Outline

1. The Direct Linear Transformation Algorithm
2. Error Functions
3. Transformation Invariance and Normalization
4. Iterative Minimization Methods
5. Robust Estimation
6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision

Objects to estimate from data

- a 2D projectivity
- a 3D to 2D projection (camera)
- the Fundamental Matrix
- the Trifocal Tensor

Data:

- N pairs x_{n}, x_{n}^{\prime} of corresponding points in two images ($n=1, \ldots, N$)

Note: The Trifocal Tensor represents a relation between three images and thus requires N triples of corresponding points $x_{n}, x_{n}^{\prime}, x_{n}^{\prime \prime}$ in three images $(n=1, \ldots, N)$.

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision
 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (1/2)

 Inhomogeneous coordinates:$$
\begin{aligned}
& x_{n}^{\prime} \stackrel{!}{=} \hat{x}_{n}^{\prime}:=H x_{n}, \\
& n=1, \ldots, N \\
&=\left(\begin{array}{ccc}
x_{n}^{T} & 0^{T} & 0^{T} \\
0^{T} & x_{n}^{T} & 0^{T} \\
0^{T} & 0^{T} & x_{n}^{T}
\end{array}\right) h, \quad h:=\operatorname{vect}(H):=\left(\begin{array}{c}
H_{1,1} \\
H_{1,2} \\
H_{1,3} \\
H_{2,1} \\
\vdots \\
H_{3,3}
\end{array}\right)
\end{aligned}
$$

Homogeneous coordinates:

$$
x_{n, i}^{\prime}: x_{n, j}^{\prime}=\hat{x}_{n, i}^{\prime}: \hat{x}_{n, j}^{\prime}, \quad \forall i, j \in\{1,2,3\}, i \neq j
$$

$x_{n, i}^{\prime} \hat{x}_{n, j}^{\prime}-x_{n, j}^{\prime} \hat{x}_{n, i}^{\prime}=0$, and one equation is linear dependent

$$
\rightsquigarrow x_{n}^{\prime} \stackrel{!}{=} \underbrace{\left(\begin{array}{lll}
0^{T} & -x_{n, 3}^{\prime} x_{n}^{T} & x_{n, 2}^{\prime} x_{n}^{T} \\
x_{n, 3}^{\prime} x_{n}^{T} & 0^{T} & -x_{n, 1}^{\prime} x_{n}^{T}
\end{array}\right)}_{=: A\left(x_{n}, x_{n}^{\prime}\right)} h
$$

From Corresponding Points to Linear Equations (2/2)

$$
\begin{aligned}
& A\left(x_{n}, x_{n}^{\prime}\right) h \stackrel{!}{=} 0, \quad n=1, \ldots, N \\
& \underbrace{\left(\begin{array}{c}
A\left(x_{1}, x_{1}^{\prime}\right) \\
A\left(x_{2}, x_{2}^{\prime}\right) \\
\vdots \\
A\left(x_{N}, x_{N}^{\prime}\right)
\end{array}\right)}_{=: A\left(x_{1}, x_{1}^{\prime}\right)} h=0
\end{aligned}
$$

- to estimate a general projectivity we need 4 points (8 equations, 8 dof)
- we are looking for non-trivial solutions $h \neq 0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

More than 4 Points \& Noise: Overdetermined

- For $N>4$ points and exact coordinates, the system $A h=0$ still has rank 8 and a non-trivial solution $h \neq 0$.
- But for $N>4$ points and noisy coordinates, the system $A h=0$ is overdetermined and (in general) has only the trivial solution $h=0$.

Relax the objective $A h=0$ to

$$
\begin{aligned}
\underset{h:\|h\|=1}{\arg \min }\|A h\| & =\underset{h}{\arg \min } \frac{\|A h\|}{\|h\|} \\
& =\text { (normed) eigenvector to smallest eigenvalue }
\end{aligned}
$$

and solve via SVD:

$$
\begin{aligned}
A^{T} A & =U S U^{T}, \quad S=\operatorname{diag}\left(s_{1}, \ldots, s_{9}\right), s_{i} \geq s_{i+1} \forall i, U U^{T}=I \\
h & :=U_{9}, .
\end{aligned}
$$

Degenerate Configurations: Underdetermined

- If three of the four points are collinear (in both images),
A will have rank <8 and thus h underdetermined, and thus there is no unique solution for h.

