

Computer Vision 1. Projective Geometry in 2D

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

《日》《母》《王》《王》 祖曰 今への

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine and Metric Properties from Images
- 5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

Outline

1. Very Brief Introduction

- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine and Metric Properties from Images
- 5. Organizational Stuff

・ロト・四ト・王ト・王ト 別に ろくの

Computer Vision 1. Very Brief Introduction

Topics of the Lecture

- 1. Simultaneous Localization and Mapping from Video (Visual SLAM)
- 2. Image Classification and Description

- 《日》 《四》 《日》 《日》 《日》 《四》

Simultaneous Localization and Mapping

[SOURCE https://www.youtube.com/watch?v=bDOnn0-4Nq8]

もうてい 正則 ふかくぶやふむやるり

Simultaneous Localization and Mapping from Video

- ► SLAM usually employs laser range scanners (lidars).
- ► Visual SLAM: use video sensors (cameras).
- ▶ main parts required:
 - 1. Projective Geometry
 - 2. Point Correspondences
 - 3. Estimating Camera Positions (Localization)
 - 4. Triangulation (Mapping)

うせん 正則 ふかく キャット 空マ くう

Image Classification and Description

Describes without errors

A person riding a motorcycle on a dirt road.

Describes with minor errors

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A vellow school bus parked in a parking lot.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

[source: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent-html]

A red motorcycle parked on the side of the road.

Unrelated to the image

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

= 200

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine and Metric Properties from Images
- 5. Organizational Stuff

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
 - ► parallel lines

シック 単同 (声) (中) (1000 m) (

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
 - ► parallel lines

Idea:

- ► add ideal points, one for each set of parallel lines / direction
- ► define these points as intersection of any two parallel lines
- now any two lines intersect in exactly one point
 - either in a finite or in an ideal point

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^2$$

Homogeneous coordinates:

$$\begin{array}{l} x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv \\ x \equiv y : \Longleftrightarrow \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3 \end{array}$$

《日》《聞》《臣》《臣》 副目 今今令

Homogeneous Coordinates: Points Inhomogeneous coordinates:

$$x \in \mathbb{R}^2$$

Homogeneous coordinates:

$$\begin{aligned} x \in \mathbb{P}^2 &:= \mathbb{R}^3 / \equiv \\ x \equiv y :\iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3 \end{aligned}$$

Example:

$$\begin{pmatrix} 1\\2\\3 \end{pmatrix} \equiv \begin{pmatrix} 4\\8\\12 \end{pmatrix}$$
 represent the same point in \mathbb{P}^2
$$\begin{pmatrix} 1\\2\\4 \end{pmatrix}$$
 represent a different point in \mathbb{P}^2

Homogeneous Coordinates: Points Inhomogeneous coordinates:

$$x \in \mathbb{R}^2$$

Homogeneous coordinates:

$$\begin{array}{l} x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv \\ x \equiv y : \Longleftrightarrow \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3 \end{array}$$

١

finite points:
$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} =: \iota(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix})$$

ideal points: $\begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$

1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

$$a \in \mathbb{R}^3 : \ell_a := \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \mid a_1 x_1 + a_2 x_2 + a_3 = 0 \right\}$$

• $a_1 \neq 0$ or $a_2 \neq 0$ (or both $a_1, a_2 \neq 0$).

▶ $sa = (sa_1, sa_2, sa_3)^T$ encodes the same line as a (any $s \in \mathbb{R}, s \neq 0$).

Note:
$$\kappa : \mathbb{R}^3 \to \mathbb{P}^2, a \mapsto [a] := \{a' \in \mathbb{R}^3 \mid a' \equiv a\}.$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

$$a \in \mathbb{R}^3 : \ell_a := \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \mid a_1 x_1 + a_2 x_2 + a_3 = 0 \right\}$$

•
$$a_1 \neq 0$$
 or $a_2 \neq 0$ (or both $a_1, a_2 \neq 0$).

▶ $sa = (sa_1, sa_2, sa_3)^T$ encodes the same line as a (any $s \in \mathbb{R}, s \neq 0$).

Homogeneous coordinates:

$$a \in \mathbb{P}^2$$
: $\ell_a := \{x \in \mathbb{P}^2 \mid a^T x = a_1 x_1 + a_2 x_2 + a_3 x_3 = 0\}$

- ► contains all finite points of $a' \in \kappa^{-1}(a)$: $\ell_{\kappa(a')} \stackrel{\supseteq}{\neq} \iota(\ell_{a'})$
- and the ideal point $(a_2, -a_1, 0)^T$.

