Computer Vision

1. Projective Geometry in 2D

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science
University of Hildesheim, Germany

Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine and Metric Properties from Images
5. Organizational Stuff

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine and Metric Properties from Images

5. Organizational Stuff

Topics of the Lecture

1. Simultaneous Localization and Mapping from Video (Visual SLAM)
2. Image Classification and Description

Simultaneous Localization and Mapping

[source https://www.youtube.com/watch?v=bDOnn0-4Nq8]
 Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Simultaneous Localization and Mapping from Video

- SLAM usually employs laser range scanners (lidars).
- Visual SLAM: use video sensors (cameras).
- main parts required:

1. Projective Geometry
2. Point Correspondences
3. Estimating Camera Positions (Localization)
4. Triangulation (Mapping)

Image Classification and Description

 Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

1. Very Brief Introduction

2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine and Metric Properties from Images
5. Organizational Stuff

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
- parallel lines

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
- parallel lines

Idea:

- add ideal points, one for each set of parallel lines / direction
- define these points as intersection of any two parallel lines
- now any two lines intersect in exactly one point
- either in a finite or in an ideal point

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$
x \in \mathbb{R}^{2}
$$

Homogeneous coordinates:

$$
\begin{aligned}
& x \in \mathbb{P}^{2}:=\mathbb{R}^{3} / \equiv \\
& \quad x \equiv y: \Longleftrightarrow \exists s \in \mathbb{R} \backslash\{0\}: s x=y, \quad x, y \in \mathbb{R}^{3}
\end{aligned}
$$

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$
x \in \mathbb{R}^{2}
$$

Homogeneous coordinates:

$$
\begin{aligned}
& x \in \mathbb{P}^{2}:=\mathbb{R}^{3} / \equiv \\
& \quad x \equiv y: \Longleftrightarrow \exists s \in \mathbb{R} \backslash\{0\}: s x=y, \quad x, y \in \mathbb{R}^{3}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \equiv\left(\begin{array}{c}
4 \\
8 \\
12
\end{array}\right) \text { represent the same point in } \mathbb{P}^{2} \\
& \left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) \text { represent a different point in } \mathbb{P}^{2}
\end{aligned}
$$

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$
x \in \mathbb{R}^{2}
$$

Homogeneous coordinates:

$$
\begin{aligned}
& x \in \mathbb{P}^{2}:=\mathbb{R}^{3} / \equiv \\
& \quad x \equiv y: \Longleftrightarrow \exists s \in \mathbb{R} \backslash\{0\}: s x=y, \quad x, y \in \mathbb{R}^{3}
\end{aligned}
$$

finite points: $\left(\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right)=: \iota\left(\binom{x_{1}}{x_{2}}\right)$
ideal points: $\left(\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right)$

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

$$
a \in \mathbb{R}^{3}: \ell_{a}:=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, a_{1} x_{1}+a_{2} x_{2}+a_{3}=0\right\}
$$

- $a_{1} \neq 0$ or $a_{2} \neq 0$ (or both $a_{1}, a_{2} \neq 0$).
- $s a=\left(s a_{1}, s a_{2}, s a_{3}\right)^{T}$ encodes the same line as $a($ any $s \in \mathbb{R}, s \neq 0)$.

Note: $\kappa: \mathbb{R}^{3} \rightarrow \mathbb{P}^{2}, a \mapsto[a]:=\left\{a^{\prime} \in \mathbb{R}^{3} \mid a^{\prime} \equiv a\right\}$.

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

$$
a \in \mathbb{R}^{3}: \ell_{a}:=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, a_{1} x_{1}+a_{2} x_{2}+a_{3}=0\right\}
$$

- $a_{1} \neq 0$ or $a_{2} \neq 0$ (or both $a_{1}, a_{2} \neq 0$).
- $s a=\left(s a_{1}, s a_{2}, s a_{3}\right)^{T}$ encodes the same line as $a($ any $s \in \mathbb{R}, s \neq 0)$.

Homogeneous coordinates:

$$
a \in \mathbb{P}^{2}: \ell_{a}:=\left\{x \in \mathbb{P}^{2} \mid a^{T} x=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0\right\}
$$

- contains all finite points of $a^{\prime} \in \kappa^{-1}(a): \ell_{\kappa\left(a^{\prime}\right)} \supsetneqq \iota\left(\ell_{a^{\prime}}\right)$
- and the ideal point $\left(a_{2},-a_{1}, 0\right)^{T}$.
- intersection of parallel lines (same a_{1}, a_{2}, different a_{3})

Note: $\kappa: \mathbb{R}^{3} \rightarrow \mathbb{P}^{2}, a \mapsto[a]:=\left\{a^{\prime} \in \mathbb{R}^{3} \mid a^{\prime} \equiv a\right\}$.