Degenerate Configuration:

Corresponding points that do not uniquely determine a transformation (in a particular class of transformations).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. The Direct Linear Transformation Algorithm

Direct Linear Transformation Algorithm (DLT)

1: procedure
EST-2D-PROJECTIVITY-DLT $\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots, x_{N}, x_{N}^{\prime} \in \mathbb{P}^{2}\right)$
2: $\quad A:=\left(\begin{array}{c}A\left(x_{1}, x_{1}^{\prime}\right) \\ A\left(x_{2}, x_{2}^{\prime}\right) \\ \vdots \\ A\left(x_{N}, x_{N}^{\prime}\right)\end{array}\right)=\left(\begin{array}{ccc}0^{T} & -x_{1,3}^{\prime} x_{1}^{T} & x_{1,2}^{\prime} x_{1}^{T} \\ x_{1,3}^{\prime} x_{1}^{T} & 0^{T} & -x_{1,1}^{\prime} x_{1}^{T} \\ 0^{T} & -x_{2,3}^{\prime} x_{2}^{T} & x_{2,2}^{\prime} x_{2}^{T} \\ x_{2,3}^{\prime} x_{2}^{T} & 0^{T} & -x_{2,1}^{\prime} x_{2}^{T} \\ \vdots & & \\ 0^{T} & -x_{N, 3}^{\prime} x_{N}^{T} & x_{N, 2}^{\prime} x_{N}^{T} \\ x_{N, 3}^{\prime} x_{N}^{T} & 0^{T} & -x_{N, 1}^{\prime} x_{N}^{T}\end{array}\right)$
3: $\quad(U, S):=\operatorname{SVD}\left(A^{T} A\right)$
4: $\quad h:=U_{9}$.
5: \quad return $H:=\left(\begin{array}{l}h_{1: 3} \\ h_{4: 6} \\ h_{7: 9}\end{array}\right)$
Note: Do not use this unnormalized version of DLT, but the one in section 3 .

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Algebraic Distance

- the loss minimized by DLT, represented as distance between
- x^{\prime} : point in 2nd image
- $\hat{x}^{\prime}:=H x$: estimated position of x^{\prime} by H

$$
\left.\begin{array}{rl}
\ell_{\mathrm{alg}}\left(H ; x, x^{\prime}\right) & :=\left\|A\left(x^{\prime}, x\right) h\right\|^{2} \\
& =\|\left(\begin{array}{cc}
0^{T} & -x_{3}^{\prime} x^{T}
\end{array} x_{2}^{\prime} x^{T}\right. \\
x_{3}^{\prime} x^{T} & 0^{T} \\
-x_{1}^{\prime} x^{T}
\end{array}\right) h \|^{2} .
$$

with

$$
d_{\mathrm{alg}}(x, y):=\sqrt{a_{1}^{2}+a_{2}^{2}}, \quad\left(a_{1}, a_{2}, a_{3}\right)^{T}=x \times y
$$

Geometric Distances: Transfer Errors

Transfer Error in One Image (2nd image):

$$
\ell_{\text {trans1 }}\left(H ; x, x^{\prime}\right):=d\left(x^{\prime}, H x\right)^{2}=d\left(x^{\prime}, \hat{x}^{\prime}\right)^{2}
$$

with Euclidean distance in inhomogeneous coordinates

$$
\begin{aligned}
d(x, y):= & \sqrt{\left(x_{1} / x_{3}-y_{1} / y_{3}\right)^{2}+\left(x_{2} / x_{3}-y_{2} / y_{3}\right)^{2}} \\
& =\sqrt{1 /\left(x_{3} y_{3}\right)} d_{\mathrm{alg}(x, y)}(x)
\end{aligned}
$$

- DLT/algebraic error equals geometric error for affine transformations $\left(x_{3}=y_{3}=1\right)$

