

Computer Vision

1. Projective Geometry in 2D

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Jrivers/

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Outline

1. Very Brief Introduction

- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Topics of the Lecture

- 1. Simultaneous Localization and Mapping from Video (Visual SLAM)
- 2. Image Classification and Description

Simultaneous Localization and Mapping

SOURCE https://www.youtube.com/watch?v=bDOnnO-4Nq8]

Simultaneous Localization and Mapping from Video

- ► SLAM usually employs laser range scanners (lidars).
- ► Visual SLAM: use video sensors (cameras).
- main parts required:
 - 1. Projective Geometry
 - 2. Point Correspondences
 - 3. Estimating Camera Positions (Localization)
 - 4. Triangulation (Mapping)

Describes without errors

Sulvers/

Unrelated to the image

Image Classification and Description

Describes with minor errors

Somewhat related to the image

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- ► most two lines intersect in exactly one point.
- but some two lines do not intersect.
 - parallel lines

Schwarzing.

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
 - parallel lines

Idea:

- ▶ add ideal points, one for each set of parallel lines / direction
- ▶ define these points as intersection of any two parallel lines
- now any two lines intersect in exactly one point
 - ► either in a finite or in an ideal point

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^2$$

$$x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv$$

$$x \equiv y : \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3$$

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^2$$

Homogeneous coordinates:

$$x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv$$

 $x \equiv y : \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3$

Example:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \equiv \begin{pmatrix} 4 \\ 8 \\ 12 \end{pmatrix}$$
 represent the same point in \mathbb{P}^2

$$\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$
 represent a different point in \mathbb{P}^2

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^2$$

$$x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv$$

 $x \equiv y : \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3$

finite points:
$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} =: \iota(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix})$$
 ideal points: $\begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$

Jrivers/to

Homogeneous Coordinates: Lines

$$a \in \mathbb{R}^3 : \ell_a := \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid a_1 x_1 + a_2 x_2 + a_3 = 0 \}$$

- ▶ $a_1 \neq 0$ or $a_2 \neq 0$ (or both $a_1, a_2 \neq 0$).
- ▶ $sa = (sa_1, sa_2, sa_3)^T$ encodes the same line as a (any $s \in \mathbb{R}, s \neq 0$).

Shivers/Fig.

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

$$a \in \mathbb{R}^3 : \ell_a := \{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \mid a_1 x_1 + a_2 x_2 + a_3 = 0 \}$$

- ▶ $a_1 \neq 0$ or $a_2 \neq 0$ (or both $a_1, a_2 \neq 0$).
- ▶ $sa = (sa_1, sa_2, sa_3)^T$ encodes the same line as a (any $s \in \mathbb{R}, s \neq 0$).

Homogeneous coordinates:

$$a \in \mathbb{P}^2 : \ell_a := \{ x \in \mathbb{P}^2 \mid a^T x = a_1 x_1 + a_2 x_2 + a_3 x_3 = 0 \}$$

- ▶ contains all finite points of $a' \in \kappa^{-1}(a)$: $\ell_{\kappa(a')} \supseteq \iota(\ell_{a'})$
- ▶ and the ideal point $(a_2, -a_1, 0)^T$.
 - ▶ intersection of parallel lines (same a_1, a_2 , different a_3)

Note: $\kappa: \mathbb{R}^3 \to \mathbb{P}^2, a \mapsto [a] := \{a' \in \mathbb{R}^3 \mid a' \equiv a\}.$

Jnivers/tage

A point on a line

A point x lies on line a iff $x^T a = 0$.

Intersection of two lines

Lines
$$a$$
 and b intersect in $a \times b := \begin{pmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{pmatrix}$

Proof:

$$a^{T}(a \times b) = a_1 a_2 b_3 - a_1 a_3 b_2 - a_2 a_1 b_3 + a_2 a_3 b_1 + a_3 a_1 b_2 - a_3 a_2 b_1 = 0$$

 $b^{T}(a \times b) = \dots = 0$

Intersection of two lines

Lines
$$a$$
 and b intersect in $a \times b := \left(\begin{array}{c} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{array}\right)$

Proof:

$$a^{T}(a \times b) = a_1 a_2 b_3 - a_1 a_3 b_2 - a_2 a_1 b_3 + a_2 a_3 b_1 + a_3 a_1 b_2 - a_3 a_2 b_1 = 0$$

