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Computer Vision 1. Very Brief Introduction

Topics of the Lecture

1. Simultaneous Localization and Mapping from Video (Visual SLAM)

2. Image Classification and Description
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Simultaneous Localization and Mapping
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[source https://www.youtube.com/watch?v=bDOnn0-4Nq8]

https://www.youtube.com/watch?v=bDOnn0-4Nq8


Computer Vision 1. Very Brief Introduction

Simultaneous Localization and Mapping from Video

I SLAM usually employs laser range scanners (lidars).

I Visual SLAM: use video sensors (cameras).

I main parts required:

1. Projective Geometry
2. Point Correspondences
3. Estimating Camera Positions (Localization)
4. Triangulation (Mapping)
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Computer Vision 1. Very Brief Introduction

Image Classification and Description

[source: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html]
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Computer Vision 2. The Projective Plane

Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

I most two lines intersect in exactly one point.
I but some two lines do not intersect.

I parallel lines

Idea:

I add ideal points, one for each set of parallel lines / direction

I define these points as intersection of any two parallel lines
I now any two lines intersect in exactly one point

I either in a finite or in an ideal point
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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

x ∈R2

Homogeneous coordinates:

x ∈P2 := R3/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R3
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Inhomogeneous coordinates:

x ∈R2

Homogeneous coordinates:

x ∈P2 := R3/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R3

Example:



1
2
3


 ≡




4
8

12


 represent the same point in P2




1
2
4


 represent a different point in P2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 47



Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Points
Inhomogeneous coordinates:

x ∈R2

Homogeneous coordinates:

x ∈P2 := R3/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R3

finite points:




x1

x2

1


 =: ι(

(
x1

x2

)
)

ideal points:




x1

x2

0



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Computer Vision 2. The Projective Plane

Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

a ∈ R3 :`a := {
(

x1

x2

)
| a1x1 + a2x2 + a3 = 0}

I a1 6= 0 or a2 6= 0 (or both a1, a2 6= 0).

I sa = (sa1, sa2, sa3)T encodes the same line as a (any s ∈ R, s 6= 0).

Homogeneous coordinates:

a ∈P2 : `a := {x ∈ P2 | aT x = a1x1 + a2x2 + a3x3 = 0}

I contains all finite points of a′ ∈ κ−1(a): `κ(a′) % ι(`a′)

I and the ideal point (a2,−a1, 0)T .
I intersection of parallel lines (same a1, a2, different a3)
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Note: κ : R3 → P2, a 7→ [a] := {a′ ∈ R3 | a′ ≡ a}.
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Computer Vision 2. The Projective Plane

A point on a line

A point x lies on line a iff xTa = 0.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 47



Computer Vision 2. The Projective Plane

Intersection of two lines

Lines a and b intersect in a× b :=




a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1




Proof:

aT (a× b) = a1a2b3 − a1a3b2 − a2a1b3 + a2a3b1 + a3a1b2 − a3a2b1 = 0

bT (a× b) = . . . = 0
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Computer Vision 2. The Projective Plane

Intersection of two lines

Lines a and b intersect in a× b :=




a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1




Proof:

aT (a× b) = a1a2b3 − a1a3b2 − a2a1b3 + a2a3b1 + a3a1b2 − a3a2b1 = 0

bT (a× b) = . . . = 0

Example:

x = 1 :a = (−1, 0, 1)T

y = 1 :b = (0,−1, 1)T

a× b =(1, 1, 1)T
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Computer Vision 2. The Projective Plane

Intersection of two lines

Lines a and b intersect in a× b :=




a2b3 − a3b2

−a1b3 + a3b1

a1b2 − a2b1




Proof:

aT (a× b) = a1a2b3 − a1a3b2 − a2a1b3 + a2a3b1 + a3a1b2 − a3a2b1 = 0

bT (a× b) = . . . = 0

Esp. for parallel lines: b1 = a1, b2 = a2, b3 6= a3:

a× b ≡




a2

−a1

0



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Computer Vision 2. The Projective Plane

Line joining points

The line through x and y is x × y .

Proof: exactly the same as previous slide.

Example:

x =(−1, 0, 1)T

y =(0,−1, 1)T

x × y =(1, 1, 1)T
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Computer Vision 2. The Projective Plane

Line at infinity

All ideal points form a line:

l∞ := (0, 0, 1)T line at infinity

Proof:
for any ideal point x = (x1, x2, 0)T : xT l∞ = 0.
for any finite (real-valued) point x = (x1, x2, 1): xT l∞ = 1 6= 0.

Furthermore:

I This is the only line in P2 not corresponding to an Euclidean line.

I Two parallel lines meet at the line at infinity.
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Computer Vision 2. The Projective Plane

A model for the projective plane2.2 The 2D projective plane 29

π

l

x
O

x 1

x

x 3

2

ideal
point

Fig. 2.1. A model of the projective plane. Points and lines of IP2 are represented by rays and planes,
respectively, through the origin in IR3. Lines lying in the x1x2-plane represent ideal points, and the
x1x2-plane represents l∞.

points lie on a single line. This is not true in the standard Euclidean geometry of IR2,
in which parallel lines form a special case.