Symmetric Transfer Error:

$$
\begin{aligned}
\ell_{\text {strans }}\left(H ; x, x^{\prime}\right): & =d\left(x, H^{-1} x^{\prime}\right)^{2}+d\left(x^{\prime}, H x\right)^{2} \\
& =d(x, \hat{x})^{2}+d\left(x^{\prime}, \hat{x}^{\prime}\right)^{2}, \quad \hat{x}:=H^{-1} x^{\prime}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 2. Error Functions

Transfer Errors: Probabilistic Interpretation

Assume

- measurements x_{n} in the 1st image are noise-free,
- measurements x_{n}^{\prime} in the 2nd image are distributed Gaussian around true values $H x_{n}$:

$$
p\left(x_{n}^{\prime} \mid H x_{n}, \sigma^{2}\right)=\frac{1}{2 \pi \sigma^{2}} e^{-d\left(x_{n}^{\prime}, H x_{n}\right)^{2} /\left(2 \sigma^{2}\right)}
$$

log-likelihood for Transfer Error in One Image:

$$
\begin{aligned}
p\left(H \mid x_{1: N}, x_{1: N}^{\prime}\right) & =\frac{p\left(x_{1: N}, x_{1: N}^{\prime} \mid H\right) p(H)}{p\left(x_{1: N}, x_{1: N}^{\prime}\right)} & \\
& \propto p\left(x_{1: N}, x_{1: N}^{\prime} \mid H\right) p(H) \propto & p\left(x_{1: N}^{\prime} \mid H, x_{1: N}\right) p(H) \\
& =p(H) \prod_{n=1}^{N} p\left(x_{n}^{\prime} \mid H, x_{n}\right) \propto & \prod_{n=1}^{N} p\left(x_{n}^{\prime} \mid H, x_{n}\right)
\end{aligned}
$$

$\log p\left(H \mid x_{1: N}, x_{1: N}^{\prime}\right) \propto-\sum_{1}^{N} d\left(x_{n}^{\prime}, H x_{n}\right)^{2}$
$=$ transfer error

Reprojection Error

- additionally to projectivity H, also find noise-free / perfectly matching pairs $\hat{x}, \hat{x}^{\prime}$:

$$
\operatorname{minimize} \ell_{r e p}\left(H, \hat{x}_{1}, \hat{x}_{1}^{\prime}, \ldots, \hat{x}_{N}, \hat{x}_{N}^{\prime}\right):=\sum_{n=1}^{N} d\left(x_{n}, \hat{x}_{n}\right)^{2}+d\left(x_{n}^{\prime}, \hat{x}_{n}^{\prime}\right)^{2}
$$

w.r.t.

$$
\hat{x}_{n}^{\prime}=H \hat{x}_{n}, \quad n=1, \ldots, N
$$

over

$$
H, \hat{x}_{1}, \hat{x}_{1}^{\prime}, \ldots, \hat{x}_{N}, \hat{x}_{N}^{\prime}
$$

Reprojection Error:

$$
\ell_{\text {rep }}\left(H, \hat{x}, \hat{x}^{\prime} ; x, x^{\prime}\right):=d(x, \hat{x})^{2}+d\left(x^{\prime}, \hat{x}^{\prime}\right)^{2}, \quad \text { with } \hat{x}^{\prime}=H \hat{x}
$$

- analogue probabilistic interpretation:
- measurements x, x^{\prime} are Gaussian around true values $\hat{x}, \hat{x}^{\prime}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3. Transformation Invariance and Normalization

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Are Solutions Invariant under Transformations?