 $b^{T}(a \times b) = \dots = 0$

Example:

$$x = 1 : a = (-1, 0, 1)^T$$

 $y = 1 : b = (0, -1, 1)^T$
 $a \times b = (1, 1, 1)^T$

Intersection of two lines

Lines
$$a$$
 and b intersect in $a \times b := \begin{pmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{pmatrix}$

Proof:

$$a^{T}(a \times b) = a_1 a_2 b_3 - a_1 a_3 b_2 - a_2 a_1 b_3 + a_2 a_3 b_1 + a_3 a_1 b_2 - a_3 a_2 b_1 = 0$$

 $b^{T}(a \times b) = \dots = 0$

Esp. for parallel lines: $b_1 = a_1, b_2 = a_2, b_3 \neq a_3$:

$$a \times b \equiv \left(\begin{array}{c} a_2 \\ -a_1 \\ 0 \end{array} \right)$$

Line joining points

The line through x and y is $x \times y$.

Proof: exactly the same as previous slide.

Stildeshall

Line joining points

The line through x and y is $x \times y$.

Proof: exactly the same as previous slide.

Example:

$$x = (-1, 0, 1)^T$$

 $y = (0, -1, 1)^T$
 $x \times y = (1, 1, 1)^T$

Line at infinity

All ideal points form a line:

$$I_{\infty} := (0,0,1)^T$$
 line at infinity

Proof:

for any ideal point $x=(x_1,x_2,0)^T$: $x^T I_{\infty}=0$. for any finite (real-valued) point $x=(x_1,x_2,1)$: $x^T I_{\infty}=1\neq 0$.

Line at infinity

All ideal points form a line:

$$I_{\infty} := (0,0,1)^T$$
 line at infinity

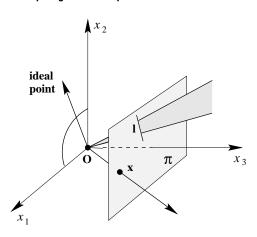
Proof:

for any ideal point $x=(x_1,x_2,0)^T$: $x^TI_{\infty}=0$. for any finite (real-valued) point $x=(x_1,x_2,1)$: $x^TI_{\infty}=1\neq 0$.

Furthermore:

- ▶ This is the only line in \mathbb{P}^2 not corresponding to an Euclidean line.
- ► Two parallel lines meet at the line at infinity.

A model for the projective plane

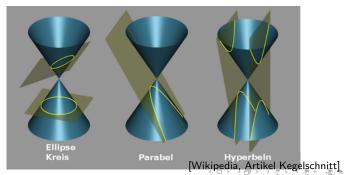


- ▶ points correspond to rays (lines through the origin)
- ► lines correspond to planes through the origin. [HZ04, p. 29]

- ► A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - ▶ ellipsis, parabola, hyperbola
- ► Corresponds to a curve of degree 2:

Heterogeneous coordinates:

$$a \in \mathbb{R}^6$$
: $\mathbf{C}_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \}$



- ► A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - ► ellipsis, parabola, hyperbola
- ► Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6 : \mathbf{C}_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \}$$

$$a \in \mathbb{P}^5 : \mathbf{C}_a := \{ x \in \mathbb{P}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 x_3 + a_5 x_2 x_3 + a_6 x_3^2 = 0 \}$$

- ► A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - ▶ ellipsis, parabola, hyperbola
 - ► Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6 : \mathbf{C}_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \}$$

$$a \in \mathbb{P}^5 : \mathbf{C}_a := \{ x \in \mathbb{P}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 x_3 + a_5 x_2 x_3 + a_6 x_3^2 = 0 \}$$
$$= \{ x \in \mathbb{P}^2 \mid x^T C x = 0 \}, C := \begin{pmatrix} a_1 & a_2/2 & a_4/2 \\ a_2/2 & a_3 & a_5/2 \\ a_4/2 & a_5/2 & a_6 \end{pmatrix}$$

- ► A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - ► ellipsis, parabola, hyperbola
- ► Corresponds to a curve of degree 2: Heterogeneous coordinates:

$$a \in \mathbb{R}^6 : \mathbf{C}_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \}$$

$$C \in \operatorname{\mathsf{Sym}}(\mathbb{P}^{3\times 3}) : \mathbf{C}_C := \{x \in \mathbb{P}^2 \mid x^T C x = 0\}$$

Still despois

A conic joining 5 points

- ▶ Let $x^1, ..., x^5 \in \mathbb{P}^2$ be 5 points
 - ▶ in general position (i.e., never more than 2 on the same line)
- ► Conic parameters *a* have to fulfil the following system of linear equations:

Shivers/the

Degenerate Conics

Conic C degenerate: C does not have full rank.