A point on a line

A point x lies on line a iff $x^{\top} a=0$.

Intersection of two lines

Lines a and b intersect in $a \times b:=\left(\begin{array}{c}a_{2} b_{3}-a_{3} b_{2} \\ -a_{1} b_{3}+a_{3} b_{1} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$

Proof:

$a^{T}(a \times b)=a_{1} a_{2} b_{3}-a_{1} a_{3} b_{2}-a_{2} a_{1} b_{3}+a_{2} a_{3} b_{1}+a_{3} a_{1} b_{2}-a_{3} a_{2} b_{1}=0$
$b^{T}(a \times b)=\ldots=0$

Intersection of two lines

Lines a and b intersect in $a \times b:=\left(\begin{array}{r}a_{2} b_{3}-a_{3} b_{2} \\ -a_{1} b_{3}+a_{3} b_{1} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$
Proof:

$$
\begin{aligned}
& a^{T}(a \times b)=a_{1} a_{2} b_{3}-a_{1} a_{3} b_{2}-a_{2} a_{1} b_{3}+a_{2} a_{3} b_{1}+a_{3} a_{1} b_{2}-a_{3} a_{2} b_{1}=0 \\
& b^{T}(a \times b)=\ldots=0
\end{aligned}
$$

Example:

$$
\begin{aligned}
& x=1: a=(-1,0,1)^{T} \\
& y=1: b=(0,-1,1)^{T} \\
& a \times b=(1,1,1)^{T}
\end{aligned}
$$

Intersection of two lines

Lines a and b intersect in $a \times b:=\left(\begin{array}{r}a_{2} b_{3}-a_{3} b_{2} \\ -a_{1} b_{3}+a_{3} b_{1} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$
Proof:

$$
\begin{aligned}
& a^{T}(a \times b)=a_{1} a_{2} b_{3}-a_{1} a_{3} b_{2}-a_{2} a_{1} b_{3}+a_{2} a_{3} b_{1}+a_{3} a_{1} b_{2}-a_{3} a_{2} b_{1}=0 \\
& b^{T}(a \times b)=\ldots=0
\end{aligned}
$$

Esp. for parallel lines: $b_{1}=a_{1}, b_{2}=a_{2}, b_{3} \neq a_{3}$:

$$
a \times b \equiv\left(\begin{array}{c}
a_{2} \\
-a_{1} \\
0
\end{array}\right)
$$

Line joining points

The line through x and y is $x \times y$.
Proof: exactly the same as previous slide.

Line joining points

The line through x and y is $x \times y$.
Proof: exactly the same as previous slide.
Example:

$$
\begin{aligned}
x & =(-1,0,1)^{T} \\
y & =(0,-1,1)^{T} \\
x \times y & =(1,1,1)^{T}
\end{aligned}
$$

Line at infinity

All ideal points form a line:

$$
I_{\infty}:=(0,0,1)^{T} \quad \text { line at infinity }
$$

Proof:

for any ideal point $x=\left(x_{1}, x_{2}, 0\right)^{T}: x^{T} I_{\infty}=0$. for any finite (real-valued) point $x=\left(x_{1}, x_{2}, 1\right): x^{\top} I_{\infty}=1 \neq 0$.

Line at infinity

All ideal points form a line:

$$
I_{\infty}:=(0,0,1)^{T} \quad \text { line at infinity }
$$

Proof:
for any ideal point $x=\left(x_{1}, x_{2}, 0\right)^{T}: x^{T} l_{\infty}=0$. for any finite (real-valued) point $x=\left(x_{1}, x_{2}, 1\right): x^{\top} I_{\infty}=1 \neq 0$.

Furthermore:

- This is the only line in \mathbb{P}^{2} not corresponding to an Euclidean line.
- Two parallel lines meet at the line at infinity.

A model for the projective plane

- points correspond to rays (lines through the origin)
- lines correspond to planes through the origin.