- Given corresponding points x_{n}, x_{n}^{\prime}, a method such as DLT will find a projectivity H.
- Now assume
- the first image is transformed by projectivity T,
- the second image is transformed by projectivity T^{\prime} before we apply the estimation method.
- Corresponding points now will be $\tilde{x}_{n}:=T x_{n}, \tilde{x}_{n}^{\prime}:=T^{\prime} x_{n}^{\prime}$
- Let \tilde{H} be the projectivity estimated by the method applied to $\tilde{x}_{n}, \tilde{x}_{n}^{\prime}$.
- Is it guaranteed that H and \tilde{H} are "the same" (equivalent) ?

$$
\tilde{H} \stackrel{?}{=} T^{\prime} H T^{-1}
$$

- This may depend on the class of projectivities allowed for T, T^{\prime}.
- at least invariance under similarities would be useful!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

DLT is not Invariant under Similarities

- If T^{\prime} is a similarity transformation with scale factor s and T any projectivity, then one can show

$$
\|\tilde{A} \tilde{h}\|=s\|A h\|
$$

- But solutions H and \tilde{H} will not be equivalent nevertheless, as DLT minimizes under constraint $\|h\|=1$ and this constraint is not scaled with s !
- So DLT is not invariant under similarity transforms.

Note: $\tilde{A}:=A\left(\tilde{x}, \tilde{x}^{\prime}\right), \tilde{h}:=\operatorname{vect}(\tilde{H})$

Transfer/Reprojection Errors are Invariant under Similarities

- If T^{\prime} is Euclidean:

$$
\begin{aligned}
d\left(\tilde{x}_{n}^{\prime}, \tilde{H} \tilde{x}_{n}\right)^{2} & =d\left(T^{\prime} x_{n}^{\prime}, T^{\prime} H T^{-1} T x_{n}\right)^{2} \\
& =x_{n}^{\prime} T^{\prime T} T^{\prime} H T^{-1} T x_{n}=x_{n}^{\prime} H x_{n}=d\left(x_{n}^{\prime}, H x_{n}\right)^{2}
\end{aligned}
$$

- If T^{\prime} is a similarity with scale factor s :

$$
\begin{aligned}
d\left(\tilde{x}_{n}^{\prime}, \tilde{H} \tilde{x}_{n}\right)^{2} & =d\left(T^{\prime} x_{n}^{\prime}, T^{\prime} H T^{-1} T x_{n}\right)^{2} \\
& =x_{n}^{\prime} T^{\prime T} T^{\prime} H T^{-1} T x_{n}=x_{n}^{\prime} s^{2} H x_{n}=s^{2} d\left(x_{n}^{\prime}, H x_{n}\right)^{2}
\end{aligned}
$$

- Error is just scaled, so attains minimum at same position. \rightsquigarrow Transfer/Reprojection Errors are invariant under similarities.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

DLT with Normalization

- Image coordinates of corresponding points are usually finite: $x=\left(x_{1}, x_{2}, 1\right)^{T}$, thus have different scale $(100,100,1)$ when measured in pixels.
- Therefore, entries in $A\left(x, x^{\prime}\right)$ will have largely different scale:

$$
A\left(x, x^{\prime}\right)=\left(\begin{array}{lll}
0^{T} & -x_{3}^{\prime} x^{T} & x_{2}^{\prime} x^{T} \\
x_{3}^{\prime} x^{T} & 0^{T} & -x_{1}^{\prime} x^{T}
\end{array}\right)=\left(\begin{array}{lll}
0^{T} & -x^{T} & x_{2}^{\prime} x^{T} \\
x^{T} & 0^{T} & -x_{1}^{\prime} x^{T}
\end{array}\right)
$$

- some in $100 \mathrm{~s}\left(x^{T}\right)$, some in $10.000 \mathrm{~s}\left(x_{2}^{\prime} x^{T},-x_{1}^{\prime} x^{T}\right)$

DLT with Normalization

- normalize x :

$$
\tilde{x}_{.}:=\operatorname{normalize}(x .):=\left(\frac{x_{n}-\mu\left(x_{.}\right)}{\tau\left(x_{.}\right) / \sqrt{2}}\right)_{n=1, \ldots, N}
$$

with

$$
\begin{aligned}
\mu\left(x_{.}\right) & :=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\tau(x .) & :=\frac{1}{N} \sum_{n=1}^{N} d\left(x_{n}-\mu\left(x_{.}\right), 0\right)
\end{aligned}
$$

centroid/mear
avg. distance to centroic

- afterwards:

$$
\mu\left(\tilde{x}_{.}\right)=0, \quad \tau\left(\tilde{x}_{.}\right)=\sqrt{2}
$$