Example: two lines $C := ab^T + ba^T$ (rank 2).

► contains lines *a* and *b*.

proof: for points x on line a: $x^T a = 0$.

$$\rightarrow x$$
 also on C: $x^T Cx = x^T a b^T x + x^T b a^T x = 0$.

Conic tangent lines

The tangent line to a conic C at a point x is Cx.

Proof:

x lies on Cx: $x^T Cx = 0$.

If there is another common point y: $y^T Cy = 0$ and $y^T Cx = 0$.

- \rightarrow $x + \alpha y$ is common for all α , i.e., the whole line.
- \sim C is degenerate (or there is no such y).

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Shivers/

Projectivity

A map $h: \mathbb{P}^2 \to \mathbb{P}^2$ is called **projectivity**, if

- 1. it is invertible and
- 2. it preserves lines, i.e., whenever x, y, z are on a line, so are h(x), h(y), h(z).

Equivalently, h(x) := Hx for a non-singular $H \in \mathbb{P}^{3\times 3}$.

Note: $H^{-T} := (H^{-1})^T$.

Projectivity

A map $h: \mathbb{P}^2 \to \mathbb{P}^2$ is called **projectivity**, if

- 1. it is invertible and
- 2. it preserves lines, i.e., whenever x, y, z are on a line, so are h(x), h(y), h(z).

Equivalently, h(x) := Hx for a non-singular $H \in \mathbb{P}^{3\times 3}$.

Proof:

Any map h(x) := Hx is a projectivity:

Let x be a point on line a: $a^T x = 0$.

Then point Hx is on line $H^{-T}a$: $(H^{-1}a)^THx = a^TH^{-1}Hx = a^Tx = 0$.

Any projectivity h is of type h(x) = Hx: more difficult to show.

Note: $H^{-T} := (H^{-1})^T$.

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 夏 1 〒 9 9 (C)

Jrivers/tage

Transformation of Lines and Conics

The image of a line a under projectivity H is the line $H^{-T}a$:

$$H(I_a) = I_{H^{-T}a}$$

Proof:

Let x be a point on line a: $a^T x = 0$.

Then point Hx is on line $H^{-1}a$: $(H^{-T}a)^THx = a^TH^{-1}Hx = a^Tx = 0$.

Shiversite.

Transformation of Lines and Conics

The image of a line a under projectivity H is the line $H^{-T}a$:

$$H(I_a) = I_{H^{-T}a}$$

Proof:

Let x be a point on line a: $a^T x = 0$.

Then point Hx is on line $H^{-1}a$: $(H^{-T}a)^THx = a^TH^{-1}Hx = a^Tx = 0$.

The image of a conic C under projectivity H is the conic $H^{-T}CH^{-1}$:

$$H(\mathbf{C}_C) = \mathbf{C}_{H^{-T}CH^{-1}}$$

Proof:

Let x be a point on conic C: $x^T Cx = 0$.

Then point Hx is on conic $H^{-T}CH^{-1}$: $x^TH^TH^{-T}CH^{-1}H^{-1}x=0$

(ロ) (型) (型) (型) (型) (型)

A Hierarchy of Transformations

► The projective transformations form a group (**projective linear group**:

$$\mathsf{PL}_n := \mathsf{GL}_n / \equiv = \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \}$$

Shiversite .