The study of the geometry of IP2 is known as projective geometry. In a coordinate-
free purely geometric study of projective geometry, one does not make any distinction
between points at infinity (ideal points) and ordinary points. It will, however, serve
our purposes in this book sometimes to distinguish between ideal points and non-ideal
points. Thus, the line at infinity will at times be considered as a special line in projective
space.

A model for the projective plane. A fruitful way of thinking of IP2 is as a set of
rays in IR3. The set of all vectors k(x1, x2, x3)

T as k varies forms a ray through the
origin. Such a ray may be thought of as representing a single point in IP2. In this
model, the lines in IP2 are planes passing through the origin. One verifies that two non-
identical rays lie on exactly one plane, and any two planes intersect in one ray. This
is the analogue of two distinct points uniquely defining a line, and two lines always
intersecting in a point.

Points and lines may be obtained by intersecting this set of rays and planes by the
plane x3 = 1. As illustrated in figure 2.1 the rays representing ideal points and the
plane representing l∞ are parallel to the plane x3 = 1.

Duality. The reader has probably noticed how the role of points and lines may be
interchanged in statements concerning the properties of lines and points. In particular,
the basic incidence equation lTx = 0 for line and point is symmetric, since lTx = 0
implies xTl = 0, in which the positions of line and point are swapped. Similarly,
result 2.2 and result 2.4 giving the intersection of two lines and the line through two
points are essentially the same, with the roles of points and lines swapped. One may
enunciate a general principle, the duality principle as follows:

I points correspond to rays (lines through the origin)

I lines correspond to planes through the origin.
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Computer Vision 2. The Projective Plane

Conics
I A conic section (or just conic) is a curve one gets as intersection of

a cone and a plane
I ellipsis, parabola, hyperbola

I Corresponds to a curve of degree 2:
Heterogeneous coordinates:

a ∈ R6 : Ca := {x ∈ R2 | a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a6 = 0}

Homogeneous coordinates:
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[Wikipedia, Artikel Kegelschnitt]
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Conics
I A conic section (or just conic) is a curve one gets as intersection of

a cone and a plane
I ellipsis, parabola, hyperbola

I Corresponds to a curve of degree 2:
Heterogeneous coordinates:

a ∈ R6 : Ca := {x ∈ R2 | a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a6 = 0}

Homogeneous coordinates:

a ∈ P5 : Ca := {x ∈ P2 | a1x
2
1 + a2x1x2 + a3x

2
2

+ a4x1x3 + a5x2x3 + a6x
2
3 = 0}

= {x ∈ P2 | xTCx = 0},C :=




a1 a2/2 a4/2
a2/2 a3 a5/2
a4/2 a5/2 a6



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Computer Vision 2. The Projective Plane

Conics

I A conic section (or just conic) is a curve one gets as intersection of
a cone and a plane

I ellipsis, parabola, hyperbola

I Corresponds to a curve of degree 2:
Heterogeneous coordinates:

a ∈ R6 : Ca := {x ∈ R2 | a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a6 = 0}

Homogeneous coordinates:

C ∈ Sym(P3×3) : CC := {x ∈ P2 | xTCx = 0}
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Computer Vision 2. The Projective Plane

A conic joining 5 points

I Let x1, . . . , x5 ∈ P2 be 5 points
I in general position (i.e., never more than 2 on the same line)

I Conic parameters a have to fulfil the following system of linear
equations:




x1
1x

1
1 x1

1x
1
2 x1

2x
1
2 x1

1x
1
3 x1

2x
1
3 x1

3x
1
3

x2
1x

2
1 x2

1x
2
2 x2

2x
2
2 x2

1x
2
3 x2

2x
2
3 x2

3x
2
3

x3
1x

3
1 x3

1x
3
2 x3

2x
3
2 x3

1x
3
3 x3

2x
3
3 x3

3x
3
3

x4
1x

4
1 x4

1x
4
2 x4

2x
4
2 x4

1x
4
3 x4

2x
4
3 x4

3x
4
3

x5
1x

5
1 x5

1x
5
2 x5

2x
5
2 x5

1x
5
3 x5

2x
4
3 x5

3x
5
3




a = 0
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Computer Vision 2. The Projective Plane

Degenerate Conics

Conic C degenerate: C does not have full rank.

Example: two lines C := abT + baT (rank 2).

I contains lines a and b.
proof: for points x on line a: xTa = 0.
 x also on C : xTCx = xTabT x + xTbaT x = 0.
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Computer Vision 2. The Projective Plane

Conic tangent lines

The tangent line to a conic C at a point x is Cx .

Proof:
x lies on Cx : xTCx = 0.
If there is another common point y : yTCy = 0 and yTCx = 0.
 x + αy is common for all α, i.e., the whole line.
 C is degenerate (or there is no such y).
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Computer Vision 3. Projective Transformations

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff
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Computer Vision 3. Projective Transformations

Projectivity

A map h : P2 → P2 is called projectivity, if

1. it is invertible and

2. it preserves lines,
i.e., whenever x , y , z are on a line, so are h(x), h(y), h(z).

Equivalently, h(x) := Hx for a non-singular H ∈ P3×3.

Proof:
Any map h(x) := Hx is a projectivity:

Let x be a point on line a: aT x = 0.
Then point Hx is on line H−Ta: (H−1a)THx = aTH−1Hx = aT x = 0.