- Normalization is a similarity transform:

$$
T:=T_{\text {norm }}\left(x_{.}\right):=\left(\begin{array}{ll}
\sqrt{2} / \tau\left(x_{.}\right) / & -\mu\left(x_{.}\right) \sqrt{2} / \tau\left(x_{.}\right) \\
0 & 1
\end{array}\right)
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

DLT with Normalization / Algorithm

1: procedure

EST-2D-PROJECTIVITY-DLTN $\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots, x_{N}, x_{N}^{\prime} \in \mathbb{P}^{2}\right)$
2: $\quad T:=T_{\text {norm }}\left(x_{.}\right):=\left(\begin{array}{ll}\sqrt{2} / \tau\left(x_{.}\right) / & -\mu\left(x_{.}\right) \sqrt{2} / \tau\left(x_{.}\right) \\ 0 & 1\end{array}\right)$
3: $\quad T^{\prime}:=T_{\text {norm }}\left(x_{.}^{\prime}\right):=\left(\begin{array}{ll}\sqrt{2} / \tau\left(x_{.}^{\prime}\right) / & -\mu\left(x_{.}^{\prime}\right) \sqrt{2} / \tau\left(x_{.}^{\prime}\right) \\ 0 & 1\end{array}\right)$
4: $\quad \tilde{x}_{n}:=T x_{n} \quad \forall n=1, \ldots, N \quad \triangleright$ normalize x_{n}
5: $\quad \tilde{x}_{n}^{\prime}:=T^{\prime} x_{n}^{\prime} \quad \forall n=1, \ldots, N \quad \triangleright$ normalize x_{n}^{\prime}
6: $\quad \tilde{H}:=$ est-2d-projectivity-dlt $\left(\tilde{x}_{1}, \tilde{x}_{1}^{\prime}, \tilde{x}_{2}, \tilde{x}_{2}^{\prime}, \ldots, \tilde{x}_{N}, \tilde{x}_{N}^{\prime}\right)$
7: $\quad H:=T^{\prime-1} \tilde{H} T$
\triangleright unnormalize \tilde{H}
8: return H

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization
4. Iterative Minimization Methods
5. Robust Estimation
6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 4. Iterative Minimization Methods

Types of Problems

- The transformation estimation problem for the
- algebraic distance/loss can be cast into a single
- linear system of equations (DLTn).
- The transformation estimation problem for the
- transfer distance/loss as well as for the
- reconstruction loss is more complicated and has to be handled by an explicit
- iterative minimization procedure.

Minimization Objectives $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$

a) transfer distance in one image:

$$
\operatorname{minimize} f(H):=\sum_{n=1}^{N} d\left(x_{n}^{\prime}, H x_{n}\right)^{2}
$$

b) symmetric transfer distance:

$$
\begin{aligned}
& \text { transfer distance: } \\
& \text { minimize } f(H):=\sum_{n=1}^{N} d\left(x_{n}^{\prime}, H x_{n}\right)^{2}+d\left(x_{n}, H^{-1} x_{n}^{\prime}\right)^{2}
\end{aligned}
$$

c) reconstruction loss:

$$
\operatorname{minimize} f\left(H, \hat{x}_{1: N}\right):=\sum_{n=1}^{N} d\left(x_{n}, \hat{x}_{n}\right)^{2}+d\left(x_{n}^{\prime}, H \hat{x}_{n}\right)^{2}
$$

- x_{n}, x_{n}^{\prime} are constants, $H, \hat{x}_{1: N}$ variables
- a), b) have $M:=9$ parameters / variables
- as H as only 8 dof, the objective is slightly overparametrized
- c) has $M:=2 N+9$ parameters / variables
- allowing only finite points for \hat{x}_{n}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Objectives of type $f=e^{T} e(1 / 3)$