• intersection of parallel lines (same a_1, a_2 , different a_3)

Note: $\kappa : \mathbb{R}^3 \to \mathbb{P}^2, a \mapsto [a] := \{a' \in \mathbb{R}^3 \mid a' \equiv a\}.$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

A point on a line

A point x lies on line a iff $x^T a = 0$.

シック 비밀 《피》《曰》《曰》

Intersection of two lines

Lines a and b intersect in
$$a \times b := \begin{pmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Proof:

$$a^{T}(a \times b) = a_{1}a_{2}b_{3} - a_{1}a_{3}b_{2} - a_{2}a_{1}b_{3} + a_{2}a_{3}b_{1} + a_{3}a_{1}b_{2} - a_{3}a_{2}b_{1} = 0$$

 $b^{T}(a \times b) = \ldots = 0$

シック 単則 《川々 《川々 ▲ ● ◆ ●

Intersection of two lines

Lines a and b intersect in
$$a \times b := \begin{pmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Proof:

$$a^{T}(a \times b) = a_{1}a_{2}b_{3} - a_{1}a_{3}b_{2} - a_{2}a_{1}b_{3} + a_{2}a_{3}b_{1} + a_{3}a_{1}b_{2} - a_{3}a_{2}b_{1} = 0$$

 $b^{T}(a \times b) = \ldots = 0$

Example:

$$x = 1 : a = (-1, 0, 1)^{T}$$

y = 1 : b = (0, -1, 1)^{T}
a × b = (1, 1, 1)^{T}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 30

(日) (日) (日) (日) (日) (日) (日)

Intersection of two lines

Lines a and b intersect in
$$a \times b := \begin{pmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

$$a^{T}(a \times b) = a_{1}a_{2}b_{3} - a_{1}a_{3}b_{2} - a_{2}a_{1}b_{3} + a_{2}a_{3}b_{1} + a_{3}a_{1}b_{2} - a_{3}a_{2}b_{1} = 0$$

 $b^{T}(a \times b) = \ldots = 0$

1

`

Esp. for parallel lines: $b_1 = a_1, b_2 = a_2, b_3 \neq a_3$:

$$a \times b \equiv \left(\begin{array}{c} a_2 \\ -a_1 \\ 0 \end{array}\right)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト < 団ト < ヨト < ヨト < ロト

Line joining points

The line through x and y is $x \times y$.

Proof: exactly the same as previous slide.

◇▷▷ 비로 《표》《표》 《팀》 《□》

Line joining points

The line through x and y is $x \times y$.

Proof: exactly the same as previous slide.

Example:

$$\begin{aligned} x = (-1, 0, 1)^T \\ y = (0, -1, 1)^T \\ x \times y = (1, 1, 1)^T \end{aligned}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

>

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Line at infinity

All ideal points form a line:

 $I_{\infty} := (0,0,1)^T$ line at infinity

Proof:

for any ideal point
$$x = (x_1, x_2, 0)^T$$
: $x^T I_{\infty} = 0$.
for any finite (real-valued) point $x = (x_1, x_2, 1)$: $x^T I_{\infty} = 1 \neq 0$.

シック 単則 《川々 《川々 ▲山々 ▲日々

Line at infinity

Universiter Stildesheim

All ideal points form a line:

 $I_{\infty} := (0, 0, 1)^T$ line at infinity

Proof:

for any ideal point
$$x = (x_1, x_2, 0)^T$$
: $x^T I_{\infty} = 0$.
for any finite (real-valued) point $x = (x_1, x_2, 1)$: $x^T I_{\infty} = 1 \neq 0$.

Furthermore:

- This is the only line in \mathbb{P}^2 not corresponding to an Euclidean line.
- ► Two parallel lines meet at the line at infinity.