Any projectivity h is of type h(x) = Hx : more difficult to show.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: H−T := (H−1)T .
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Computer Vision 3. Projective Transformations

Transformation of Lines and Conics

The image of a line a under projectivity H is the line H−Ta:

H(la) = lH−T a

Proof:
Let x be a point on line a: aT x = 0.
Then point Hx is on line H−1a: (H−Ta)THx = aTH−1Hx = aT x = 0.

The image of a conic C under projectivity H is the conic H−TCH−1:

H(CC ) = CH−TCH−1

Proof:
Let x be a point on conic C : xTCx = 0.
Then point Hx is on conic H−TCH−1: xTHTH−TCH−1H−1x = 0
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Computer Vision 3. Projective Transformations

A Hierarchy of Transformations

I The projective transformations form a group (projective linear
group:

PLn := GLn/ ≡= {H ∈ P3×3 | H invertible}

I There are several subgroups:
I affine group: last row is (0, 0, 1)
I Euclidean group: additionally H1:2,1:2 orthogonal
I oriented Euclidean group: additionally detH = 1

I These subgroups can be described two ways:
I structurally (as above)
I by invariants: objects or sets of objects mapped to themselves
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Computer Vision 3. Projective Transformations

Isometries




x ′1
x ′2
1


 =




ε cos θ − sin θ t1

ε sin θ cos θ t2

0 0 1






x1

x2

1


 =

(
R t
0T 1

)
x

I rotation matrix R: RTR = RRT = I

I translation vector t.

I orientation preserving if ε = +1 (equivalent to detR = +1)
(ε ∈ {+1,−1})

Invariants:

I length, angle, area

I line at infinity l∞
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Computer Vision 3. Projective Transformations

Similarity Transformations




x ′1
x ′2
1


 =




s cos θ −s sin θ t1

s sin θ s cos θ t2

0 0 1






x1

x2

1


 =

(
sR t
0T 1

)
x

I isotropic scaling s.

Invariants:

I angle

I ratio of lengths, ratio of areas

I line at infinity l∞
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Computer Vision 3. Projective Transformations

Affine Transformations




x ′1
x ′2
1


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

0 0 1






x1

x2

1


 =

(
A t

0T 1

)
x

I A non-singular

, decompose via SVD:

A = R(θ)R(−φ)

(
λ1 0
0 λ2

)
R(φ)

I non-isotropic scaling with axis φ
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Computer Vision 3. Projective Transformations

Affine Transformations




x ′1
x ′2
1


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

0 0 1






x1

x2

1


 =

(
A t

0T 1

)
x

I A non-singular, decompose via SVD:

A = R(θ)R(−φ)

(
λ1 0
0 λ2

)
R(φ)

I non-isotropic scaling with axis φ40 2 Projective Geometry and Transformations of 2D

φ

deformationrotation

θ

a b

Fig. 2.7. Distortions arising from a planar affine transformation. (a) Rotation by R(θ). (b) A defor-
mation R(−φ) D R(φ). Note, the scaling directions in the deformation are orthogonal.

or in block form

x′ = HAx =

[
A t
0T 1

]
x (2.11)

with A a 2 × 2 non-singular matrix. A planar affine transformation has six degrees of
freedom corresponding to the six matrix elements. The transformation can be com-
puted from three point correspondences.

A helpful way to understand the geometric effects of the linear component A of
an affine transformation is as the composition of two fundamental transformations,
namely rotations and non-isotropic scalings. The affine matrix A can always be decom-
posed as

A = R(θ) R(−φ) D R(φ) (2.12)

where R(θ) and R(φ) are rotations by θ and φ respectively, and D is a diagonal matrix:

D =

[
λ1 0
0 λ2

]
.

This decomposition follows directly from the SVD (section A4.4(p585)): writing A =
UDVT = (UVT)(VDVT) = R(θ) (R(−φ) D R(φ)), since U and V are orthogonal matrices.

The affine matrix A is hence seen to be the concatenation of a rotation (by φ); a
scaling by λ1 and λ2 respectively in the (rotated) x and y directions; a rotation back
(by −φ); and finally another rotation (by θ). The only “new” geometry, compared to
a similarity, is the non-isotropic scaling. This accounts for the two extra degrees of
freedom possessed by an affinity over a similarity. They are the angle φ specifying the
scaling direction, and the ratio of the scaling parameters λ1 : λ2. The essence of an
affinity is this scaling in orthogonal directions, oriented at a particular angle. Schematic
examples are given in figure 2.7.
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Computer Vision 3. Projective Transformations

Affine Transformations




x ′1
x ′2
1


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

0 0 1






x1

x2

1


 =

(
A t

0T 1

)
x

I A non-singular, decompose via SVD:

A = R(θ)R(−φ)

(
λ1 0
0 λ2

)
R(φ)

I non-isotropic scaling with axis φ

Invariants:
I parallel lines
I ratio of lengths of parallel line segments
I ratio of areas
I line at infinity l∞
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Computer Vision 3. Projective Transformations