A Hierarchy of Transformations

► The projective transformations form a group (**projective linear group**:

$$\mathsf{PL}_n := \mathsf{GL}_n / \equiv = \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \}$$

- ► There are several subgroups:
 - ▶ **affine group**: last row is (0,0,1)
 - ▶ Euclidean group: additionally $H_{1:2,1:2}$ orthogonal
 - ▶ oriented Euclidean group: additionally det H = 1

Still deshalf

A Hierarchy of Transformations

► The projective transformations form a group (**projective linear group**:

$$\mathsf{PL}_n := \mathsf{GL}_n / \equiv = \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \}$$

- ► There are several subgroups:
 - ▶ **affine group**: last row is (0,0,1)
 - ▶ Euclidean group: additionally $H_{1:2,1:2}$ orthogonal
 - ▶ oriented Euclidean group: additionally $\det H = 1$
- ► These subgroups can be described two ways:
 - structurally (as above)
 - ▶ by invariants: objects or sets of objects mapped to themselves

Isometries

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} \epsilon \cos \theta & -\sin \theta & t_1 \\ \epsilon \sin \theta & \cos \theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0^T & 1 \end{pmatrix} x$$

- ▶ rotation matrix R: $R^TR = RR^T = I$
- ► translation vector t
- ▶ orientation preserving if $\epsilon = +1$ (equivalent to det R = +1) $(\epsilon \in \{+1, -1\})$

Isometries

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} \epsilon \cos \theta & -\sin \theta & t_1 \\ \epsilon \sin \theta & \cos \theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0^T & 1 \end{pmatrix} x$$

- ▶ rotation matrix R: $R^TR = RR^T = I$
- ► translation vector t
- orientation preserving if $\epsilon=+1$ (equivalent to $\det R=+1$) $(\epsilon\in\{+1,-1\})$

Invariants:

- ► length, angle, area
- ▶ line at infinity I_{∞}

Similarity Transformations

$$\left(\begin{array}{c} x_1'\\ x_2'\\ 1\end{array}\right) = \left(\begin{array}{ccc} s\cos\theta & -s\sin\theta & t_1\\ s\sin\theta & s\cos\theta & t_2\\ 0 & 0 & 1\end{array}\right) \left(\begin{array}{c} x_1\\ x_2\\ 1\end{array}\right) = \left(\begin{array}{c} sR & t\\ 0^T & 1\end{array}\right) x$$

► isotropic scaling s.

Jniversitor.

Similarity Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} s\cos\theta & -s\sin\theta & t_1 \\ s\sin\theta & s\cos\theta & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix} x$$

► isotropic scaling s.

Invariants:

- ▶ angle
- ► ratio of lengths, ratio of areas
- ▶ line at infinity I_{∞}

Affine Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} A & t \\ 0^T & 1 \end{pmatrix} x$$

► A non-singular

Still ersiter

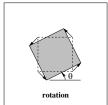
Affine Transformations

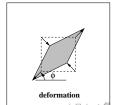
$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} A & t \\ 0^T & 1 \end{pmatrix} x$$

► A non-singular, decompose via SVD:

$$A = R(\theta)R(-\phi)\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}R(\phi)$$

▶ non-isotropic scaling with axis ϕ





[HZ04, p. 40]

Stivers/

Affine Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} A & t \\ 0^T & 1 \end{pmatrix} x$$

► *A* non-singular, decompose via SVD:

$$A = R(\theta)R(-\phi)\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}R(\phi)$$

▶ non-isotropic scaling with axis ϕ

Invariants:

- parallel lines
- ratio of lengths of parallel line segments
- ▶ ratio of areas
- ▶ line at infinity I_{∞}

Projective Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} A & t \\ v^T & v_3 \end{pmatrix} x$$

 \triangleright v moves the line at infinity l_{∞}

Projective Transformations

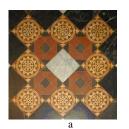
$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & t_1 \\ a_{2,1} & a_{2,2} & t_2 \\ v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} A & t \\ v^T & v_3 \end{pmatrix} x$$

▶ v moves the line at infinity l_{∞}

Invariants:

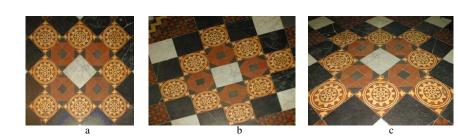
► ratio of ratios of lengths of parallel line segments (cross ratio)

Similary, Affine & Projective Transformations / Example



	a) similarity
circles	circles
squares	squares
parallel lines	parallel
orthogonal linnes	orthogonal

Similary, Affine & Projective Transformations / Example



	a) similarity	b) affine
circles	circles	ellipsis
squares	squares	diamond
parallel lines	parallel	parallel
orthogonal linnes	orthogonal	non-orthogonal

