ideal point
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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

x ∈R2

Homogeneous coordinates:

x ∈P2 := R3/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R3
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x ∈R2

Homogeneous coordinates:

x ∈P2 := R3/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R3

Example:



1
2
3


 ≡




4
8

12


 represent the same point in P2




1
2
4


 represent a different point in P2
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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Points
Inhomogeneous coordinates:

x ∈R2

Homogeneous coordinates:

x ∈P2 := R3/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R3

finite points:




x1

x2

1


 =: ι(

(
x1

x2

)
)

ideal points:




x1

x2

0



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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

a ∈ R3 :`a := {
(

x1

x2

)
| a1x1 + a2x2 + a3 = 0}

I a1 6= 0 or a2 6= 0 (or both a1, a2 6= 0).

I sa = (sa1, sa2, sa3)T encodes the same line as a (any s ∈ R, s 6= 0).

Homogeneous coordinates:

a ∈P2 : `a := {x ∈ P2 | aT x = a1x1 + a2x2 + a3x3 = 0}

I contains all finite points of a′ ∈ κ−1(a): `κ(a′) % ι(`a′)

I and the ideal point (a2,−a1, 0)T .
I intersection of parallel lines (same a1, a2, different a3)
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Note: κ : R3 → P2, a 7→ [a] := {a′ ∈ R3 | a′ ≡ a}.
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Note: κ : R3 → P2, a 7→ [a] := {a′ ∈ R3 | a′ ≡ a}.



Computer Vision 2. The Projective Plane

A point on a line

A point x lies on line a iff xTa = 0.
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Computer Vision 2. The Projective Plane

Intersection of two lines

Lines a and b intersect in a× b :=




a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1




Proof:

aT (a× b) = a1a2b3 − a1a3b2 − a2a1b3 + a2a3b1 + a3a1b2 − a3a2b1 = 0

bT (a× b) = . . . = 0
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Computer Vision 2. The Projective Plane

Intersection of two lines

Lines a and b intersect in a× b :=




a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1




Proof:

aT (a× b) = a1a2b3 − a1a3b2 − a2a1b3 + a2a3b1 + a3a1b2 − a3a2b1 = 0

bT (a× b) = . . . = 0

Example:

x = 1 :a = (−1, 0, 1)T

y = 1 :b = (0,−1, 1)T

a× b =(1, 1, 1)T
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Computer Vision 2. The Projective Plane

Intersection of two lines

Lines a and b intersect in a× b :=




a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1




Proof:

aT (a× b) = a1a2b3 − a1a3b2 − a2a1b3 + a2a3b1 + a3a1b2 − a3a2b1 = 0

bT (a× b) = . . . = 0

Esp. for parallel lines: b1 = a1, b2 = a2, b3 6= a3:

a× b ≡




a2

−a1

0



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Computer Vision 2. The Projective Plane

Line joining points

The line through x and y is x × y .

Proof: exactly the same as previous slide.

Example:

x =(−1, 0, 1)T

y =(0,−1, 1)T

x × y =(1, 1, 1)T
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Computer Vision 2. The Projective Plane

Line at infinity

All ideal points form a line:

l∞ := (0, 0, 1)T line at infinity

Proof:
for any ideal point x = (x1, x2, 0)T : xT l∞ = 0.
for any finite (real-valued) point x = (x1, x2, 1): xT l∞ = 1 6= 0.

Furthermore:

I This is the only line in P2 not corresponding to an Euclidean line.

I Two parallel lines meet at the line at infinity.
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Computer Vision 2. The Projective Plane

A model for the projective plane2.2 The 2D projective plane 29

π

l

x
O

x 1

x

x 3

2

ideal
point

Fig. 2.1. A model of the projective plane. Points and lines of IP2 are represented by rays and planes,
respectively, through the origin in IR3. Lines lying in the x1x2-plane represent ideal points, and the
x1x2-plane represents l∞.

points lie on a single line. This is not true in the standard Euclidean geometry of IR2,
in which parallel lines form a special case.

The study of the geometry of IP2 is known as projective geometry. In a coordinate-
free purely geometric study of projective geometry, one does not make any distinction
between points at infinity (ideal points) and ordinary points. It will, however, serve
our purposes in this book sometimes to distinguish between ideal points and non-ideal
points. Thus, the line at infinity will at times be considered as a special line in projective
space.

A model for the projective plane. A fruitful way of thinking of IP2 is as a set of
rays in IR3. The set of all vectors k(x1, x2, x3)

T as k varies forms a ray through the
origin. Such a ray may be thought of as representing a single point in IP2. In this
model, the lines in IP2 are planes passing through the origin. One verifies that two non-
identical rays lie on exactly one plane, and any two planes intersect in one ray. This
is the analogue of two distinct points uniquely defining a line, and two lines always
intersecting in a point.

