Computer Vision ey,
Outline %
1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. lterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2/32

Computer Vision

Objects to estimate from data

» a 2D projectivity
» a 3D to 2D projection (camera)
» the Fundamental Matrix

the Trifocal Tensor

v

Data:

» N pairs x,,x;, of corresponding points in two images (n=1,...,N)

Note: The Trifocal Tensor represents a relation between three images and thus requires N
triples of corresponding points x,,x/, x// in three images (n=1,..., N).
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From Corresponding Points to Linear Equations (1/2)

Inhomogeneous coordinates:

Computer Vision 1. The Direct Linear Transformation Algorithm

XgéQ;::HX,,, n=1....N (Zl’l\
1,2
xI 07 of Hi 3
= 07 xJ 0" |h hi=vect(H):=]
0T 07 xT 21

\ Hss )

Homogeneous coordinates:

/ . / _l .onl - . . .
Xpi Xnj=Xni Xnj Vi, j€{L1,2,3},i#]
! Al ! Al _ . . .
Xn.iXnj — XnjXni = 0, and one equation is linear dependent
A —x'.xT xoxT
~s ¥ = n,37°n n,2-*n h
X. =
n N XT OT — ! XT
n,37*n n,1*n

=:A(xn,x")
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Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (2/2) “*.

Alxp X )h=0, n=1,...,N

A(x1, x1)

A(x2, x5) .

A(xn, Xy )

\ 7

=:A(x.,x/)

» to estimate a general projectivity we need 4 points
(8 equations, 8 dof)

» we are looking for non-trivial solutions h # 0.
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Computer Vision 1. The Direct Linear Transformation Algorithm

More than 4 Points & Noise: Overdetermined
» For N > 4 points and exact coordinates,
the system Ah = 0 still has rank 8 and a non-trivial solution h # 0.

» But for N > 4 points and noisy coordinates,
the system Ah = 0 is overdetermined and (in general) has only the

trivial solution h = 0.

Relax the objective Ah =0 to

Ah
arg min ||Ah|| = arg min 1AR]
b [h|=1 ho Al

= (normed) eigenvector to smallest eigenvalue

and solve via SVD:
ATA=USUT, S =diag(ss,...,s),s > si1Vi,UUT = I

h:= Uy,
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Computer Vision 1. The Direct Linear Transformation Algorithm

Sap
Degenerate Configurations: Underdetermined A

» If three of the four points are collinear (in both images),
A will have rank < 8 and thus h underdetermined,
and thus there is no unique solution for h.

Degenerate Configuration:
Corresponding points that do not uniquely determine a transformation
(in a particular class of transformations).
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Computer Vision 1. The Direct Linear Transformation Algorithm

Direct Linear Transformation Algorithm (DLT) A

1: procedure
EST-2D-PROJECTIVITY-DLT(x1, X{, X2, X5, . . . , Xpy, Xy € P?)

/ /
A / X1,3%1 0 —X1,1%1
(X17X1) T o LT 1T
A / 0 X2.3%2 X2 2Xo
(x2,x3) 1 T o’ o T
2: A= _ = X2 3%2 X2.1%2
A(xn, Xy ) :
N T / T / T
/ /
\XN,3XN 0 XN, 15N )
3: (U,S) := SVD(ATA)
4: h = Ugj'
h1:3
5: return H := | hs¢
h7:9

Note: Do not use this unnormalized version of DLT, but the one in section 3.
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Computer Vision 2. Error Functions

Algebraic Distance

» the loss minimized by DLT, represented as distance between
» x’: point in 2nd image
» X' := Hx: estimated position of x’ by H

€a|g(H;X,X’) = HA(X’,X)th
| 07 —x4xT  xhxT B2
xéxT o’ —X{XT
_ H _Xé)?é + Xé)?é H2
X381 — X153

— aIg(Xla)?/)

dalg(Xa)/) =/ 3% + 357 (31732,83)T =X XYy
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Computer Vision 2. Error Functions

Geometric Distances: Transfer Errors

Transfer Error in One Image (2nd image):
gtransl(H;prl) I:d(X/, HX)2 — d(Xla)?/)z

with Euclidean distance in inhomogeneous coordinates

d(x,y) \/(Xl/X3 —y1/y3)? + (x2/x3 — y2/y3)?