[HZ04, p. 37]
□ → ◆ □ → ◆ □ → ◆ □ → □ □ → ◆ ○ ○

Similary, Affine & Projective Transformations / Example



	a) similarity	b) affine	c) projective
circles	circles	ellipsis	conic
squares	squares	diamond	quadrangle
parallel lines	parallel	parallel	converging
orthogonal linnes	orthogonal	non-orthogonal	non-orthogonal

Projective Transformations / Decomposition

$$\begin{pmatrix} A & t \\ v^T & v_3 \end{pmatrix} = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix} \begin{pmatrix} K & 0 \\ 0^T & 1 \end{pmatrix} \begin{pmatrix} I & 0 \\ v^T & v_3 \end{pmatrix}$$

$$A = sRK + tv^T$$

- K upper triangular matrix with det K=1
- ▶ valid for $v_3 \neq 0$
- unique if s is chosen s > 0

Summary of Projective Transformations

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	\triangle	Concurrency, collinearity, order of contact : intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{ccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, \mathbf{l}_{∞} .
Similarity 4 dof	$ \begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} $		Ratio of lengths, angle. The circular points, \mathbf{I}, \mathbf{J} (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\bigcirc	Length, area

[HZ04, p. 44]

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Recovery of Affine and Metric Properties

Decomposition of general projective transformation:

$$\left(\begin{array}{cc} A & t \\ v^T & v_3 \end{array}\right) = \left(\begin{array}{cc} sR & t \\ 0^T & 1 \end{array}\right) \left(\begin{array}{cc} K & 0 \\ 0^T & 1 \end{array}\right) \left(\begin{array}{cc} I & 0 \\ v^T & v_3 \end{array}\right)$$

- undo proper projective transformation (affine rectification):
 - ► then original and image differ only by an affine transformation
 - measure affine properties of the original in the image (= properties invariant under affine transformations)
 - parallel lines, ratio of lengths on parallel lines

Jrivers/ita

Recovery of Affine and Metric Properties

Decomposition of general projective transformation:

$$\left(\begin{array}{cc} A & t \\ v^T & v_3 \end{array}\right) = \left(\begin{array}{cc} sR & t \\ 0^T & 1 \end{array}\right) \left(\begin{array}{cc} K & 0 \\ 0^T & 1 \end{array}\right) \left(\begin{array}{cc} I & 0 \\ v^T & v_3 \end{array}\right)$$

- undo proper projective transformation (affine rectification):
 - ► then original and image differ only by an affine transformation
 - measure affine properties of the original in the image (= properties invariant under affine transformations)
 - parallel lines, ratio of lengths on parallel lines
- 2. undo proper affine transformation (metric rectification):
 - ► then original and image differ only by a similarity transformation
 - measure metric properties of the original in the image (= properties invariant under similarity transformations)
 - ► angles, ratio of lengths

Recovery of Affine Properties

Undo proper projective transformation:

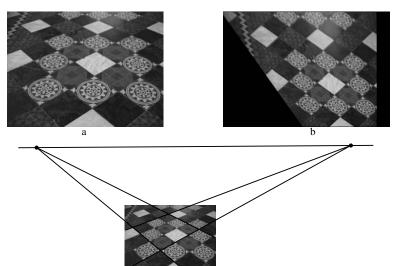
$$\begin{pmatrix} I & 0 \\ v^T & v_3 \end{pmatrix} : \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ v_1 x_1 + v_2 x_2 \end{pmatrix}$$
$$I_{\infty} := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} -v/v_3 \\ 1/v_3 \end{pmatrix} = \frac{1}{v_3} \begin{pmatrix} v_1 \\ v_2 \\ 1 \end{pmatrix}$$

- ▶ maps line at infinity to finite line $(v_1, v_2, 1)^T$
- ▶ to undo:
 - ▶ locate image $(v_1, v_2, 1)^T$ of line at infinty
 - ▶ undo by applying the inverse $H^{-1} = \begin{pmatrix} I & 0 \\ -v^T/v_3 & 1/v_3 \end{pmatrix}$

Note: Lines transform by H^{-T} : $\begin{pmatrix} I & 0 \\ v^T & v_3 \end{pmatrix}^{-T} = \begin{pmatrix} I & -v/v_3 \\ 0 & 1/v_3^T \end{pmatrix}$

Stivers/tell

Recovery of Affine Properties / Example



Now we can measure area ratios!