All three objectives f are L_{2} norms of (parametrized) vectors, i.e. can be written as

$$
f(x)=e(x)^{T} e(x), \quad h: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}
$$

a) transfer distance in one image:

$$
\text { minimize } \begin{aligned}
& f(H):= \\
& \sum_{n=1}^{N} d\left(x_{n}^{\prime}, H x_{n}\right)^{2} \\
&= e(H)^{T} e(H), \\
& e(H):=\left(\begin{array}{c}
x_{1,1}^{\prime} / x_{1,3}^{\prime}-\left(H x_{1}\right)_{1} /\left(H x_{1}\right)_{3} \\
x_{1,2}^{\prime} / x_{1,3}^{\prime}-\left(H x_{1}\right)_{2} /\left(H x_{1}\right)_{3} \\
\vdots \\
x_{N, 1}^{\prime} / x_{N, 3}^{\prime}-\left(H x_{N}\right)_{1} /\left(H x_{N}\right)_{3} \\
x_{N, 2}^{\prime} / x_{N, 3}^{\prime}-\left(H x_{N}\right)_{2} /\left(H x_{N}\right)_{3}
\end{array}\right)
\end{aligned}
$$

Objectives of type $f=e^{T} e(2 / 3)$

b) symmetric transfer distance:

$$
\begin{aligned}
\operatorname{minimize} & f(H): \\
= & \sum_{n=1}^{N} d\left(x_{n}^{\prime}, H x_{n}\right)^{2}+d\left(x_{n}, H^{-1} x_{n}^{\prime}\right)^{2}=e(H)^{T} e(H), \\
& (H):=\left(\begin{array}{c}
x_{1,1}^{\prime} / x_{1,3}^{\prime}-\left(H x_{1}\right)_{1} /\left(H x_{1}\right)_{3} \\
x_{1,2}^{\prime} / x_{1,3}^{\prime}-\left(H x_{1}\right)_{2} /\left(H x_{1}\right)_{3} \\
\vdots \\
x_{N, 1}^{\prime} / x_{N, 3}^{\prime}-\left(H x_{N}\right)_{1} /\left(H x_{N}\right)_{3} \\
x_{N, 2}^{\prime} / x_{N, 3}^{\prime}-\left(H x_{N}\right)_{2} /\left(H x_{N}\right)_{3} \\
x_{1,1} / x_{1,3}-\left(H^{-1} x_{1}^{\prime}\right)_{1} /\left(H^{-1} x_{1}^{\prime}\right)_{3} \\
x_{1,2} / x_{1,3}-\left(H^{-1} x_{1}^{\prime}\right)_{2} /\left(H^{-1} x_{1}^{\prime}\right)_{3} \\
\vdots \\
\\
x_{N, 1} / x_{N, 3}-\left(H^{-1} x_{N}^{\prime}\right)_{1} /\left(H^{-1} x_{N}^{\prime}\right)_{3} \\
x_{N, 2} / x_{N, 3}-\left(H^{-1} x_{N}^{\prime}\right)_{2} /\left(H^{-1} x_{N}^{\prime}\right)_{3}
\end{array}\right)
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Objectives of type $f=e^{T} e(3 / 3)$

c) reconstruction loss:

$$
\begin{aligned}
\operatorname{minimize} f\left(H, \hat{x}_{1: N}\right):= & \sum_{n=1}^{N} d\left(x_{n}, \hat{x}_{n}\right)^{2}+d\left(x_{n}^{\prime}, H \hat{x}_{n}\right)^{2}=e(H)^{T} e(H) \\
e(H):= & \left(\begin{array}{c}
x_{1,1}^{\prime} / x_{1,3}^{\prime}-\left(H \hat{x}_{1}\right)_{1} /\left(H \hat{x}_{1}\right)_{3} \\
x_{1,2}^{\prime} / x_{1,3}^{\prime}-\left(H \hat{x}_{1}\right)_{2} /\left(H \hat{x}_{1}\right)_{3} \\
\vdots \\
x_{N, 1}^{\prime} / x_{N, 3}^{\prime}-\left(H \hat{x}_{N}\right)_{1} /\left(H \hat{x}_{N}\right)_{3} \\
x_{N, 2}^{\prime} / x_{N, 3}^{\prime}-\left(H \hat{x}_{N}\right)_{2} /\left(H \hat{x}_{N}\right)_{3} \\
x_{1,1} / x_{1,3}-\hat{x}_{1,1} \\
x_{1,2} / x_{1,3}-\hat{x}_{1,2} \\
\vdots \\
x_{N, 1} / x_{N, 3}-\hat{x}_{N, 1} \\
x_{N .2} / x_{N .3}-\hat{x}_{N .2}
\end{array}\right)
\end{aligned}
$$