=/ 1/(x3y3) daig(x, y)

» DLT /algebraic error equals geometric error for affine transformations
(x3s=y3=1)

Symmetric Transfer Error:
Cotrans(H; x, x') :=d(x, H71x')? + d(X’, Hx)?
=d(x,2)? +d(X, &), KR:=H'X
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Computer Vision 2. Error Functions

Transfer Errors: Probabilistic Interpretation

Assume
» measurements x, in the 1st image are noise-free,
» measurements x/, in the 2nd image are distributed Gaussian around

true values Hx,:

2) _ L —d (), Hxn)?2/(202)
2102

log-likelihood for Transfer Error in One Image:

(Xl N>X1 N ’ H)P(H)

p(Xn ‘ HXI’H

p(H | xi.n, x1.y) = PO, X)) Bayes
ocp(xun; x| H)p(H) o p(xn | Hyxan)p(H)
N N
=p(H) H p(xp | H,xp) o [ p(xi | H,xa)
= n=1
log p(H | x1.n, X1-p) Z d(x., Hx,)? = transfer error
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Computer Vision 2. Error Functions

Reprojection Error

11

» additionally to projectivity H, also find noise-free / perfectly matching

. A /\/.
pairs X, X':

N
---KHAA/ s ol . d s \2 d/A/2
minimize {yep(H, X1, X1, ..., XN, Xy) 1= (Xn, Xn)= + d(x,, X))
n=1
w.r.t.
R =HX,, n=1,...,N
over

H, X1, X1, -, XN, Xy
Reprojection Error:

lep(H, 2,8 x,X') :=d(x,8)? + d(X', %)%, with & = HX

» analogue probabilistic interpretation:
» measurements x, x’ are Gaussian around true values X, X’
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Computer Vision 3. Transformation Invariance and Normalization

Are Solutions Invariant under Transformations?

» Given corresponding points X, x/,,
a method such as DLT will find a projectivity H.

» Now assume

» the first image is transformed by projectivity T,
» the second image is transformed by projectivity T’

before we apply the estimation method.
» Corresponding points now will be X, := Tx,, X/ = T'x],

» Let H be the projectivity estimated by the method applied to X, X/.

> |s it guaranteed that H and H are “the same” (equivalent) ?
AL T HT

» This may depend on the class of projectivities allowed for T, T".

» at least invariance under similarities would be useful !
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Computer Vision 3. Transformation Invariance and Normalization

DLT is not Invariant under Similarities

» If T’ is a similarity transformation with scale factor s
and T any projectivity, then one can show

[|Ah|| = s||An]|

» But solutions H and H will not be equivalent nevertheless,
as DLT minimizes under constraint ||h|| =1
and this constraint is not scaled with s !

» So DLT is not invariant under similarity transforms.

Note: A := A(X,X'), h := vect(H)
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Computer Vision 3. Transformation Invariance and Normalization e

N : N3
Transfer /Reprojection Errors are Invariant under d
Similarities

» If T' is Euclidean:

d( HXn)2 _d( T/Xl T/HT—l TXn)2
—x! T/T T/HT—l TXn — X,{,HXn = d(X;,, HXn)2

» If T’ is a similarity with scale factor s:
d(%, H%,)? =d(T'x, T"HT 1 Tx,)?
=x' T'TT'HT 1 Tx, = x's*Hx, = s2d(x,, Hx,)?

» Error is just scaled, so attains minimum at same position.
~~ Transfer /Reprojection Errors are invariant under similarities.
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization

» |Image coordinates of corresponding points are usually finite:
X = (X17X27 1)T1
thus have different scale (100, 100, 1) when measured in pixels.

» Therefore, entries in A(x, x’) will have largely different scale:

Alx, ') = o’ —x4x T xhxT (0T —xT xdxT
U xgxT o7 —xixT ) 7 U xT 0T —xxT

» some in 100s (x), some in 10.000s (xsx T, —x{xT)
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization A
» normalize x:

Xn — :LL(X.)