シック 비로 《王》《王》《王》 《日》

A model for the projective plane

- ▶ points correspond to rays (lines through the origin)
- lines correspond to planes through the origin.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

[HZ04, p. 29]

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - ► hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6 : \mathbf{C}_a := \{x \in \mathbb{R}^2 \mid a_1x_1^2 + a_2x_1x_2 + a_3x_2^2 + a_4x_1 + a_5x_2 + a_6 = 0\}$$

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6$$
 : $\mathbf{C}_a := \{x \in \mathbb{R}^2 \mid a_1x_1^2 + a_2x_1x_2 + a_3x_2^2 + a_4x_1 + a_5x_2 + a_6 = 0\}$

Homogeneous coordinates:

$$\begin{aligned} \mathbf{a} \in \mathbb{P}^5 : \mathbf{C}_{\mathbf{a}} &:= \{ x \in \mathbb{P}^2 \mid \mathbf{a}_1 x_1^2 + \mathbf{a}_2 x_1 x_2 + \mathbf{a}_3 x_2^2 \\ &+ \mathbf{a}_4 x_1 x_3 + \mathbf{a}_5 x_2 x_3 + \mathbf{a}_6 x_3^2 = \mathbf{0} \} \end{aligned}$$

- (日本) - (四本) - (日本) - (11)

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6 : \mathbf{C}_a := \{x \in \mathbb{R}^2 \mid a_1x_1^2 + a_2x_1x_2 + a_3x_2^2 + a_4x_1 + a_5x_2 + a_6 = 0\}$$

Homogeneous coordinates:

$$a \in \mathbb{P}^{5} : \mathbf{C}_{a} := \{ x \in \mathbb{P}^{2} \mid a_{1}x_{1}^{2} + a_{2}x_{1}x_{2} + a_{3}x_{2}^{2} + a_{4}x_{1}x_{3} + a_{5}x_{2}x_{3} + a_{6}x_{3}^{2} = 0 \}$$
$$= \{ x \in \mathbb{P}^{2} \mid x^{T}Cx = 0 \}, C := \begin{pmatrix} a_{1} & a_{2}/2 & a_{4}/2 \\ a_{2}/2 & a_{3} & a_{5}/2 \\ a_{4}/2 & a_{5}/2 & a_{6} \end{pmatrix}$$

・ 日 > ・ 4 0 = ・ 4 0 = ・ 4 0 = ・ 4 0 = ・ 4 0 = ・ 4 0 = \cdot 0

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6: \mathbf{C}_a := \{x \in \mathbb{R}^2 \mid a_1x_1^2 + a_2x_1x_2 + a_3x_2^2 + a_4x_1 + a_5x_2 + a_6 = 0\}$$

Homogeneous coordinates:

$$C \in \operatorname{Sym}(\mathbb{P}^{3 \times 3}) : \mathbf{C}_C := \{ x \in \mathbb{P}^2 \mid x^T C x = 0 \}$$

もうてい 正則 ふかく ふやく (型を) とう

A conic joining 5 points

- Let $x^1, \ldots, x^5 \in \mathbb{P}^2$ be 5 points
 - ▶ in general position (i.e., never more than 2 on the same line)
- Conic parameters a have to fulfil the following system of linear equations:

$$\begin{pmatrix} x_1^1 x_1^1 & x_1^1 x_2^1 & x_2^1 x_2^1 & x_1^1 x_3^1 & x_2^1 x_3^1 & x_3^1 x_3^1 \\ x_1^2 x_1^2 & x_1^2 x_2^2 & x_2^2 x_2^2 & x_1^2 x_3^2 & x_2^2 x_3^2 & x_3^2 x_3^2 \\ x_1^3 x_1^3 & x_1^3 x_2^3 & x_2^3 x_3^2 & x_1^3 x_3^3 & x_2^3 x_3^3 & x_3^3 x_3^3 \\ x_1^4 x_1^4 & x_1^4 x_2^4 & x_2^4 x_2^4 & x_1^4 x_3^4 & x_2^4 x_3^4 & x_3^4 x_3^4 \\ x_1^5 x_1^5 & x_1^5 x_2^5 & x_2^5 x_2^5 & x_1^5 x_3^5 & x_2^5 x_3^4 & x_3^5 x_3^5 \end{pmatrix} a = 0$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

Degenerate Conics

Conic C degenerate: C does not have full rank.

Example: two lines $C := ab^T + ba^T$ (rank 2).

► contains lines *a* and *b*. proof: for points *x* on line *a*: $x^T a = 0$. $\rightsquigarrow x$ also on *C*: $x^T C x = x^T a b^T x + x^T b a^T x = 0$.

Conic tangent lines

The tangent line to a conic C at a point x is Cx.

Proof:

x lies on Cx: $x^T Cx = 0$. If there is another common point y: $y^T Cy = 0$ and $y^T Cx = 0$. $\rightsquigarrow x + \alpha y$ is common for all α , i.e., the whole line. $\rightsquigarrow C$ is degenerate (or there is no such y).

