Outline

\author{

1. Points, Lines, Planes in Projective Space
}

2. Quadrics

2. Transformations

Outline

\author{

1. Points, Lines, Planes in Projective Space
}

2. Quadrics

2. Transformations

Objects in 2D Revisited

type	repr.	dim	dof	examples
points	\mathbb{P}^{2}	0	2	circular points I, J
lines	\mathbb{P}^{2}	1	2	line at inf. I_{∞}
point conics	$\operatorname{Sym}\left(\mathbb{P}^{2 \times 2}\right)$	1	5	
line conics	$\operatorname{Sym}\left(\mathbb{P}^{2 \times 2}\right)$	2	5	dual conic of circ. pts. C_{∞}^{*}

Note: The dimensionality applies to non-degenerate cases only.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. Points, Lines, Planes in Projective Space

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$
x \in \mathbb{R}^{3}
$$

Homogeneous coordinates:

$$
\begin{aligned}
& x \in \mathbb{P}^{3}:=\mathbb{R}^{4} / \equiv \\
& \quad x \equiv y: \Longleftrightarrow \exists s \in \mathbb{R} \backslash\{0\}: s x=y, \quad x, y \in \mathbb{R}^{4}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \equiv\left(\begin{array}{c}
4 \\
8 \\
12 \\
16
\end{array}\right) \text { represent the same point in } \mathbb{P}^{3} \\
& \left(\begin{array}{l}
1 \\
2 \\
3 \\
5
\end{array}\right) \text { represent a different point in } \mathbb{P}^{3}
\end{aligned}
$$

Dual of Points: Planes

Inhomogeneous coordinates:

$$
p \in \mathbb{R}^{4}: P_{p}:=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \right\rvert\, p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}+p_{4}=0\right\}
$$

Homogeneous coordinates:

$$
p \in \mathbb{P}^{3}: P_{p}:=\left\{x \in \mathbb{P}^{3} \mid p^{T} x=p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}+p_{4} x_{4}=0\right\}
$$

- contains all finite points of $p^{\prime} \in \kappa^{-1}(p): P_{\kappa\left(p^{\prime}\right)} \supsetneqq \iota\left(P_{p^{\prime}}\right)$

Note: $\kappa: \mathbb{R}^{4} \rightarrow \mathbb{P}^{3}, a \mapsto[a]:=\left\{a^{\prime} \in \mathbb{R}^{4} \mid a^{\prime} \equiv a\right\}$.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 1. Points, Lines, Planes in Projective Space

Intersecting Planes

Zeroset / Null space:

$$
\operatorname{Nul}(H):=\left\{p \in \mathbb{P}^{3} \mid H p=0\right\}
$$

All points incident to two planes $p, q(p \neq q)$:

$$
P P(p, q):=\left\{x \in \mathbb{P}^{3} \mid x \in P_{p}, x \in P_{q}\right\}=\left\{x \in \mathbb{P}^{3} \mid p^{T} x=q^{T} x=0\right\}
$$

Can be represented as zeroset:

$$
P P(p, q)=\operatorname{Nul}\left(p q^{T}-q p^{T}\right)
$$

- idea: represent lines as intersection of planes

All Planes Containing Two Points

All planes containing two points $x, y(x \neq y)$:

$$
\operatorname{PP}^{*}(x, y):=\left\{p \in \mathbb{P}^{3} \mid x, y \in P_{p}\right\}=\left\{p \in \mathbb{P}^{3} \mid p^{T} x=p^{T} y=0\right\}
$$

Can be represented as zeroset:

$$
\mathrm{PP}^{*}(x, y)=\operatorname{Nul}\left(x y^{T}-y x^{T}\right)
$$

- this is just the dual of "All points incident to two planes"
- idea: represent lines as intersection of planes
- any two planes containing two points x, y will do

Plücker Matrix

For two points $x, y \in \mathbb{P}^{3}$:

$$
\operatorname{Plü}(x, y):=A:=x y^{T}-y x^{T}
$$

- skew symmetric: $A^{T}=-A$
- esp. zero diagonal: $A_{i, i}=0$.
- rank 2 (for $x \neq y$)

Lines have 4 Degrees of Freedom

[HZ04, p. 68]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. Points, Lines, Planes in Projective Space

Lines via Dual Plücker Matrices

Lines can be defined easily via spans:

$$
\begin{aligned}
\operatorname{span}\left(x^{1}, x^{2}, \ldots, x^{M}\right) & :=\sum_{m=1}^{M} \mathbb{R} x^{m}:=\left\{z \in \mathbb{R}^{M} \mid \exists s \in \mathbb{R}^{M}: z=\sum_{m=1}^{M} s_{m} x^{m}\right\} \\
I(x, y) & :=\operatorname{span}(x, y)
\end{aligned}
$$