Minimizing $f(\mathrm{I})$: Gradient Descent

To minimize $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ over $x \in \mathbb{R}^{M}$ Gradient Descent

1. starts at a random starting point $x_{0} \in \mathbb{R}^{M}$

$$
t:=0, \quad x^{(t)}:=x_{0}
$$

2. computes as descent direction $d^{(t)}$ at $x^{(t)}$

- direction where f decreases -
the gradient of f :

$$
d^{(t)}:=-g^{(t)}:=-\left.\nabla_{x} f\right|_{x^{(t)}}:=-\left(\frac{\partial f}{\partial x_{m}}\left(x^{(t)}\right)\right)_{m=1, \ldots, M}
$$

3. moves into the descent direction:

$$
x^{(t+1)}:=x^{(t)}+d
$$

Beware:

- f decreases only in the neighborhood of $x^{(t)}$
- A full gradient step may be too large and not leading to a decrease!

Minimizing $f(I)$: Gradient Descent w. Steplength Control To minimize $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ over $x \in \mathbb{R}^{M}$ Gradient Descent

1. starts at a random starting point $x_{0} \in \mathbb{R}^{M}$

$$
t:=0, \quad x^{(t)}:=x_{0}
$$

2. computes as descent direction $d^{(t)}$ at $x^{(t)}$

- direction where f decreases -
the gradient of f :

$$
d^{(t)}:=-g^{(t)}:=-\left.\nabla_{x} f\right|_{x^{(t)}}:=-\left(\frac{\partial f}{\partial x_{m}}\left(x^{(t)}\right)\right)_{m=1, \ldots, M}
$$

3. finds a steplength $\alpha \in \mathbb{R}^{+}$so that f actually decreases:

$$
\alpha:=\max \left\{\alpha:=2^{-k} \mid k=0,1,2, \ldots, f(x+\alpha d)<f(x)\right\}
$$

4. moves a step into the descent direction:

$$
x^{(t+1)}:=x^{(t)}+\alpha d
$$

Minimizing $f(I)$: Gradient Descent / Algorithm

1: procedure $\operatorname{MIN-GD}\left(f: \mathbb{R}^{M} \rightarrow \mathbb{R}, x_{0} \in \mathbb{R}^{M}, \nabla_{x} f: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M}, \epsilon \in \mathbb{R}^{+}\right)$
2: $\quad x:=x_{0}$
3: do
4: $\quad d:=-\left.\nabla_{x} f\right|_{x}$
5: $\quad \alpha:=1$
6: \quad while $f(x+\alpha d) \geq f(x)$ do
7:

$$
\alpha:=\alpha / 2
$$

8: $x:=x+\alpha d$
9: \quad while $\|d\|>\epsilon$
10: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing f (II): Newton

The Newton algorithm computes a better descent direction:

- approximate f by the quadratic Taylor expansion at $x^{(t)}$:

$$
\begin{aligned}
f(x+d) \approx \tilde{f}(d): & =f\left(x^{(t)}\right)+\left.\nabla_{x} f\right|_{x^{(t)}} ^{T} d+\left.\frac{1}{2} d^{T} \nabla_{x}^{2} f\right|_{x^{(t)}} ^{T} d \\
& =f\left(x^{(t)}\right)+g_{x(t)}^{T} d+\frac{1}{2} d^{T} H_{x(t)} d
\end{aligned}
$$

where

$$
\left.\nabla_{x}^{2} f\right|_{x}:=H_{x}:=\left(\frac{\partial^{2} f}{\partial x_{m} \partial x_{k}}\right)_{m, k=1, \ldots, M} \text { Hessian of } f
$$