Points and lines may be obtained by intersecting this set of rays and planes by the
plane x3 = 1. As illustrated in figure 2.1 the rays representing ideal points and the
plane representing l∞ are parallel to the plane x3 = 1.

Duality. The reader has probably noticed how the role of points and lines may be
interchanged in statements concerning the properties of lines and points. In particular,
the basic incidence equation lTx = 0 for line and point is symmetric, since lTx = 0
implies xTl = 0, in which the positions of line and point are swapped. Similarly,
result 2.2 and result 2.4 giving the intersection of two lines and the line through two
points are essentially the same, with the roles of points and lines swapped. One may
enunciate a general principle, the duality principle as follows:

I points correspond to rays (lines through the origin)

I lines correspond to planes through the origin.
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Computer Vision 2. The Projective Plane

Conics

I A conic section (or just conic) is a curve one gets as intersection of
a cone and a plane

I hyperbola, parabola, ellipsis

I Corresponds to a curve of degree 2:
Heterogeneous coordinates:

a ∈ R6 : Ca := {x ∈ R2 | a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a6 = 0}

Homogeneous coordinates:
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Computer Vision 2. The Projective Plane

Conics
I A conic section (or just conic) is a curve one gets as intersection of

a cone and a plane
I hyperbola, parabola, ellipsis

I Corresponds to a curve of degree 2:
Heterogeneous coordinates:

a ∈ R6 : Ca := {x ∈ R2 | a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a6 = 0}

Homogeneous coordinates:

a ∈ P5 : Ca := {x ∈ P2 | a1x
2
1 + a2x1x2 + a3x

2
2

+ a4x1x3 + a5x2x3 + a6x
2
3 = 0}

= {x ∈ P2 | xTCx = 0},C :=




a1 a2/2 a4/2
a2/2 a3 a5/2
a4/2 a5/2 a6



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Conics

I A conic section (or just conic) is a curve one gets as intersection of
a cone and a plane

I hyperbola, parabola, ellipsis

I Corresponds to a curve of degree 2:
Heterogeneous coordinates:

a ∈ R6 : Ca := {x ∈ R2 | a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a6 = 0}

Homogeneous coordinates:

C ∈ Sym(P3×3) : CC := {x ∈ P2 | xTCx = 0}
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Computer Vision 2. The Projective Plane

A conic joining 5 points

I Let x1, . . . , x5 ∈ P2 be 5 points
I in general position (i.e., never more than 2 on the same line)

I Conic parameters a have to fulfil the following system of linear
equations:




x1
1x

1
1 x1

1x
1
2 x1

2x
1
2 x1

1x
1
3 x1

2x
1
3 x1

3x
1
3

x2
1x

2
1 x2

1x
2
2 x2

2x
2
2 x2

1x
2
3 x2

2x
2
3 x2

3x
2
3

x3
1x

3
1 x3

1x
3
2 x3

2x
3
2 x3

1x
3
3 x3

2x
3
3 x3

3x
3
3

x4
1x

4
1 x4

1x
4
2 x4

2x
4
2 x4

1x
4
3 x4

2x
4
3 x4

3x
4
3

x5
1x

5
1 x5

1x
5
2 x5

2x
5
2 x5

1x
5
3 x5

2x
4
3 x5

3x
5
3




a = 0
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Computer Vision 2. The Projective Plane

Degenerate Conics

Conic C degenerate: C does not have full rank.

Example: two lines C := abT + baT (rank 2).

I contains lines a and b.
proof: for points x on line a: xTa = 0.
 x also on C : xTCx = xTabT x + xTbaT x = 0.
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Computer Vision 2. The Projective Plane

Conic tangent lines

The tangent line to a conic C at a point x is Cx .

Proof:
x lies on Cx : xTCx = 0.
If there is another common point y : yTCy = 0 and yTCx = 0.
 x + αy is common for all α, i.e., the whole line.
 C is degenerate (or there is no such y).
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Computer Vision 3. Projective Transformations

Outline

1. Very Brief Introduction

2. The Projective Plane
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Computer Vision 3. Projective Transformations

Projectivity

A map h : P2 → P2 is called projectivity, if

1. it is invertible and

2. it preserves lines,
i.e., whenever x , y , z are on a line, so are h(x), h(y), h(z).

Equivalently, h(x) := Hx for a non-singular H ∈ P3×3.

Proof:
Any map h(x) := Hx is a projectivity:

Let x be a point on line a: aT x = 0.
Then point Hx is on line H−1a: (H−1a)THx = aTH−1Hx = aT x = 0.