Projective Transformations




x ′1
x ′2
x ′3


 =




a1,1 a1,2 t1

a2,1 a2,2 t2

v1 v2 v3






x1

x2

x3


 =

(
A t
vT v3

)
x

I v moves the line at infinity l∞

Invariants:

I ratio of ratios of lengths of parallel line segments (cross ratio)
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Projective Transformations
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Invariants:
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Computer Vision 3. Projective Transformations

Similary, Affine & Projective Transformations / Example

2.4 A hierarchy of transformations 37

a b c

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) Similarity: the
circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or
perpendicular have the same relative orientation in the image. (b) Affine: The circle is imaged as an
ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square
tiles, which are parallel in the world are parallel in the image. (c) Projective: Parallel world lines are
imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form x′TC′x′ with C′ = H−TCH−1. This gives the transformation
rule for a conic:

Result 2.13. Under a point transformation x′ = Hx, a conic C transforms to
C′ = H−TCH−1.

The presence of H−1 in this equation may be expressed by saying that a conic transforms
covariantly. The transformation rule for a dual conic is derived in a similar manner.
This gives:

Result 2.14. Under a point transformation x′ = Hx, a dual conic C∗ transforms to
C∗′ = HC∗HT.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation
and their geometric properties. It was shown in section 2.3 that projective transforma-
tions form a group. This group is called the projective linear group, and it will be seen
that these specializations are subgroups of this group.

The group of invertible n× n matrices with real elements is the (real) general linear
group on n dimensions, or GL(n). To obtain the projective linear group the matrices
related by a scalar multiplier are identified, giving PL(n) (this is a quotient group of
GL(n)). In the case of projective transformations of the plane n = 3.

The important subgroups of PL(3) include the affine group, which is the subgroup
of PL(3) consisting of matrices for which the last row is (0, 0, 1), and the Euclidean
group, which is a subgroup of the affine group for which in addition the upper left hand
2 × 2 matrix is orthogonal. One may also identify the oriented Euclidean group in
which the upper left hand 2× 2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the
isometries, and progressively generalizing until projective transformations are reached.

a) similarity

b) affine c) projective

circles circles

ellipsis conic

squares squares

diamond quadrangle

parallel lines parallel

parallel converging

orthogonal linnes orthogonal

non-orthogonal non-orthogonal
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Computer Vision 3. Projective Transformations

Similary, Affine & Projective Transformations / Example

2.4 A hierarchy of transformations 37

a b c

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) Similarity: the
circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or
perpendicular have the same relative orientation in the image. (b) Affine: The circle is imaged as an
ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square
tiles, which are parallel in the world are parallel in the image. (c) Projective: Parallel world lines are
imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form x′TC′x′ with C′ = H−TCH−1. This gives the transformation
rule for a conic:

Result 2.13. Under a point transformation x′ = Hx, a conic C transforms to
C′ = H−TCH−1.

The presence of H−1 in this equation may be expressed by saying that a conic transforms
covariantly. The transformation rule for a dual conic is derived in a similar manner.
This gives:

Result 2.14. Under a point transformation x′ = Hx, a dual conic C∗ transforms to
C∗′ = HC∗HT.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation
and their geometric properties. It was shown in section 2.3 that projective transforma-
tions form a group. This group is called the projective linear group, and it will be seen
that these specializations are subgroups of this group.

The group of invertible n× n matrices with real elements is the (real) general linear
group on n dimensions, or GL(n). To obtain the projective linear group the matrices
related by a scalar multiplier are identified, giving PL(n) (this is a quotient group of
GL(n)). In the case of projective transformations of the plane n = 3.

The important subgroups of PL(3) include the affine group, which is the subgroup
of PL(3) consisting of matrices for which the last row is (0, 0, 1), and the Euclidean
group, which is a subgroup of the affine group for which in addition the upper left hand
2 × 2 matrix is orthogonal. One may also identify the oriented Euclidean group in
which the upper left hand 2× 2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the
isometries, and progressively generalizing until projective transformations are reached.

a) similarity b) affine

c) projective

circles circles ellipsis

conic

squares squares diamond

quadrangle

parallel lines parallel parallel

converging

orthogonal linnes orthogonal non-orthogonal

non-orthogonal
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Computer Vision 3. Projective Transformations

Similary, Affine & Projective Transformations / Example

2.4 A hierarchy of transformations 37

a b c

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) Similarity: the
circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or
perpendicular have the same relative orientation in the image. (b) Affine: The circle is imaged as an
ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square
tiles, which are parallel in the world are parallel in the image. (c) Projective: Parallel world lines are
imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form x′TC′x′ with C′ = H−TCH−1. This gives the transformation
rule for a conic:

Result 2.13. Under a point transformation x′ = Hx, a conic C transforms to
C′ = H−TCH−1.

The presence of H−1 in this equation may be expressed by saying that a conic transforms
covariantly. The transformation rule for a dual conic is derived in a similar manner.
This gives:

Result 2.14. Under a point transformation x′ = Hx, a dual conic C∗ transforms to
C∗′ = HC∗HT.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation
and their geometric properties. It was shown in section 2.3 that projective transforma-
tions form a group. This group is called the projective linear group, and it will be seen
that these specializations are subgroups of this group.