Conics

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
- hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2: Heterogeneous coordinates:
$a \in \mathbb{R}^{6}: \mathbf{C}_{a}:=\left\{x \in \mathbb{R}^{2} \mid a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+a_{4} x_{1}+a_{5} x_{2}+a_{6}=0\right\}$

Conics

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
- hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2:

Heterogeneous coordinates:

$$
a \in \mathbb{R}^{6}: \mathbf{C}_{a}:=\left\{x \in \mathbb{R}^{2} \mid a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+a_{4} x_{1}+a_{5} x_{2}+a_{6}=0\right\}
$$

Homogeneous coordinates:

$$
\begin{aligned}
a \in \mathbb{P}^{5}: \mathbf{C}_{a}:=\left\{x \in \mathbb{P}^{2}\right. & \mid a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2} \\
& \left.+a_{4} x_{1} x_{3}+a_{5} x_{2} x_{3}+a_{6} x_{3}^{2}=0\right\}
\end{aligned}
$$

Conics

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
- hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$
a \in \mathbb{R}^{6}: \mathbf{C}_{a}:=\left\{x \in \mathbb{R}^{2} \mid a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+a_{4} x_{1}+a_{5} x_{2}+a_{6}=0\right\}
$$

Homogeneous coordinates:

$$
\begin{aligned}
a \in \mathbb{P}^{5}: \mathbf{C}_{a}:=\left\{x \in \mathbb{P}^{2} \mid\right. & a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2} \\
& \left.+a_{4} x_{1} x_{3}+a_{5} x_{2} x_{3}+a_{6} x_{3}^{2}=0\right\} \\
=\left\{x \in \mathbb{P}^{2} \mid\right. & \left.x^{T} C x=0\right\}, C:=\left(\begin{array}{ccc}
a_{1} & a_{2} / 2 & a_{4} / 2 \\
a_{2} / 2 & a_{3} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{6}
\end{array}\right)
\end{aligned}
$$

Conics

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
- hyperbola, parabola, ellipsis
- Corresponds to a curve of degree 2 : Heterogeneous coordinates:
$a \in \mathbb{R}^{6}: \mathbf{C}_{a}:=\left\{x \in \mathbb{R}^{2} \mid a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+a_{4} x_{1}+a_{5} x_{2}+a_{6}=0\right\}$
Homogeneous coordinates:

$$
C \in \operatorname{Sym}\left(\mathbb{P}^{3 \times 3}\right): \mathbf{C}_{C}:=\left\{x \in \mathbb{P}^{2} \mid x^{\top} C x=0\right\}
$$

A conic joining 5 points

- Let $x^{1}, \ldots, x^{5} \in \mathbb{P}^{2}$ be 5 points
- in general position (i.e., never more than 2 on the same line)
- Conic parameters a have to fulfil the following system of linear equations:

$$
\left(\begin{array}{cccccc}
x_{1}^{1} x_{1}^{1} & x_{1}^{1} x_{2}^{1} & x_{2}^{1} x_{2}^{1} & x_{1}^{1} x_{3}^{1} & x_{2}^{1} x_{3}^{1} & x_{3}^{1} x_{3}^{1} \\
x_{1}^{2} x_{1}^{2} & x_{1}^{2} x_{2}^{2} & x_{2}^{2} x_{2}^{2} & x_{1}^{2} x_{3}^{2} & x_{2}^{2} x_{3}^{2} & x_{3}^{2} x_{3}^{2} \\
x_{1}^{3} x_{1}^{3} & x_{1}^{3} x_{2}^{3} & x_{2}^{3} x_{2}^{3} & x_{1}^{3} x_{3}^{3} & x_{2}^{3} x_{3}^{3} & x_{3}^{3} x_{3}^{3} \\
x_{1}^{4} x_{1}^{4} & x_{1}^{4} x_{2}^{4} & x_{2}^{4} x_{2}^{4} & x_{1}^{4} x_{3}^{4} & x_{2}^{4} x_{3}^{4} & x_{3}^{4} x_{3}^{4} \\
x_{1}^{5} x_{1}^{5} & x_{1}^{5} x_{2}^{5} & x_{2}^{5} x_{2}^{5} & x_{1}^{5} x_{3}^{5} & x_{2}^{5} x_{3}^{4} & x_{3}^{5} x_{3}^{5}
\end{array}\right) a=0
$$

Degenerate Conics

Conic C degenerate: C does not have full rank.
Example: two lines $C:=a b^{T}+b a^{T}$ (rank 2).

- contains lines a and b. proof: for points x on line $a: x^{\top} a=0$. $\rightsquigarrow x$ also on $C: x^{T} C x=x^{T} a b^{T} x+x^{T} b a^{T} x=0$.

Conic tangent lines

The tangent line to a conic C at a point x is $C x$.

Proof:

x lies on $C x: x^{\top} C x=0$.
If there is another common point $y: y^{\top} C y=0$ and $y^{\top} C x=0$.
$\rightsquigarrow x+\alpha y$ is common for all α, i.e., the whole line.
$\rightsquigarrow C$ is degenerate (or there is no such y).