Lines can be represented in 3D as zeroset of the dual Plücker matrix:

$$
I(x, y)=\operatorname{Nul}\left(\operatorname{Pl} \ddot{u}^{*}(x, y)\right)
$$

with

$$
\begin{aligned}
& \qquad \text { Plü̈ }^{*}(x, y):=A^{*}:=\left(\begin{array}{cccc}
0 & A_{3,4} & A_{4,2} & A_{2,3} \\
-A_{3,4} & 0 & A_{1,4} & A_{3,1} \\
-A_{4,2} & -A_{1,4} & 0 & A_{1,2} \\
-A_{2,3} & -A_{3,1} & -A_{1,2} & 0
\end{array}\right) \\
& \text { and Plü }(x, y):=A:=x y^{\top}-y x^{\top} \\
& \text { (Plücker-Matrix) }
\end{aligned}
$$

Lines via Dual Plücker Matrices

$$
\begin{aligned}
\mathrm{PP}(x, y) & =\operatorname{Nul}(A), \quad A=x y^{T}-y x^{T} \\
I(x, y) & =\operatorname{Nul}\left(A^{*}\right), \quad A^{*}=p q^{T}-q p^{T}, \quad p, q \in \operatorname{PP}(x, y)
\end{aligned}
$$

Now

$$
\begin{aligned}
A^{*} A & =\left(p q^{T}-q p^{T}\right)\left(x y^{T}-y x^{T}\right) \\
& =p q^{T} x y^{T}-p q^{T} y x^{T}-q p^{T} x y^{T}+q p^{T} y x^{T}=0
\end{aligned}
$$

therefore for all $i, j, i \neq j$:

$$
\begin{aligned}
& \qquad \begin{aligned}
0=-\left(A^{*} A\right)_{i, j}=\sum_{k=1}^{4} A_{i, k}^{*} A_{j, k}=\sum_{k \notin\{i, j\}} A_{i, k}^{*} A_{j, k} \quad \text { as diagonals are zero } \\
\text { i.e., } \quad A_{i, k_{1}}^{*} A_{j, k_{1}}+A_{i, k_{2}}^{*} A_{j, k_{2}}=0, \quad\{1,2,3,4\}=\left\{i, j, k_{1}, k_{2}\right\}
\end{aligned}
\end{aligned}
$$

and thus

$$
\frac{A_{3,4}}{A_{1,2}^{*}}=\frac{A_{4,2}}{A_{1,3}^{*}}=\frac{A_{2,3}}{A_{1,4}^{*}}=\frac{A_{1,2}}{A_{3,4}^{*}}=\frac{A_{1,3}}{A_{4,2}^{*}}=\frac{A_{1,4}}{A_{2,3}^{*}}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 1. Points, Lines, Planes in Projective Space

Operations on Points, Lines \& Planes

point x on plane p :

$$
\begin{aligned}
p^{T} x & =0 \\
A^{*} x & =0
\end{aligned}
$$

point x on line A^{*} :
plane p joining points x, y, z :
plane p joining point x and line A^{*} :

$$
p=A^{*} x
$$

line A^{*} joining points x, y :

$$
\begin{aligned}
A^{*} & =\mathrm{Pl} \ddot{u}^{*}(x, y) \\
A^{*} & =p q^{T}-q p^{T} \\
x & =A p
\end{aligned}
$$

line A^{*} as intersection of planes p, q :
line A is on plane p :
$A p=0$

Plane at Infinity p_{∞}

- All ideal points $\left(x_{1}, x_{2}, x_{3}, 0\right)^{T}$ form a plane, the plane at infinity $p_{\infty}:=(0,0,0,1)^{T}$.
-

$\left.\begin{array}{l}\text { Two parallel planes } \\ \text { A parallel line and plane } \\ \text { Two parallel lines }\end{array}\right\}$ intersect in $\left\{\begin{array}{l}\text { a line } \\ \text { a point on } p_{\infty} \\ \text { a point }\end{array}\right.$

- p_{∞} is fixed under affine transformations.

Proofs: same as for the line at infinity in \mathbb{P}^{2}.