The group of invertible n× n matrices with real elements is the (real) general linear
group on n dimensions, or GL(n). To obtain the projective linear group the matrices
related by a scalar multiplier are identified, giving PL(n) (this is a quotient group of
GL(n)). In the case of projective transformations of the plane n = 3.

The important subgroups of PL(3) include the affine group, which is the subgroup
of PL(3) consisting of matrices for which the last row is (0, 0, 1), and the Euclidean
group, which is a subgroup of the affine group for which in addition the upper left hand
2 × 2 matrix is orthogonal. One may also identify the oriented Euclidean group in
which the upper left hand 2× 2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the
isometries, and progressively generalizing until projective transformations are reached.

a) similarity b) affine c) projective

circles circles ellipsis conic
squares squares diamond quadrangle
parallel lines parallel parallel converging
orthogonal linnes orthogonal non-orthogonal non-orthogonal
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Computer Vision 3. Projective Transformations

Projective Transformations / Decomposition

(
A t
vT v3

)
=

(
sR t
0T 1

)(
K 0
0T 1

)(
I 0
vT v3

)

A = sRK + tvT

I K upper triangular matrix with detK = 1

I valid for v3 6= 0

I unique if s is chosen s > 0
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Computer Vision 3. Projective Transformations

Summary of Projective Transformations
44 2 Projective Geometry and Transformations of 2D

Group Matrix Distortion Invariant properties

Projective
8 dof

[
h11 h12 h13

h21 h22 h23

h31 h32 h33

] Concurrency, collinearity, order of contact:
intersection (1 pt contact); tangency (2 pt con-
tact); inflections
(3 pt contact with line); tangent discontinuities
and cusps. cross ratio (ratio of ratio of lengths).

Affine
6 dof

[
a11 a12 tx
a21 a22 ty
0 0 1

] Parallelism, ratio of areas, ratio of lengths on
collinear or parallel lines (e.g. midpoints), lin-
ear combinations of vectors (e.g. centroids).
The line at infinity, l∞.

Similarity
4 dof

[
sr11 sr12 tx
sr21 sr22 ty
0 0 1

]
Ratio of lengths, angle. The circular points, I,J
(see section 2.7.3).

Euclidean
3 dof

[
r11 r12 tx
r21 r22 ty
0 0 1

]
Length, area

Table 2.1. Geometric properties invariant to commonly occurring planar transformations. The
matrix A = [aij ] is an invertible 2× 2 matrix, R = [rij ] is a 2D rotation matrix, and (tx, ty) a 2D trans-
lation. The distortion column shows typical effects of the transformations on a square. Transformations
higher in the table can produce all the actions of the ones below. These range from Euclidean, where
only translations and rotations occur, to projective where the square can be transformed to any arbitrary
quadrilateral (provided no three points are collinear).

For example, a configuration of four points in general position has 8 degrees of freedom
(2 for each point), and so 4 similarity, 2 affinity and zero projective invariants since
these transformations have respectively 4, 6 and 8 degrees of freedom.

Table 2.1 summarizes the 2D transformation groups and their invariant properties.
Transformations lower in the table are specializations of those above. A transformation
lower in the table inherits the invariants of those above.

2.5 The projective geometry of 1D

The development of the projective geometry of a line, IP1, proceeds in much the same
way as that of the plane. A point x on the line is represented by homogeneous coordi-
nates (x1, x2)

T, and a point for which x2 = 0 is an ideal point of the line. We will use
the notation x̄ to represent the 2-vector (x1, x2)

T. A projective transformation of a line
is represented by a 2× 2 homogeneous matrix,

x̄′ = H2×2x̄

and has 3 degrees of freedom corresponding to the four elements of the matrix less one
for overall scaling. A projective transformation of a line may be determined from three
corresponding points.
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Computer Vision 4. Recovery of Affine Properties from Images

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff
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Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine and Metric Properties
Decomposition of general projective transformation:

(
A t
vT v3

)
=

(
sR t
0T 1

)(
K 0
0T 1

)(
I 0
vT v3

)

1. undo proper projective transformation (affine rectification):
I then original and image differ only by an affine transformation
I  measure affine properties of the original in the image

(= properties invariant under affine transformations)
I parallel lines, ratio of lengths on parallel lines

2. undo proper affine transformation (metric rectification):
I then original and image differ only by a similarity transformation
I  measure metric properties of the original in the image

(= properties invariant under similarity transformations)
I angles, ratio of lengths
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1. undo proper projective transformation (affine rectification):
I then original and image differ only by an affine transformation
I  measure affine properties of the original in the image

(= properties invariant under affine transformations)
I parallel lines, ratio of lengths on parallel lines

2. undo proper affine transformation (metric rectification):
I then original and image differ only by a similarity transformation
I  measure metric properties of the original in the image

(= properties invariant under similarity transformations)
I angles, ratio of lengths

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 47



Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine Properties

Undo proper projective transformation:

(
I 0
vT v3

)
:




x1

x2

0


 7→




x1

x2

v1x1 + v2x2




l∞ :=




0
0
1


 7→

(
−v/v3

1/v3

)
=

1

v3




v1

v2

1




I maps line at infinity to finite line (v1, v2, 1)T

I to undo:
I locate image (v1, v2, 1)T of line at infinty

I undo by applying the inverse H−1 =

(
I 0

−vT/v3 1/v3

)
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Note: Lines transform by H−T :

(
I 0
vT v3

)−T

=

(
I −v/v3

0 1/v3

)
.



Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine Properties / Example
50 2 Projective Geometry and Transformations of 2D

a b

c

Fig. 2.13. Affine rectification via the vanishing line. The vanishing line of the plane imaged in (a) is
computed (c) from the intersection of two sets of imaged parallel lines. The image is then projectively
warped to produce the affinely rectified image (b). In the affinely rectified image parallel lines are now
parallel. However, angles do not have their veridical world value since they are affinely distorted. See
also figure 2.17.

where HA is any affine transformation (the last row of H is lT). One can verify that under
the line transformation (2.6–p36) H−T(l1, l2, l3)

T = (0, 0, 1)T = l∞.

Example 2.18. Affine rectification
In a perspective image of a plane, the line at infinity on the world plane is imaged as the
vanishing line of the plane. This is discussed in more detail in chapter 8. As illustrated
in figure 2.13 the vanishing line l may be computed by intersecting imaged parallel
lines. The image is then rectified by applying a projective warping (2.19) such that l is
mapped to its canonical position l∞ = (0, 0, 1)T. �

This example shows that affine properties may be recovered by simply specifying a
line (2 dof). It is equivalent to specifying only the projective component of the trans-
formation decomposition chain (2.16). Conversely if affine properties are known, these
may be used to determine points and the line at infinity. This is illustrated in the fol-
lowing example.

Example 2.19. Computing a vanishing point from a length ratio. Given two in-
tervals on a line with a known length ratio, the point at infinity on the line may be
determined. A typical case is where three points a′, b′ and c′ are identified on a line in
an image. Suppose a, b and c are the corresponding collinear points on the world line,
and the length ratio d(a,b) : d(b, c) = a : b is known (where d(x,y) is the Euclidean

Now we can measure area ratios !
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Computer Vision 4. Recovery of Affine Properties from Images

Recovery of Affine Properties / Algorithm

1: procedure rectify-affine-two-parallels(a1, a2, b1, b2 ∈ P2)
2: s1 := a1 × a2 . compute intersection of parallels a1, a2

3: s2 := b1 × b2 . compute intersection of parallels b1, b2

4: l∞ := s1 × s2 . compute image of line at infinity

5: H−1 :=




1 0 0
0 1 0

−l∞,1/l∞,3 −l∞,2/l∞,3 1/l∞,3


 . compute inverse

6: return H−1
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Computer Vision 5. Angles in the Projective Plane

Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 47



Computer Vision 5. Angles in the Projective Plane

Circular Points
A conic

C :=




a1 a2/2 a4/2
a2/2 a3 a5/2
a4/2 a5/2 a6


 =




a1 0 a4/2
0 a1 a5/2

a4/2 a5/2 a6




is a circle if a1 = a3 and a2 = 0.

Ideal points x = (x1, x2, 0)T on a circle:

xTCx = a1x
2
1 + a1x

2
2 = 0

are exactly the circular points:

I :=




1
i
0


 , J :=




1
−i
0



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Computer Vision 5. Angles in the Projective Plane

Circular Points
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
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Computer Vision 5. Angles in the Projective Plane

Line Conics

C ∈ Sym(P3×3) defines a point conic via

CC := {x ∈ P2 | xTCx = 0}

It also can be used to define a line conic / dual conic:

C∗C := {a ∈ P2 | aTCa = 0}

(where a denotes a line)
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Computer Vision 5. Angles in the Projective Plane

Adjugate of a Matrix

For a square matrix A ∈ Rn×n,

A∗ ∈ Rn×n with A∗i ,j := (−1)i+j detA−j ,−i

is called its adjugate A∗.

It holds:

I for any A: A∗A = AA∗ = (detA)I

I A∗ is continuous in A.

I if A is invertible, the adjoint is the scaled inverse: A∗ = (detA)A–1

I if A is not invertible, the adjoint nullifies A: A∗A = AA∗ = 0

I the adjugate is the transposed of the cofactor matrix.
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Note: A−j,−i denotes the matrix A with row j and column i removed.
The adjugate is also called adjoint.



Computer Vision 5. Angles in the Projective Plane

Dual Conic
For any point conic C ∈ Sym(P3×3), the set of tangent lines

I forms a line conic,
I parametrized by the adjugate C ∗:

{a ∈ P2 | a tangent to C} = C∗C∗

32 2 Projective Geometry and Transformations of 2D

a b

Fig. 2.2. (a) Points x satisfying xTCx = 0 lie on a point conic. (b) Lines l satisfying lTC∗l = 0 are
tangent to the point conic C. The conic C is the envelope of the lines l.

in figure 2.2. A dual conic has five degrees of freedom. In a similar manner to points
defining a point conic, it follows that five lines in general position define a dual conic.

Degenerate conics. If the matrix C is not of full rank, then the conic is termed degen-
erate. Degenerate point conics include two lines (rank 2), and a repeated line (rank
1).