Outline

1. Very Brief Introduction

2. The Projective Plane
3. Projective Transformations

4. Recovery of Affine and Metric Properties from Images

5. Organizational Stuff

Projectivity

A map $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is called projectivity, if

1. it is invertible and
2. it preserves lines,
i.e., whenever x, y, z are on a line, so are $h(x), h(y), h(z)$.

Equivalently, $h(x):=H x$ for a non-singular $H \in \mathbb{P}^{3 \times 3}$.

Projectivity

A map $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is called projectivity, if

1. it is invertible and
2. it preserves lines,
i.e., whenever x, y, z are on a line, so are $h(x), h(y), h(z)$.

Equivalently, $h(x):=H x$ for a non-singular $H \in \mathbb{P}^{3 \times 3}$.
Proof:
Any map $h(x):=H x$ is a projectivity:
Let x be a point on line $a: a^{T} x=0$.
Then point $H x$ is on line $H^{-1} a:\left(H^{-1} a\right)^{T} H x=a^{T} H^{-1} H x=a^{T} x=0$.
Any projectivity h is of type $h(x)=H x$: more difficult to show.

Transformation of Lines and Conics

The image of a line a under projectivity H is the line H^{-1} a:

$$
H\left(I_{a}\right)=I_{H^{-1} a}
$$

Proof:
Let x be a point on line $a: a^{T} x=0$.
Then point $H x$ is on line $H^{-1} a:\left(H^{-1} a\right)^{T} H x=a^{T} H^{-1} H x=a^{T} x=0$.

Transformation of Lines and Conics

The image of a line a under projectivity H is the line H^{-1} a:

$$
H\left(I_{a}\right)=I_{H^{-1} a}
$$

Proof:
Let x be a point on line $a: a^{T} x=0$.
Then point $H x$ is on line $H^{-1} a:\left(H^{-1} a\right)^{T} H x=a^{T} H^{-1} H x=a^{T} x=0$.

The image of a conic C under projectivity H is the conic $H^{-T} C H^{-1}$:

$$
H\left(\mathbf{C}_{C}\right)=\mathbf{C}_{H^{-T} C H^{-1}}
$$

Proof:
Let x be a point on conic C : $x^{T} C x=0$.
Then point $H x$ is on conic $H^{-T} C H^{-1}: x^{\top} H^{T} H^{-T} \mathrm{CH}^{-1} H^{-1} x=0$

A Hierarchy of Transformations

- The projective transformations form a group (projective linear group:

$$
\mathrm{PL}_{n}:=\mathrm{GL}_{n} / \equiv=\left\{H \in \mathbb{P}^{3 \times 3} \mid H \text { invertible }\right\}
$$

A Hierarchy of Transformations

- The projective transformations form a group (projective linear group:

$$
\mathrm{PL}_{n}:=\mathrm{GL}_{n} / \equiv=\left\{H \in \mathbb{P}^{3 \times 3} \mid H \text { invertible }\right\}
$$

- There are several subgroups:
- affine group: last row is $(0,0,1)$
- Euclidean group: additionally $H_{1: 2,1: 2}$ orthogonal
- oriented Euclidean group: additionally det $H=1$

A Hierarchy of Transformations

- The projective transformations form a group (projective linear group:

$$
\mathrm{PL}_{n}:=\mathrm{GL}_{n} / \equiv=\left\{H \in \mathbb{P}^{3 \times 3} \mid H \text { invertible }\right\}
$$

- There are several subgroups:
- affine group: last row is $(0,0,1)$
- Euclidean group: additionally $H_{1: 2,1: 2}$ orthogonal
- oriented Euclidean group: additionally $\operatorname{det} H=1$
- These subgroups can be described two ways:
- structurally (as above)
- by invariants: objects or sets of objects mapped to themselves

Isometries

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\epsilon \cos \theta & -\sin \theta & t_{1} \\
\epsilon \sin \theta & \cos \theta & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
R & t \\
0^{T} & 1
\end{array}\right) x
$$

- rotation matrix $R: R^{T} R=R R^{T}=I$
- translation vector t.
- orientation preserving if $\epsilon=+1$ (equivalent to $\operatorname{det} R=+1$) $(\epsilon \in\{+1,-1\})$

Isometries

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\epsilon \cos \theta & -\sin \theta & t_{1} \\
\epsilon \sin \theta & \cos \theta & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
R & t \\
0^{T} & 1
\end{array}\right) x
$$

- rotation matrix $R: R^{T} R=R R^{T}=I$
- translation vector t.
- orientation preserving if $\epsilon=+1$ (equivalent to $\operatorname{det} R=+1$) $(\epsilon \in\{+1,-1\})$

Invariants:

- length, angle, area
- line at infinity I_{∞}

Similarity Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{1} \\
s \sin \theta & s \cos \theta & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
s R & t \\
0^{T} & 1
\end{array}\right) x
$$

- isotropic scaling s.