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine and Metric Properties from Images
- 5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Projectivity

A map $h: \mathbb{P}^2 \to \mathbb{P}^2$ is called **projectivity**, if

- 1. it is invertible and
- 2. it preserves lines,

i.e., whenever x, y, z are on a line, so are h(x), h(y), h(z).

Equivalently, h(x) := Hx for a non-singular $H \in \mathbb{P}^{3 \times 3}$.

Projectivity

A map $h: \mathbb{P}^2 \to \mathbb{P}^2$ is called **projectivity**, if

- 1. it is invertible and
- 2. it preserves lines,

i.e., whenever x, y, z are on a line, so are h(x), h(y), h(z). Equivalently, h(x) := Hx for a non-singular $H \in \mathbb{P}^{3 \times 3}$.

Proof: Any map h(x) := Hx is a projectivity: Let x be a point on line a: $a^T x = 0$. Then point Hx is on line $H^{-1}a$: $(H^{-1}a)^T Hx = a^T H^{-1} Hx = a^T x = 0$.

Any projectivity *h* is of type h(x) = Hx: more difficult to show.

Transformation of Lines and Conics

The image of a line *a* under projectivity *H* is the line $H^{-1}a$:

$$H(I_a) = I_{H^{-1}a}$$

Proof:

Let x be a point on line a: $a^T x = 0$. Then point Hx is on line $H^{-1}a$: $(H^{-1}a)^T Hx = a^T H^{-1} Hx = a^T x = 0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Transformation of Lines and Conics

The image of a line *a* under projectivity *H* is the line $H^{-1}a$:

$$H(I_a) = I_{H^{-1}a}$$

Proof:

Let x be a point on line a: $a^T x = 0$. Then point Hx is on line $H^{-1}a$: $(H^{-1}a)^T Hx = a^T H^{-1} Hx = a^T x = 0$.

The image of a conic C under projectivity H is the conic $H^{-T}CH^{-1}$:

$$H(\mathbf{C}_C) = \mathbf{C}_{H^{-T}CH^{-1}}$$

Proof:

Let x be a point on conic C: $x^T C x = 0$. Then point Hx is on conic $H^{-T} C H^{-1}$: $x^T H^T H^{-T} C H^{-1} H^{-1} x = 0$

Computer Vision 3. Projective Transformations

A Hierarchy of Transformations

 $\mathsf{PL}_n := \mathsf{GL}_n / \equiv = \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

A Hierarchy of Transformations

The projective transformations form a group (projective linear group:

 $\mathsf{PL}_n := \mathsf{GL}_n / \equiv = \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \}$

- ► There are several subgroups:
 - ▶ affine group: last row is (0,0,1)
 - ► Euclidean group: additionally H_{1:2,1:2} orthogonal
 - oriented Euclidean group: additionally det H = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

A Hierarchy of Transformations

The projective transformations form a group (projective linear group:

 $\mathsf{PL}_n := \mathsf{GL}_n / \equiv = \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \}$

- ► There are several subgroups:
 - ▶ affine group: last row is (0,0,1)
 - ► Euclidean group: additionally *H*_{1:2,1:2} orthogonal
 - oriented Euclidean group: additionally det H = 1
- These subgroups can be described two ways:
 - structurally (as above)
 - ► by invariants: objects or sets of objects mapped to themselves

・日本・四本・日本・日本・日本・

Isometries

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} \epsilon \cos \theta & -\sin \theta & t_1 \\ \epsilon \sin \theta & \cos \theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0^T & 1 \end{pmatrix} x$$

- rotation matrix R: $R^T R = RR^T = I$
- **translation vector** t.
- orientation preserving if $\epsilon = +1$ (equivalent to det R = +1) ($\epsilon \in \{+1, -1\}$)

Isometries

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} \epsilon \cos \theta & -\sin \theta & t_1 \\ \epsilon \sin \theta & \cos \theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0^T & 1 \end{pmatrix} x$$

- rotation matrix R: $R^T R = RR^T = I$
- **translation vector** t.
- orientation preserving if $\epsilon = +1$ (equivalent to det R = +1) ($\epsilon \in \{+1, -1\}$)

Invariants:

- ► length, angle, area
- \blacktriangleright line at infinity ${\it I}_{\infty}$

・ロト・西ト・ヨト・ヨト 逆言 ろくの

Similarity Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} s\cos\theta & -s\sin\theta & t_1 \\ s\sin\theta & s\cos\theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix} x$$

► isotropic scaling s.

Similarity Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} s\cos\theta & -s\sin\theta & t_1 \\ s\sin\theta & s\cos\theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix} x$$

► isotropic scaling s.