[HZ04, p. 50]

Recovery of Affine Properties / Algorithm

1: **procedure** RECTIFY-AFFINE-TWO-PARALLELS $(a^1, a^2, b^1, b^2 \in \mathbb{P}^2)$ 2: $s^1 := a^1 \times a^2$ \triangleright compute intersection of parallels a^1, a^2 3: $s^2 := b^1 \times b^2$ \triangleright compute intersection of parallels b^1, b^2 4: $l_{\infty} := s^1 \times s^2$ \triangleright compute image of line at infinity
5: $H^{-1} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -l_{\infty,1}/l_{\infty,3} & -l_{\infty,2}/l_{\infty,3} & 1/l_{\infty,3} \end{pmatrix}$ \triangleright compute inverse
6: **return** H^{-1}

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Circular Points

A conic

$$C := \begin{pmatrix} a_1 & a_2/2 & a_4/2 \\ a_2/2 & a_3 & a_5/2 \\ a_4/2 & a_5/2 & a_6 \end{pmatrix} = \begin{pmatrix} a_1 & 0 & a_4/2 \\ 0 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_6 \end{pmatrix}$$

is a circle if $a_1 = a_3$ and $a_2 = 0$.

Shivers/total

Circular Points

A conic

$$C := \left(\begin{array}{ccc} a_1 & a_2/2 & a_4/2 \\ a_2/2 & a_3 & a_5/2 \\ a_4/2 & a_5/2 & a_6 \end{array}\right) = \left(\begin{array}{ccc} a_1 & 0 & a_4/2 \\ 0 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_6 \end{array}\right)$$

is a circle if $a_1 = a_3$ and $a_2 = 0$.

Ideal points $x = (x_1, x_2, 0)^T$ on a circle:

$$x^T C x = a_1 x_1^2 + a_1 x_2^2 = 0$$

are exactly the circular points:

$$I := \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \quad J := \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

Line Conics

 $C \in \mathsf{Sym}(\mathbb{P}^{3\times 3})$ defines a **point conic** via

$$\mathbf{C}_C := \{ x \in \mathbb{P}^2 \mid x^T C x = 0 \}$$

It also can be used to define a line conic / dual conic:

$$\mathbf{C}_C^* := \{ a \in \mathbb{P}^2 \mid a^T C a = 0 \}$$

(where a denotes a line)

Adjugate of a Matrix

For a square matrix $A \in \mathbb{R}^{n \times n}$,

$$A^* \in \mathbb{R}^{n \times n}$$
 with $A^*_{i,j} := (-1)^{i+j} \det A_{-j,-i}$

is called its **adjugate** A^* .

It holds:

- for any A: $A*A = AA* = (\det A)I$
- ► A* is continuous in A.
- ▶ if A is invertible, the adjoint is the scaled inverse: $A^* = (\det A)A^{-1}$
- ▶ if A is not invertible, the adjoint nullifies A: $A^*A = AA^* = 0$
- ▶ the adjugate is the transposed of the cofactor matrix.

Note: $A_{-j,-i}$ denotes the matrix A with row j and column i removed.

The adjugate is also called adjoint.

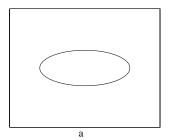
Jrivers/rdy

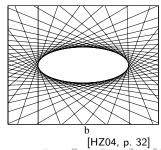
Dual Conic

For any point conic $C \in \operatorname{Sym}(\mathbb{P}^{3\times 3})$, the set of tangent lines

- ► forms a line conic,
- ▶ parametrized by the adjugate *C**:

$$\{a \in \mathbb{P}^2 \mid a \text{ tangent to } C\} = \mathbf{C}_{C^*}^*$$





Dual Conic to the Circular Points

Dual conic to the circular points (degenerate):

$$C_{\infty}^* := IJ^T + JI^T = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

- ► contains exactly all lines through the circular points *I* or *J*.
- ▶ transforms as HC^*H^T : $H(\mathbf{C}_{C^*}^*) = \mathbf{C}_{HC^*H^T}^*$.
- ▶ fixed under projectivity H iff H is a similarity.
- ▶ 4 dof (general C has 5, minus 1 due to det C = 0)
- ▶ I_{∞} is the null vector of C_{∞}^* .

Shiversite.