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

Quadrics

Quadratic surfaces:

$$
\mathbf{Q}_{Q}:=\left\{x \in \mathbb{P}^{3} \mid x^{\top} Q x=0\right\}, \quad Q \in \operatorname{Sym}\left(\mathbb{P}^{4 \times 4}\right)
$$

- 9 degrees of freedom
- 9 points in general position define a quadric
- The intersection of a plane p with a quadric Q is a conic
- A quadric Q transforms as $H^{-\top} Q H^{-1}: H\left(\mathbf{Q}_{Q}\right)=\mathbf{Q}_{H^{-\top} Q H^{-1}}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Quadrics / Signature

$$
\begin{aligned}
Q & =U S U^{T} \\
& =H S^{\prime} H^{T}
\end{aligned}
$$

SVD: S diagonal, $U U^{T}=I$
S^{\prime} diagonal with $S_{i, i}^{\prime} \in\{+1,-1,0\}$
signature of quadric Q :

$$
\sigma(Q):=\left|\left\{i \in\{1,2,3,4\} \mid S_{i, i}^{\prime}=+1\right\}\right|-\left|\left\{i \in\{1,2,3,4\} \mid S_{i, i}^{\prime}=-1\right\}\right|
$$

Quadrics / Types

rank	σ	diagonal	equation	point set
4	4	(1, 1, 1, 1)	$x^{2}+y^{2}+z^{2}+1=0$	no real points
	2	$(1,1,1,-1)$	$x^{2}+y^{2}+z^{2}-1=0$	sphere
	0	(1, 1, -1, -1)	$x^{2}+y^{2}-z^{2}-1=0$	hyperboloid of one shee
3	3	(1, 1, 1, 0)	$x^{2}+y^{2}+z^{2}=0$	one point ($0,0,0,1)^{\top}$
	1	(1, 1, -1, 0)	$x^{2}+y^{2}-z^{2}=0$	cone at origin
2	2	(1, 1, 0, 0)	$x^{2}+y^{2}=0$	single line (z-axis)
	0	$(1,-1,0,0)$	$x^{2}-y^{2}=0$	two planes $x= \pm y$
1	1	$(1,0,0,0)$	$x^{2}=0$	one plane $x=0$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Quadrics / Types

a) rank $=4, \sigma=2$: sphere / ellipsoid

b) rank $=4, \sigma=0$: hyperboloid

Quadrics / Types (2/2)

c) rank $=3, \sigma=1$: cone
d) rank $=2, \sigma=0$: two planes

[HZ04, p. 76]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Absolute Dual Quadric Q_{∞}^{*}

Plane/dual quadrics:

$$
\mathbf{Q}_{Q *}^{*}:=\left\{p \in \mathbb{P}^{3} \mid p^{T} Q^{*} p=0\right\}, \quad Q^{*} \in \operatorname{Sym}\left(\mathbb{P}^{4 \times 4}\right)
$$

Absolute dual quadric:

$$
Q_{\infty}^{*}:=\left(\begin{array}{cc}
1 & 0 \\
0^{T} & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Absolute Dual Quadric Q_{∞}^{*} Invariant under Similarity

The absolute dual quadric Q_{∞}^{*} is invariant under projectivity H

$$
\Leftrightarrow
$$

H is a similarity.
proof:

$$
\begin{aligned}
H & =\left(\begin{array}{cc}
A & t \\
v^{T} & v_{4}
\end{array}\right), \\
H Q_{\infty}^{*} H^{T} & =\left(\begin{array}{cc}
A & t \\
v^{T} & v_{4}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0^{T} & 0
\end{array}\right)\left(\begin{array}{cc}
A^{T} & v \\
t^{T} & v_{4}
\end{array}\right)\left(\begin{array}{cc}
A^{T} & v \\
0^{T} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
A A^{T} & A v \\
v^{T} A^{T} & v^{T} v
\end{array}\right) \stackrel{!}{=} Q_{\infty}^{*} \\
\Leftrightarrow v & =0, A A^{T}=I, \text { i.e., } H \text { is a similarity }
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Absolute Dual Quadric Q_{∞}^{*}

- p_{∞} is the nullvector of Q_{∞}^{*}.
- The angle between two planes is given by

$$
\cos \theta(p, q):=\frac{p^{T} Q_{\infty}^{*} q}{\sqrt{p^{T} Q_{\infty}^{*} p q^{T} Q_{\infty}^{*} q}}
$$

- esp. two planes p, q are orthogonal iff $p^{T} Q_{\infty}^{*} q=0$. proofs: as in \mathbb{P}^{2}.