Similarity Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{1} \\
s \sin \theta & s \cos \theta & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
s R & t \\
0^{T} & 1
\end{array}\right) \times
$$

- isotropic scaling s.

Invariants:

- angle
- ratio of lengths, ratio of areas
- line at infinity I_{∞}

Affine Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
0^{T} & 1
\end{array}\right) \times
$$

- A non-singular

Affine Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
0^{T} & 1
\end{array}\right) \times
$$

- A non-singular, decompose via SVD:

$$
A=R(\theta) R(-\phi)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) R(\phi)
$$

- non-isotropic scaling with axis ϕ

[HZ04, p. 40]

Affine Transformations

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
0^{T} & 1
\end{array}\right) x
$$

- A non-singular, decompose via SVD:

$$
A=R(\theta) R(-\phi)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) R(\phi)
$$

- non-isotropic scaling with axis ϕ

Invariants:

- parallel lines
- ratio of lengths of parallel line segments
- ratio of areas
- line at infinity I_{∞}

Projective Transformations

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
v^{\top} & 1
\end{array}\right) \times
$$

- v moves the line at infinity I_{∞}

Projective Transformations

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & t_{1} \\
a_{2,1} & a_{2,2} & t_{2} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{cc}
A & t \\
v^{\top} & 1
\end{array}\right) \times
$$

- v moves the line at infinity I_{∞}

Invariants:

- ratio of ratios of lengths of parallel line segments (cross ratio)

Projective Transformations / Decomposition

$$
\begin{aligned}
\left(\begin{array}{cc}
A & t \\
v^{T} & v_{3}
\end{array}\right) & =\left(\begin{array}{ll}
s R & t \\
0^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
K & 0 \\
0^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
v^{T} & v_{3}
\end{array}\right) \\
A & =s R K+t v^{T}
\end{aligned}
$$

- K upper triangular matrix with $\operatorname{det} K=1$
- valid for $v_{3} \neq 0$
- unique if s is chosen $s>0$

Summary of Projective Transformations

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{ccc}a_{11} & a_{12} & t_{x} \\ a_{21} & a_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞}.
Similarity 4 dof	$\left[\begin{array}{ccc}s r_{11} & s r_{12} & t_{x} \\ s r_{21} & s r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$	\square \square	Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc}r_{11} & r_{12} & t_{x} \\ r_{21} & r_{22} & t_{y} \\ 0 & 0 & 1\end{array}\right]$		Length, area

[HZ04, p. 44]

Outline

1. Very Brief Introduction

2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine and Metric Properties from Images
5. Organizational Stuff
...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine and Metric Properties from Images

5. Organizational Stuff

Exercises and Tutorials

- There will be a weekly sheet with 4 exercises handed out each Tuesday in the lecture. 1st sheet will be handed out Thu. 23.4. in the tutorial.
- Solutions to the exercises can be submitted until next Tuesday noon 1st sheet is due Tue. 28.4.
- Exercises will be corrected.
- Tutorials each Thursday 2pm-4pm, 1st tutorial at Thur. 23.4.
- Successful participation in the tutorial gives up to 10% bonus points for the exam.

Exam and Credit Points

- There will be a written exam at end of term (2h, 4 problems).
- The course gives 6 ECTS (2+2 SWS).
- The course can be used in
- IMIT MSc. / Informatik / Gebiet KI \& ML
- Wirtschaftsinformatik MSc / Informatik / Gebiet KI \& ML
- as well as in both BSc programs.

Some Text Books

- Simon J. D. Prince (2012):

Computer Vision: Models, Learning, and Inference, Cambridge University Press.

- Richard Szeliski (2011):

Computer Vision, Algorithms and Applications, Springer.

- David A. Forsyth, Jean Ponce (${ }^{2} 2012,2007$): Computer Vision, A Modern Approach, Prentice Hall.
- Richard Hartley, Andrew Zisserman (2004): Multiple View Geometry in Computer Vision, Cambridge University Press.

Some First Computer Vision Software

- Open Computer Vision Library (OpenCV)
- C++ library
- has wrappers for Python \& Octave
- originally developed by Intel
- v3.0 beta, 11/2014; http://opencv.org

Public data sets:

Further Readings

- [HZ04, ch. 1 and 2].

References

Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.
Cambridge university press, 2004.