Example 2.8. The conic

C = lmT +mlT

is composed of two lines l and m. Points on l satisfy lTx = 0, and are on the conic
since xTCx = (xTl)(mTx) + (xTm)(lTx) = 0. Similarly, points satisfying mTx = 0
also satisfy xTCx = 0. The matrix C is symmetric and has rank 2. The null vector is
x = l×m which is the intersection point of l and m. �

Degenerate line conics include two points (rank 2), and a repeated point (rank 1).
For example, the line conic C∗ = xyT + yxT has rank 2 and consists of lines passing
through either of the two points x and y. Note that for matrices that are not invertible
(C∗)∗ �= C.

2.3 Projective transformations

In the view of geometry set forth by Felix Klein in his famous “Erlangen Program”,
[Klein-39], geometry is the study of properties invariant under groups of transforma-
tions. From this point of view, 2D projective geometry is the study of properties of
the projective plane IP2 that are invariant under a group of transformations known as
projectivities.

A projectivity is an invertible mapping from points in IP2 (that is homogeneous 3-
vectors) to points in IP2 that maps lines to lines. More precisely,

Definition 2.9. A projectivity is an invertible mapping h from IP2 to itself such that
three points x1, x2 and x3 lie on the same line if and only if h(x1), h(x2) and h(x3) do.

Projectivities form a group since the inverse of a projectivity is also a projectivity, and
so is the composition of two projectivities. A projectivity is also called a collineation
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Computer Vision 5. Angles in the Projective Plane

Dual Conic to the Circular Points

Dual conic to the circular points (degenerate):

C ∗∞ := IJT + JIT =




1 0 0
0 1 0
0 0 0




I contains exactly all lines through the circular points I or J.

I transforms as HC ∗HT : H(C∗C∗) = C∗HC∗HT .

I fixed under projectivity H iff H is a similarity.

I 4 dof (general C has 5, minus 1 due to detC = 0)

I l∞ is the null vector of C ∗∞.
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Computer Vision 5. Angles in the Projective Plane

Angels in the Projective Plane

Angels are defined as:

cos θ(a, b) :=
aTC ∗∞b√

(aTC ∗∞a) (bTC ∗∞b)
, a, b ∈ P2

I for the canonical C ∗∞, conincides with the Euclidean definition:

cos θ(a, b) :=
aTb√

(aTa) (bTb)
, a, b ∈ R2

I stays invariant under projective transformation:

a′ = H−Ta, b′ = H−Tb, C ∗∞
′ = HC ∗∞HT

a′TC ∗∞
′b′ = aTH–1HC ∗∞HTH−Tb = aTC ∗∞b
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Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties

I assume there is no pure projective transformation
(i.e., affine rectification already done).

I need only to find pure affine transformation:

Ha :=

(
K 0
0T 1

)
, with K upper triangular

I under Ha we get C ∗∞
′ as

C ∗∞
′ := HaC

∗
∞HT

a =

(
KKT 0

0T 0

)

1. find symmetric matrix S := KKT

2. find K via Cholesky decomposition of S
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Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties (2/2)

I for two lines a′, b′ that are orthogonal in the original:

0 = a′TC ∗∞
′b′ = a′1:2

TSb1:2

= a′1S1,1b
′
1 + a′1S1,2b

′
2 + a′2S2,1b

′
1 + a′2S2,2b

′
2

= a′1b
′
1S1,1 + (a′1b

′
2 + a′2b

′
1)S1,2 + a′2b

′
2S2,2

= (a′1b
′
1, a
′
1b
′
2 + a′2b

′
1, a
′
2b
′
2)(S1,1, S1,2, S2,2)T

we get 1 linear constraint in s := (S1,1,S1,2,S2,2)T . .

I for two pairs of lines that are orthogonal in the original we get
2 linear constraints for 3 variables

(
a′1b
′
1 a′1b

′
2 + a′2b

′
1 a′2b

′
2

c ′1d
′
1 c ′1d

′
2 + c ′2d

′
1 c ′2d

′
2

)
s

where s 6= 0 has to be identified only up to a factor.
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Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties / Algorithm

1: procedure
rectify-metric-two-orthogonals(a1, a2, b1, b2 ∈ P2)

2: A :=

(
a1

1a
2
1 a1

1a
2
2 + a1

2a
2
1 a1

2a
2
2

b1
1b

2
1 b1

1b
2
2 + b1

2b
2
1 b1

2b
2
2

)

3: find s 6= 0 : As = 0 . find C ∗∞ :=




s1 s2 0
s2 s3 0
0 0 0




4: K := cholesky(

(
s1 s2

s2 s3

)
) . find H :=

(
K 0
0T 1

)

5: H−1 :=




1/K1,1 −1/(K1,2K2,2) 0
0 1/K2,2 0
0 0 1


 . compute inverse

6: return H−1
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Computer Vision 6. Recovery of Metric Properties from Images

Recovery of Metric Properties / Example

2.7 Recovery of affine and metric properties from images 57

a b

Fig. 2.17. Metric rectification via orthogonal lines I. The affine transformation required to metrically
rectify an affine image may be computed from imaged orthogonal lines. (a) Two (non-parallel) line pairs
identified on the affinely rectified image (figure 2.13) correspond to orthogonal lines on the world plane.
(b) The metrically rectified image. Note that in the metrically rectified image all lines orthogonal in the
world are orthogonal, world squares have unit aspect ratio, and world circles are circular.