Angels in the Projective Plane

Angels are defined as:

$$\cos \theta(a,b) := \frac{a^T C_{\infty}^* b}{\sqrt{(a^T C_{\infty}^* a) (b^T C_{\infty}^* b)}}, \quad a,b \in \mathbb{P}^2$$

lacktriangle for the canonical C_{∞}^* , conincides with the Euclidean definition:

$$\cos \theta(a,b) := \frac{a^T b}{\sqrt{(a^T a)(b^T b)}}, \quad a,b \in \mathbb{R}^2$$

stays invariant under projective transformation:

$$a' = H^{-T}a, \quad b' = H^{-T}b, \quad C_{\infty}^{*'} = HC_{\infty}^{*}H^{T}$$

 $a'^{T}C_{\infty}^{*'}b' = a^{T}H^{-1}HC_{\infty}^{*}H^{T}H^{-T}b = a^{T}C_{\infty}^{*}b$

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Recovery of Metric Properties

- ▶ assume there is no pure projective transformation (i.e., affine rectification already done).
- need only to find pure affine transformation:

$$H_a := \left(egin{array}{cc} K & 0 \\ 0^T & 1 \end{array}
ight), \quad ext{with } K ext{ upper triangular}$$

▶ under H_a we get C_{∞}^* as

$$C_{\infty}^{*'} := H_a C_{\infty}^* H_a^T = \begin{pmatrix} KK^T & 0 \\ 0^T & 0 \end{pmatrix}$$

- 1. find symmetric matrix $S := KK^T$
- 2. find K via Cholesky decomposition of S

Recovery of Metric Properties (2/2)

 \blacktriangleright for two lines a', b' that are orthogonal in the original:

$$0 = a'^T C_{\infty}^* 'b' = a'_{1:2}^T Sb_{1:2}$$

$$= a'_1 S_{1,1} b'_1 + a'_1 S_{1,2} b'_2 + a'_2 S_{2,1} b'_1 + a'_2 S_{2,2} b'_2$$

$$= a'_1 b'_1 S_{1,1} + (a'_1 b'_2 + a'_2 b'_1) S_{1,2} + a'_2 b'_2 S_{2,2}$$

$$= (a'_1 b'_1, a'_1 b'_2 + a'_2 b'_1, a'_2 b'_2) (S_{1,1}, S_{1,2}, S_{2,2})^T$$

we get 1 linear constraint in $s := (S_{1,1}, S_{1,2}, S_{2,2})^T$.

► for two pairs of lines that are orthogonal in the original we get 2 linear constraints for 3 variables

$$\begin{pmatrix} a'_1b'_1 & a'_1b'_2 + a'_2b'_1 & a'_2b'_2 \\ c'_1d'_1 & c'_1d'_2 + c'_2d'_1 & c'_2d'_2 \end{pmatrix} s$$

where $s \neq 0$ has to be identified only up to a factor.

Recovery of Metric Properties / Algorithm

1: procedure

RECTIFY-METRIC-TWO-ORTHOGONALS $(a^1, a^2, b^1, b^2 \in \mathbb{P}^2)$

2:
$$A := \begin{pmatrix} a_1^1 a_1^2 & a_1^1 a_2^2 + a_2^1 a_1^2 & a_2^1 a_2^2 \\ b_1^1 b_1^2 & b_1^1 b_2^2 + b_2^1 b_1^2 & b_2^1 b_2^2 \end{pmatrix}$$

3: find
$$s \neq 0 : As = 0$$

$$\triangleright \text{ find } C_{\infty}^* := \left(\begin{array}{ccc} s_1 & s_2 & 0 \\ s_2 & s_3 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

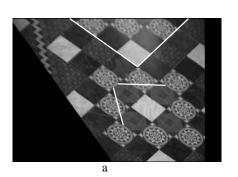
4:
$$K := \text{cholesky}\left(\begin{pmatrix} s_1 & s_2 \\ s_2 & s_3 \end{pmatrix}\right)$$

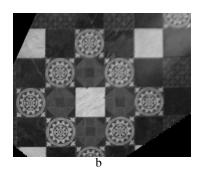
$$\triangleright \mathsf{find} \ H := \left(\begin{array}{cc} K & 0 \\ 0^T & 1 \end{array} \right)$$

5:
$$H^{-1} := \begin{pmatrix} 1/K_{1,1} & -1/(K_{1,2}K_{2,2}) & 0 \\ 0 & 1/K_{2,2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $ightharpoonup$ compute inverse

6:

Recovery of Metric Properties / Example





a) affine rectified image

b) metric rectified image

Now we can measure angles and length ratios!