7(x)/V2

X :=normalize(x) := ( Jn=1,..N

with
LN
w(x.) =5 ZX,, centroid /mear
n=1
LN
7(x) =N Z d(x, — p(x),0) avg. distance to centroic
n=1

» afterwards:
wx) =0, 7(%)=V2

» Normalization is a similarity transform:

T o= T = (27 TN )
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Computer Vision 3. Transformation Invariance and Normalization
. L. . N3
DLT with Normalization / Algorithm A
1: procedure
EST-2D-PROJECTIVITY-DLTN(X1, X, X2, X}, - - . , Xy, Xy € P?)
2/7(x ) —ulx)V2/7(x
o T Tt = (Y2700 HOVEI))
/ . / /
b T () = LI MOV
4: Xp = TIx, VYn=1,...,N > normalize x,
5 X :=T'x, VYn=1,...,N > normalize x/,
6: H := est-2d-projectivity-dlt(X1, X1, X2, X5, . . . , X, Xpy)
7 H:= T"HT > unnormalize H
8: return H
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Computer Vision 4. lterative Minimization Methods

Types of Problems d

» The transformation estimation problem for the

» algebraic distance/loss can be cast into a single
» linear system of equations (DLTn).

» The transformation estimation problem for the

» transfer distance/loss as well as for the

» reconstruction loss is more complicated and has to be handled by an
explicit

» iterative minimization procedure.
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Computer Vision 4. lterative Minimization Methods e
Minimization Objectives f : RM — R A
a) transfer distance in one image:

N
minimize f(H) := Z d(x, HXn)2
n=1

b) symmetric transfer distance:
minimize f(H) = Z d(x), Hx,)? + d(xn, H1x)?

n=1

c) reconstruction loss: N
minimize f(H,Xq.n) = Z d(Xn, Xn)? + d(x,, H%p)?

n=1

> X, X, are constants, H, Xy. variables
> a), b) have M := 9 parameters / variables

» as H as only 8 dof, the objective is slightly overparametrized
» c) has M := 2N 4 9 parameters / variables

» allowing only finite points for X,
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Computer Vision 4. lterative Minimization Methods

" §Us
Objectives of type f = e’ e (1/3) A
All three objectives f are Ly norms of (parametrized) vectors, i.e. can be
written as

f(x)=e(x)Te(x), h:RM RN

a) transfer distance in one image:
N
minimize f(H) := Z d(x!, Hx,)?
n=1

= e(H)"e(H),

[ xaa/xs— (Hxa)i/(Hx)s
X12/x13 — (Hx1)2/(Hx1)3
e(H) := :
Xy 1/Xn3 — (Hxn)1/(Hxn)s

\ Xh2/xs — (Hxw)/ (Han)s /
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Computer Vision 4. lterative Minimization Methods

V
Objectives of type f = e’ e (2/3) A

b) symmetric transfer distance:

minimize f(H) = Z d(x', Hxp)? + d(xn, H1x")? = e(H) T e(H),
( x11/x13 — (Hx1)1/(Hx1)3 \
x12/x13 — (Hx1)2/(Hx1)3

Xy 1/Xn3 — (Hxn)1/(Hxn)s
e(H) — XI/V2/XI/V3 (HXN)Q/(HXN)3
X1 1/X13—(H Ix))1/(H™1x{)3
x12/x13 — (H'x{)2/(H™'x{)3

XN1/XN3—(H X/\/)l/(H /\/)3
\ v /xns — (H-1xt )/ (H-1xt )5 )
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Computer Vision 4. lterative Minimization Methods

Sype
Objectives of type f = e’ e (3/3) A

c) reconstruction loss:

N
minimize f(H, %1.n) := Z d(Xn, %0)? + d(x., HZ,)? = e(H) T e(H),
n=1
x11/x13 — (Hx1)1/(Hx1)3 \
X10/x13 — (HX1)2/(HX1)3

Xiy.1/ X3 — (H&n)1/(HSw)3
e(H) = X//V,2/XI/V,3 — (HXn)2/(HXn)3
X1,1/X1,3 — X1,1
X1,2/X13 — X1,

XN.1/XN3 — RN1

\ XN.2/XN3 — N2 )
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Computer Vision 4. lterative Minimization Methods

Minimizing f (l): Gradient Descent A
To minimize f : RM — R over x € RM Gradient Descent