a b

Fig. 2.18. Metric rectification via orthogonal lines II. (a) The conic C∗∞ is determined on the per-
spectively imaged plane (the front wall of the building) using the five orthogonal line pairs shown. The
conic C∗∞ determines the circular points, and equivalently the projective transformation necessary to
metrically rectify the image (b). The image shown in (a) is the same perspective image as that of figure
2.4(p35), where the perspective distortion was removed by specifying the world position of four image
points.

a conic to contain a point (2.4–p31), this provides a linear constraint on the elements
of C∗∞, namely

(l1m1, (l1m2 + l2m1)/2, l2m2, (l1m3 + l3m1)/2, (l2m3 + l3m2)/2, l3m3) c = 0

where c = (a, b, c, d, e, f)T is the conic matrix (2.3–p30) of C∗∞ written as a 6-vector.
Five such constraints can be stacked to form a 5 × 6 matrix, and c, and hence C∗∞,
is obtained as the null vector. This shows that C∗∞ can be determined linearly from
the images of five line pairs which are orthogonal on the world plane. An example of
metric rectification using such line pair constraints is shown in figure 2.18. �

Stratification. Note, in example 2.27 the affine and projective distortions are deter-
mined in one step by specifying C∗∞. In the previous example 2.26 first the projec-
tive and subsequently the affine distortions were removed. This two-step approach is
termed stratified. Analogous approaches apply in 3D, and are employed in chapter 10

a) affine rectified image b) metric rectified image

Now we can measure angles and length ratios !
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Computer Vision 7. Organizational Stuff

Exercises and Tutorials

I There will be a weekly sheet with 4 exercises
handed out each Tuesday in the lecture.
1st sheet will be handed out Thu. 23.4. in the tutorial.

I Solutions to the exercises can be
submitted until next Tuesday noon
1st sheet is due Tue. 28.4.

I Exercises will be corrected.

I Tutorials each Thursday 2pm–4pm,
1st tutorial at Thur. 23.4.

I Successful participation in the tutorial gives up to 10% bonus points
for the exam.
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Computer Vision 7. Organizational Stuff

Exam and Credit Points

I There will be a written exam at end of term
(2h, 4 problems).

I The course gives 6 ECTS (2+2 SWS).

I The course can be used in
I IMIT MSc. / Informatik / Gebiet KI & ML
I Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
I as well as in both BSc programs.
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Computer Vision 7. Organizational Stuff

Some Text Books

I Simon J. D. Prince (2012):
Computer Vision: Models, Learning, and Inference,
Cambridge University Press.

I Richard Szeliski (2011):
Computer Vision, Algorithms and Applications,
Springer.

I David A. Forsyth, Jean Ponce (22012, 2007):
Computer Vision, A Modern Approach,
Prentice Hall.

I Richard Hartley, Andrew Zisserman (2004):
Multiple View Geometry in Computer Vision,
Cambridge University Press.
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Computer Vision 7. Organizational Stuff

Some First Computer Vision Software

I Open Computer Vision Library (OpenCV)
I C++ library
I has wrappers for Python & Octave
I originally developed by Intel
I v3.0 beta, 11/2014; http://opencv.org

Public data sets:

I ...
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Computer Vision 7. Organizational Stuff

Summary (1/3)

I The projective plane P2 is an extension of the Euclidean plane with
ideal points.

I Points and lines in P2 are parametrized by homogenuous
coordinates.

I Each two parallels intersect in an ideal point,
all ideal points form the line at infinity l∞.

I Each circle contains two ideal points, the circular points,
all lines through the circular points form the dual conic to the
circular points C ∗∞.

I Conics are curves of order 2 (hyperbolas, parabolas, ellipsis),
parametrized by a symmetric matrix C containing all points x with
xTCx = 0.
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Computer Vision 7. Organizational Stuff

Summary (2/3)

I Projectivities H are invertibles mappings of P2 onto P2 that preserve
lines.

I Lines a transform via H–Ta, conics C via H−TCH−1.

I There exist several subgroups of the group of projectivities:
I Isometries rotate and translate figures.

I preserving lengths

I Similarities additionally (isotropic) scale figures.
I preserving ratio of lengths, angle

I Affine transforms additionally non-isotropic scale figures.
I preserving ratio of lengths on parallel lines, parallel lines

I Projectivities additionally move the line at infinity.
I preserving cross ratio

I Any projectivity can be decomposed into a chain of
an pure projectivie, a pure affine transform and a similarity.
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Computer Vision 7. Organizational Stuff

Summary (3/3)

I Images distorted by an projective transformation can be rectified
(i.e., undoes the projective transformation).

I Affine rectification
I undoes a proper projective transformation
I moves the line at infinity back to its canonical position.
I allows to measure affine properties:

I ratio of lengths on parallel lines, parallel lines

I requires, e.g., two pairs of parallel lines.

I Metric rectification
I undoes a proper affine transformation
I moves the dual conic to the circular points back to its canonical

position.
I allows to measure metric properties:

I angles, ratio of lengths

I requires, e.g., two pairs of orthogonal lines.
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Computer Vision

Further Readings

I [HZ04, ch. 1 and 2].
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