- the approximation attains its minimum at

$$
\begin{aligned}
0 & \stackrel{!}{=} \nabla_{d} \tilde{f}(d)=g_{x}(t) \\
H_{x(t)} d & =-H_{x}(t) d \\
= & g_{x}(t)
\end{aligned}
$$

- solve this linear system of equations to find descent direction

Minimizing f (II): Newton / Algorithm

1: procedure MIN-NEWTON $\left(f: \mathbb{R}^{M} \rightarrow \mathbb{R}, x_{0} \in \mathbb{R}^{M}\right.$,

$$
\left.\nabla_{x} f: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M}, \nabla_{x}^{2} f: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M \times M}, \epsilon \in \mathbb{R}^{+}\right)
$$

2: $\quad x:=x_{0}$
3: do
4: $\quad g:=\left.\nabla_{x} f\right|_{x}$
5: $\quad H:=\left.\nabla_{x}^{2} f\right|_{x}$
6: $\quad d:=\operatorname{solve}_{d}(H d=-g)$
7: $\quad \alpha:=1$
8: \quad while $f(x+\alpha d) \geq f(x)$ do
9: $\quad \alpha:=\alpha / 2$
10: $\quad x:=x+\alpha d$
11: \quad while $\|d\|>\epsilon$
12: return x

Minimizing $f=e^{T} e(1)$: Gauss-Newton
Gauss-Newton is

- a specialization of the Newton algorithm
- for objectives of type $f(x)=e(x)^{T} e(x)$
- that approximates the Hessian:

$$
\begin{aligned}
& \left.\nabla_{x} f\right|_{x}=\left.2 \nabla_{x} e\right|_{x} ^{T} e(x) \\
& \left.\nabla_{x}^{2} f\right|_{x}=\left.\left.2 \nabla_{x} e\right|_{x} ^{T} \nabla_{x} e\right|_{x}+\left.2 \nabla_{x}^{2} e\right|_{x} ^{T} e(x)
\end{aligned}
$$

Now approximate e by a linear Taylor expansion, i.e.

$$
\begin{aligned}
\left.\nabla_{x}^{2} e\right|_{x} & \approx 0 \\
\left.\rightsquigarrow \quad \nabla_{x}^{2} f\right|_{x} & \left.\left.\approx 2 \nabla_{x} e\right|_{x} ^{T} \nabla_{x} e\right|_{x}
\end{aligned}
$$

Minimizing $f=e^{T} e(\mathrm{I})$: Gauss-Newton / Algorithm

1: procedure MIN-GAUSS-
$\operatorname{NEWTON}\left(f: \mathbb{R}^{M} \rightarrow \mathbb{R}, x_{0} \in \mathbb{R}^{M}, \nabla_{x} e: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^{+}\right)$
2: $\quad x:=x_{0}$
3: do
4: $\quad J:=\left.\nabla_{x} e\right|_{x}$
5: $\quad g:=J^{T} e(x)$
6:
$H:=J^{\top} J$
7:
$d:=\operatorname{solve}_{d}(H d=-g)$
8: $\quad \alpha:=1$
9: \quad while $f(x+\alpha d) \geq f(x)$ do
10: $\quad \alpha:=\alpha / 2$
11: $\quad x:=x+\alpha d$
12: \quad while $\|d\|>\epsilon$
13: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision
4. Iterative Minimization Methods

Minimizing $f=e^{T} e$ (II): Levenberg-Marquardt

Outline

> 1. The Direct Linear Transformation Algorithm
> 2. Error Functions
> 3. Transformation Invariance and Normalization
> 4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Computer Vision 5. Robust Estimation

Outline

1. The Direct Linear Transformation Algorithm
2. Error Functions
3. Transformation Invariance and Normalization
4. Iterative Minimization Methods
5. Robust Estimation
6. Estimating a 2D Transformation
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 6. Estimating a 2D Transformation

Summary

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Further Readings

- [HZ04, ch. 4].
- For iterative estimation methods in CV see [HZ04, appendix 6].
- You may also read [HZ04, ch. 5] which will not be covered in the lecture explicitly.

References

Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.
Cambridge university press, 2004.