1. starts at a random starting point xg € RV
t:=0, x(8) = x,

2. computes as descent direction d(t) at x(t)
— direction where f decreases —
the gradient of f:

of
d(t) = —g(t) = —VXf|X(t) = —(%(X(t)))mzl,...,l\/l

3. moves into the descent direction:
X = x(O) 4 ¢

Beware:
» f decreases only in the neighborhood of x(t)
» A full gradient step may be too large and not leading to a decrease !
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Computer Vision 4. lterative Minimization Methods

Minimizing f (1): Gradient Descent w. Steplength Contr‘dzﬁ
To minimize f : RM — R over x € RM Gradient Descent

1. starts at a random starting point xg € R"
t =0, x() .= X0

2. computes as descent direction d() at x(t)
— direction where f decreases —
the gradient of f:

of.

OXm

dt) .= _g(t) .= —Vxfl o = —( (X(t)))mzl,...,M

3. finds a steplength o € R™ so that f actually decreases:
o =max{fa =25 k=0,1,2,...,f(x + ad) < f(x)}
4. moves a step into the descent direction:

Xt = x(O) 4 d
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Computer Vision 4. lterative Minimization Methods

Minimizing f (l): Gradient Descent / Algorithm A

1: procedure MIN-GD(f : RM = R, xg € RM. V. f : RM - RM ¢ € RY)
2 X 1= X

3 do

4 d = —V,flx

5: a:=1

6 while f(x + ad) > f(x) do
7 a = /2

8 X =x-+ad

9 while ||d|| > ¢

10: return x
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Computer Vision 4. lterative Minimization Methods

Minimizing f (II): Newton
The Newton algorithm computes a better descent direction:
» approximate f by the quadratic Taylor expansion at x(%):

. 1
f(x +d) = F(d) := F(x1)) + Vi | [y d + S dTViF| [y d

1
= F(x1) + gy d + ngqu)d
where
P

2
f X -— HX = \m———)mk=1,..
VX | (6xm8xk) k=1,

.M Hessian of f

» the approximation attains its minimum at

! ~
0 =V4f(d) = Bx(t) + Hx(t)d
Hx(t)d = — 8x(1)

» solve this linear system of equations to find descent direction
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Computer Vision 4. lterative Minimization Methods

Minimizing f (II): Newton / Algorithm A

1: procedure MIN-NEWTON(f : RM — R, xo € RM,
Vif :RM 5 RM v2f . RM — RMXM ¢ ¢ RT)

2: X 1= Xp

3: do

4: g = Viflx

5: H:= Vif’x

6: d := solveg(Hd = —g)
7 a:=1

8: while f(x + ad) > f(x) do
9: = a2

10: X:=x+ ad

11: while ||d|| > €

12: return x
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Computer Vision 4. lterative Minimization Methods

Minimizing f = e e (I): Gauss-Newton

Gauss-Newton is
» a specialization of the Newton algorithm
» for objectives of type f(x) = e(x) " e(x)

» that approximates the Hessian:

Viflx = 2Ve|] e(x)
271 _ T 2 (T
Viflx = 2Vye|, Vyelx +2Viel|, e(x)
Now approximate e by a linear Taylor expansion, i.e.
Vel ~ 0
v V2f|, 2 2Ve|] Vielx
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Computer Vision 4. lterative Minimization Methods

11

Minimizing f = e’e (I): Gauss-Newton / Algorithm

1: procedure MIN-GAUSS-
NEWTON(f : RM — R, xg € RM, Ve : RM — RN*M ¢ ¢ RT)

2: X 1= Xp

3: do

4. J = Vxe\x

5: g :=Je(x)

6: H:=J"J

7: d := solveq(Hd = —g)
8: a:=1

9: while f(x + ad) > f(x) do
10: o= a2

11: X :=x-+ad

12: while ||d|| > €

13: return x
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Computer Vision 4. lterative Minimization Methods

Minimizing f = e”e (Il): Levenberg-Marquardt
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Computer Vision 6. Estimating a 2D Transformation

Summary
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Computer Vision

Further Readings

» [HZ04, ch. 4].
» For iterative estimation methods in CV see [HZ04, appendix 6].

» You may also read [HZ04, ch. 5] which will not be covered in the
lecture explicitly.
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