Absolute Conic Ω_{∞}

$$
\begin{aligned}
\mathbf{C}_{\Omega_{\infty}} & :=\mathbf{Q}_{Q_{\infty}^{*}} \cap P_{p_{\infty}} \\
& =\left\{x \in \mathbb{P}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, x_{4}=0\right\}
\end{aligned}
$$

- H is a similarity transform $\Leftrightarrow \Omega_{\infty}$ is invariant under H

Objects in 3D

type	repr.	dim	dof	examples
points	\mathbb{P}^{3}	0	3	
lines	$\operatorname{Skew}\left(\mathbb{P}^{4 \times 4}\right)$	1	4	
planes	\mathbb{P}^{3}	2	3	plane at inf. p_{∞}
point quadrics	$\operatorname{Sym}\left(\mathbb{P}^{4 \times 4}\right)$	2	9	
plane quadrics	$\operatorname{Sym}\left(\mathbb{P}^{4 \times 4}\right)$	3	9	absolute dual quadric Q_{∞}^{*}
conic	$p \cap Q$	1	8	absolute conic Ω_{∞}

Note: The dimensionality applies to non-degenerate cases only.

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

2. Transformations

Hierarchy of Transformations

$\begin{array}{cccc}\text { Group } & \text { Matrix } & \text { Distortion }\end{array}$
Projective
15 dof $\quad\left[\begin{array}{cc}\mathrm{A} & \mathbf{t} \\ \mathbf{v}^{\top} & v\end{array}\right]$

Intersection and tangency of surfaces in contact. Sign of Gaussian curvature.

Affine 12 dof

Parallelism of planes, volume ratios, centroids. The plane at infinity, π_{∞}, (see section 3.5).

The absolute conic, Ω_{∞}, (see section 3.6).

Euclidean 6 dof

Volume.
[HZ04, p. 78]

Rotations in 3D

Rotations in 3D can be described by a rotation axis and a rotation angle.
Pure rotations (rotations along an axis through the origin) can be described by

1. a rotation axis direction (an axis through the origin) and a rotation angle, or
2. Euler-Tait-Bryan angles:

$$
\begin{gathered}
R=R_{z}(\gamma) R_{y}(\beta) R_{x}(\alpha), \\
R_{x}(\alpha):=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right), \quad R_{y}(\beta):=\left(\begin{array}{ccc}
\cos \beta & 0 & -\sin \beta \\
0 & 1 & 0 \\
\sin \beta & 0 & \cos \beta
\end{array}\right), \quad R_{z}(\gamma):=\left(\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

3. a proper orthogonal matrix:

$$
R \in \mathbb{R}^{3 \times 3}: R R^{T}=R^{T} R=l, \operatorname{det} R=1
$$

Pure rotations have 3 dof.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 2. Transformations

The Screw Decomposition

Any Euclidean transformation, i.e., a 3D rotation R followed by a translation t, can be represented as

- a rotation followed by
- a translation along the same axis (called skrew axis)

Proof:

1. if t is orthogonal to the rotation axis of R : planar transformation.

2. generally: decompose t into $t_{\text {orthogonal }}$ and $t_{\text {parallel }}$.

Summary (1/2)

- The projective space \mathbb{P}^{3} is an extension of the Euclidean space \mathbb{R}^{3} with ideal points.
- Points and planes in \mathbb{P}^{2} are parametrized by homogenuous coordinates.
- Each two parallel lines intersect in an ideal point, each two parallel planes intersect in a line of ideal points, all ideal points form the plane at infinity p_{∞}.
- Quadrics are surfaces of order 2 (hyperboloid, paraboloid, ellipsoid), parametrized by a symmetric matrix Q containing all points x with $x^{\top} Q x=0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Summary (2/2)

- Projectivities H are invertibles mappings of \mathbb{P}^{3} onto \mathbb{P}^{3} that preserve lines.
- Lines a transform via $H^{-T} a$, quadrics Q via $H^{-T} Q H^{-1}$.
- There exist several subgroups of the group of projectivities:
- Isometries rotate and translate figures.
- preserving lengths
- Similarities additionally (isotropic) scale figures.
- preserving ratio of lengths, angle, the plane at infinity p_{∞}
- Affine transforms additionally non-isotropic scale figures.
- preserving ratio of lengths on parallel lines, parallel lines, the absolute conic Ω_{∞}
- Projectivities additionally move the plane at infinity.
- preserving cross ratio
- Any projectivity can be decomposed into a chain of an pure projectivie, a pure affine transform and a similarity.

Further Readings

- [HZ04, ch. 3].
- for the derivation of the dual Plücker coordinates [Cox98, p. 88f]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision

References

Harold Scott Macdonald Coxeter.Non-euclidean geometry.
Cambridge University Press, 1998.
Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.
Cambridge university press, 2004.