Invariants:

- ► angle
- ► ratio of lengths, ratio of areas
- \blacktriangleright line at infinity ${\it I}_\infty$

もつて、「四川」(四下・《四下・《日下

Affine Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} A & t \\ 0^T & 1 \end{pmatrix} x$$

► A non-singular

シック 비로 《로》《로》《唱》《日》

Affine Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} A & t \\ 0^T & 1 \end{pmatrix} \times$$

► A non-singular, decompose via SVD:

$$A = R(heta)R(-\phi) \left(egin{array}{cc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}
ight)R(\phi)$$

• non-isotropic scaling with axis ϕ

Affine Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} A & t \\ 0^T & 1 \end{pmatrix} x$$

► A non-singular, decompose via SVD:

$$A = R(\theta)R(-\phi) \left(egin{array}{cc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}
ight) R(\phi)$$

• non-isotropic scaling with axis ϕ

Invariants:

- ► parallel lines
- ratio of lengths of parallel line segments
- ratio of areas
- \blacktriangleright line at infinity ${\it I}_{\infty}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

▲母 → ▲目 → モ → 目目 ろくで

Universiter Fildesheim

Projective Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} A & t \\ v^T & 1 \end{pmatrix} x$$

• v moves the line at infinity I_{∞}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト < 団ト < ヨト < ヨト < ロト

Shiversiter Fildesheift

Projective Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} A & t \\ v^T & 1 \end{pmatrix} x$$

• v moves the line at infinity I_{∞}

Invariants:

► ratio of ratios of lengths of parallel line segments (cross ratio)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

Projective Transformations / Decomposition

$$\begin{pmatrix} A & t \\ v^T & v_3 \end{pmatrix} = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix} \begin{pmatrix} K & 0 \\ 0^T & 1 \end{pmatrix} \begin{pmatrix} I & 0 \\ v^T & v_3 \end{pmatrix}$$
$$A = sRK + tv^T$$

- K upper triangular matrix with det K = 1
- valid for $v_3 \neq 0$
- unique if s is chosen s > 0

シック 비門 《파》《파》《西》《日》

Summary of Projective Transformations

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$	$\overset{\triangleleft}{\bigtriangleup}$	Concurrency, collinearity, order of contact : intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\bigotimes_{\square}	Length, area
			[HZ04, p. 44]

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations

4. Recovery of Affine and Metric Properties from Images

5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Computer Vision 4. Recovery of Affine and Metric Properties from Images

. . .

▲□▶ ▲圖▶ ▲ 트▶ ▲ 트▶ ▲ 트 의 의 이 이 이

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 30

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine and Metric Properties from Images
- 5. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Exercises and Tutorials

- There will be a weekly sheet with 4 exercises handed out each Tuesday in the lecture.
 1st sheet will be handed out Thu. 23.4. in the tutorial.
- Solutions to the exercises can be submitted until next Tuesday noon 1st sheet is due Tue. 28.4.
- Exercises will be corrected.
- ► Tutorials each Thursday 2pm-4pm, 1st tutorial at Thur. 23.4.
- Successful participation in the tutorial gives up to 10% bonus points for the exam.

Exam and Credit Points

- There will be a written exam at end of term (2h, 4 problems).
- ► The course gives 6 ECTS (2+2 SWS).
- The course can be used in
 - ► IMIT MSc. / Informatik / Gebiet KI & ML
 - Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
 - ► as well as in both BSc programs.

・日本・四本・山本・山本・山本・日本・日本

Some Text Books

- Simon J. D. Prince (2012): Computer Vision: Models, Learning, and Inference, Cambridge University Press.
- Richard Szeliski (2011): Computer Vision, Algorithms and Applications, Springer.
- David A. Forsyth, Jean Ponce (²2012, 2007): Computer Vision, A Modern Approach, Prentice Hall.
- Richard Hartley, Andrew Zisserman (2004): *Multiple View Geometry in Computer Vision*, Cambridge University Press.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 30

Some First Computer Vision Software

- ► Open Computer Vision Library (OpenCV)
 - ► C++ library
 - ► has wrappers for Python & Octave
 - originally developed by Intel
 - ▶ v3.0 beta, 11/2014; http://opencv.org

Public data sets:

▶ ...

シック 비로 《파》《파》《书》 《

Further Readings

► [HZ04, ch. 1 and 2].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision. Cambridge university press, 2004.

(4 미) (4 문) (4 문) (4 면) (4 D) (4 D