Any projectivity h is of type h(x) = Hx : more difficult to show.
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Computer Vision 3. Projective Transformations

Transformation of Lines and Conics

The image of a line a under projectivity H is the line H−1a:

H(la) = lH−1a

Proof:
Let x be a point on line a: aT x = 0.
Then point Hx is on line H−1a: (H−1a)THx = aTH−1Hx = aT x = 0.

The image of a conic C under projectivity H is the conic H−TCH−1:

H(CC ) = CH−TCH−1

Proof:
Let x be a point on conic C : xTCx = 0.
Then point Hx is on conic H−TCH−1: xTHTH−TCH−1H−1x = 0
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Computer Vision 3. Projective Transformations

A Hierarchy of Transformations

I The projective transformations form a group (projective linear
group:

PLn := GLn/ ≡= {H ∈ P3×3 | H invertible}

I There are several subgroups:
I affine group: last row is (0, 0, 1)
I Euclidean group: additionally H1:2,1:2 orthogonal
I oriented Euclidean group: additionally detH = 1

I These subgroups can be described two ways:
I structurally (as above)
I by invariants: objects or sets of objects mapped to themselves
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Computer Vision 3. Projective Transformations

Isometries




x ′1
x ′2
1


 =




ε cos θ − sin θ t1

ε sin θ cos θ t2

0 0 1






x1

x2

1


 =

(
R t
0T 1

)
x

I rotation matrix R: RTR = RRT = I

I translation vector t.

I orientation preserving if ε = +1 (equivalent to detR = +1)
(ε ∈ {+1,−1})

Invariants:

I length, angle, area

I line at infinity l∞
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Computer Vision 3. Projective Transformations

Similarity Transformations




x ′1
x ′2
1


 =




s cos θ −s sin θ t1

s sin θ s cos θ t2

0 0 1






x1

x2

1


 =

(
sR t
0T 1

)
x

I isotropic scaling s.

Invariants:

I angle

I ratio of lengths, ratio of areas

I line at infinity l∞
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Similarity Transformations
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Computer Vision 3. Projective Transformations

Affine Transformations




x ′1
x ′2
1


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

0 0 1






x1

x2

1


 =

(
A t

0T 1

)
x

I A non-singular

, decompose via SVD:

A = R(θ)R(−φ)

(
λ1 0
0 λ2

)
R(φ)

I non-isotropic scaling with axis φ
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Computer Vision 3. Projective Transformations

Affine Transformations
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I non-isotropic scaling with axis φ40 2 Projective Geometry and Transformations of 2D

φ

deformationrotation

θ

a b

Fig. 2.7. Distortions arising from a planar affine transformation. (a) Rotation by R(θ). (b) A defor-
mation R(−φ) D R(φ). Note, the scaling directions in the deformation are orthogonal.

or in block form

x′ = HAx =

[
A t
0T 1

]
x (2.11)

with A a 2 × 2 non-singular matrix. A planar affine transformation has six degrees of
freedom corresponding to the six matrix elements. The transformation can be com-
puted from three point correspondences.

A helpful way to understand the geometric effects of the linear component A of
an affine transformation is as the composition of two fundamental transformations,
namely rotations and non-isotropic scalings. The affine matrix A can always be decom-
posed as

A = R(θ) R(−φ) D R(φ) (2.12)

where R(θ) and R(φ) are rotations by θ and φ respectively, and D is a diagonal matrix:

D =

[
λ1 0
0 λ2

]
.

This decomposition follows directly from the SVD (section A4.4(p585)): writing A =
UDVT = (UVT)(VDVT) = R(θ) (R(−φ) D R(φ)), since U and V are orthogonal matrices.

The affine matrix A is hence seen to be the concatenation of a rotation (by φ); a
scaling by λ1 and λ2 respectively in the (rotated) x and y directions; a rotation back
(by −φ); and finally another rotation (by θ). The only “new” geometry, compared to
a similarity, is the non-isotropic scaling. This accounts for the two extra degrees of
freedom possessed by an affinity over a similarity. They are the angle φ specifying the
scaling direction, and the ratio of the scaling parameters λ1 : λ2. The essence of an
affinity is this scaling in orthogonal directions, oriented at a particular angle. Schematic
examples are given in figure 2.7.
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Computer Vision 3. Projective Transformations

Affine Transformations




x ′1
x ′2
1


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

0 0 1






x1

x2

1


 =

(
A t

0T 1

)
x

I A non-singular, decompose via SVD:

A = R(θ)R(−φ)

(
λ1 0
0 λ2

)
R(φ)

I non-isotropic scaling with axis φ

Invariants:
I parallel lines
I ratio of lengths of parallel line segments
I ratio of areas
I line at infinity l∞
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Computer Vision 3. Projective Transformations

Projective Transformations




x ′1
x ′2
x ′3


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

v1 v2 v3






x1

x2

x3


 =

(
A t
vT 1

)
x

I v moves the line at infinity l∞

Invariants:

I ratio of ratios of lengths of parallel line segments (cross ratio)
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Computer Vision 3. Projective Transformations

Projective Transformations / Decomposition

(
A t
vT v3

)
=

(
sR t
0T 1

)(
K 0
0T 1

)(
I 0
vT v3

)

A = sRK + tvT

I K upper triangular matrix with detK = 1

I valid for v3 6= 0

I unique if s is chosen s > 0
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Computer Vision 3. Projective Transformations

Summary of Projective Transformations
44 2 Projective Geometry and Transformations of 2D

Group Matrix Distortion Invariant properties

Projective
8 dof

[
h11 h12 h13

h21 h22 h23

h31 h32 h33

] Concurrency, collinearity, order of contact:
intersection (1 pt contact); tangency (2 pt con-
tact); inflections
(3 pt contact with line); tangent discontinuities
and cusps. cross ratio (ratio of ratio of lengths).

Affine
6 dof

[
a11 a12 tx
a21 a22 ty
0 0 1

] Parallelism, ratio of areas, ratio of lengths on
collinear or parallel lines (e.g. midpoints), lin-
ear combinations of vectors (e.g. centroids).
The line at infinity, l∞.

Similarity
4 dof

[
sr11 sr12 tx
sr21 sr22 ty
0 0 1

]
Ratio of lengths, angle. The circular points, I,J
(see section 2.7.3).

Euclidean
3 dof

[
r11 r12 tx
r21 r22 ty
0 0 1

]
Length, area

Table 2.1. Geometric properties invariant to commonly occurring planar transformations. The
matrix A = [aij ] is an invertible 2× 2 matrix, R = [rij ] is a 2D rotation matrix, and (tx, ty) a 2D trans-
lation. The distortion column shows typical effects of the transformations on a square. Transformations
higher in the table can produce all the actions of the ones below. These range from Euclidean, where
only translations and rotations occur, to projective where the square can be transformed to any arbitrary
quadrilateral (provided no three points are collinear).

For example, a configuration of four points in general position has 8 degrees of freedom
(2 for each point), and so 4 similarity, 2 affinity and zero projective invariants since
these transformations have respectively 4, 6 and 8 degrees of freedom.

Table 2.1 summarizes the 2D transformation groups and their invariant properties.
Transformations lower in the table are specializations of those above. A transformation
lower in the table inherits the invariants of those above.

2.5 The projective geometry of 1D

The development of the projective geometry of a line, IP1, proceeds in much the same
way as that of the plane. A point x on the line is represented by homogeneous coordi-
nates (x1, x2)

T, and a point for which x2 = 0 is an ideal point of the line. We will use
the notation x̄ to represent the 2-vector (x1, x2)

T. A projective transformation of a line
is represented by a 2× 2 homogeneous matrix,

x̄′ = H2×2x̄

and has 3 degrees of freedom corresponding to the four elements of the matrix less one
for overall scaling. A projective transformation of a line may be determined from three
corresponding points.
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Computer Vision 5. Organizational Stuff

Exercises and Tutorials

I There will be a weekly sheet with 4 exercises
handed out each Tuesday in the lecture.
1st sheet will be handed out Thu. 23.4. in the tutorial.

I Solutions to the exercises can be
submitted until next Tuesday noon
1st sheet is due Tue. 28.4.

I Exercises will be corrected.

I Tutorials each Thursday 2pm–4pm,
1st tutorial at Thur. 23.4.

I Successful participation in the tutorial gives up to 10% bonus points
for the exam.
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Computer Vision 5. Organizational Stuff

Exam and Credit Points

I There will be a written exam at end of term
(2h, 4 problems).

I The course gives 6 ECTS (2+2 SWS).

I The course can be used in
I IMIT MSc. / Informatik / Gebiet KI & ML
I Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
I as well as in both BSc programs.
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Computer Vision 5. Organizational Stuff

Some Text Books

I Simon J. D. Prince (2012):
Computer Vision: Models, Learning, and Inference,
Cambridge University Press.

I Richard Szeliski (2011):
Computer Vision, Algorithms and Applications,
Springer.

I David A. Forsyth, Jean Ponce (22012, 2007):
Computer Vision, A Modern Approach,
Prentice Hall.

I Richard Hartley, Andrew Zisserman (2004):
Multiple View Geometry in Computer Vision,
Cambridge University Press.
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Computer Vision 5. Organizational Stuff

Some First Computer Vision Software

I Open Computer Vision Library (OpenCV)
I C++ library
I has wrappers for Python & Octave
I originally developed by Intel
I v3.0 beta, 11/2014; http://opencv.org

Public data sets:

I ...
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Computer Vision

Further Readings

I [HZ04, ch. 1 and 2].
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