[HZ04, p. 57] □□▷ ◀ઃઃ□▷ ◀ ઃ□▷ ▼ ः ▼ ○ ○ ○

Outline

- 1. Very Brief Introduction
- 2. The Projective Plane
- 3. Projective Transformations
- 4. Recovery of Affine Properties from Images
- 5. Angles in the Projective Plane
- 6. Recovery of Metric Properties from Images
- 7. Organizational Stuff

Exercises and Tutorials

- ► There will be a weekly sheet with 4 exercises handed out each Tuesday in the lecture. 1st sheet will be handed out Thu. 23.4. in the tutorial.
- Solutions to the exercises can be submitted until next Tuesday noon 1st sheet is due Tue. 28.4.
- ► Exercises will be corrected.
- ► Tutorials **each Thursday 2pm-4pm**, 1st tutorial at Thur. 23.4.
- ► Successful participation in the tutorial gives up to 10% bonus points for the exam.

Exam and Credit Points

- ► There will be a written exam at end of term (2h, 4 problems).
- ► The course gives 6 ECTS (2+2 SWS).
- ► The course can be used in
 - ► IMIT MSc. / Informatik / Gebiet KI & ML
 - Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
 - as well as in both BSc programs.

Some Text Books

- ➤ Simon J. D. Prince (2012):

 Computer Vision: Models, Learning, and Inference,
 Cambridge University Press.
- Richard Szeliski (2011):
 Computer Vision, Algorithms and Applications,
 Springer.
- ▶ David A. Forsyth, Jean Ponce (²2012, 2007): Computer Vision, A Modern Approach, Prentice Hall.
- Richard Hartley, Andrew Zisserman (2004):
 Multiple View Geometry in Computer Vision,
 Cambridge University Press.

Some First Computer Vision Software

- ► Open Computer Vision Library (OpenCV)
 - ► C++ library
 - ► has wrappers for Python & Octave
 - originally developed by Intel
 - ▶ v3.0 beta, 11/2014; http://opencv.org

Public data sets:

▶ ..

Summary (1/3)

- ▶ The **projective plane** \mathbb{P}^2 is an extension of the Euclidean plane with **ideal points**.
- ▶ Points and lines in \mathbb{P}^2 are parametrized by **homogenuous** coordinates.
- ▶ Each two parallels intersect in an ideal point, all ideal points form the line at infinity l_{∞} .
- ▶ Each circle contains two ideal points, the circular points, all lines through the circular points form the dual conic to the circular points C_{∞}^* .
- ▶ Conics are curves of order 2 (hyperbolas, parabolas, ellipsis), parametrized by a symmetric matrix C containing all points X with $X^TCX = 0$.

Jriversite,

Summary (2/3)

- ▶ **Projectivities** H are invertibles mappings of \mathbb{P}^2 onto \mathbb{P}^2 that preserve lines.
- ▶ Lines a transform via $H^{-T}a$, conics C via $H^{-T}CH^{-1}$.
- ► There exist several subgroups of the group of projectivities:
 - ► Isometries rotate and translate figures.
 - preserving lengths
 - Similarities additionally (isotropic) scale figures.
 - preserving ratio of lengths, angle
 - Affine transforms additionally non-isotropic scale figures.
 - preserving ratio of lengths on parallel lines, parallel lines
 - Projectivities additionally move the line at infinity.
 - preserving cross ratio
- Any projectivity can be decomposed into a chain of an pure projectivie, a pure affine transform and a similarity.

Jniversitor.

Summary (3/3)

► Images distorted by an projective transformation can be **rectified** (i.e., undoes the projective transformation).

► Affine rectification

- undoes a proper projective transformation
- moves the line at infinity back to its canonical position.
- allows to measure affine properties:
 - ratio of lengths on parallel lines, parallel lines
- ► requires, e.g., two pairs of parallel lines.

Metric rectification

- undoes a proper affine transformation
- moves the dual conic to the circular points back to its canonical position.
- allows to measure metric properties:
 - ► angles, ratio of lengths
- requires, e.g., two pairs of orthogonal lines.

Stildeshall

Further Readings

► [HZ04, ch. 1 and 2].

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision. Cambridge university press, 2004.