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Computer Vision

Objects to estimate from data

I a 2D projectivity

I a 3D to 2D projection (camera)

I the Fundamental Matrix

I the Trifocal Tensor

Data:

I N pairs xn,x ′n of corresponding points in two images (n = 1, . . . ,N)
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Note: The Trifocal Tensor represents a relation between three images and thus requires N
triples of corresponding points xn,x ′n, x

′′
n in three images (n = 1, . . . ,N).
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Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (1/2)
Inhomogeneous coordinates:

x ′n
!

= x̂ ′n := Hxn, n = 1, . . . ,N

=




xTn 0T 0T

0T xTn 0T

0T 0T xTn


 h, h := vect(H) :=




H1,1

H1,2

H1,3

H2,1
...

H3,3




Homogeneous coordinates:

x ′n,i : x ′n,j = x̂ ′n,i : x̂ ′n,j , ∀i , j ∈ {1, 2, 3}, i 6= j

x ′n,i x̂
′
n,j − x ′n,j x̂

′
n,i = 0, and one equation is linear dependent

 x ′n
!

=

(
0T −x ′n,3xTn x ′n,2x

T
n

x ′n,3x
T
n 0T −x ′n,1xTn

)

︸ ︷︷ ︸
=:A(xn,x ′n)

h
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Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (2/2)

A(xn, x
′
n)h

!
= 0, n = 1, . . . ,N




A(x1, x
′
1)

A(x2, x
′
2)

...
A(xN , x

′
N)




︸ ︷︷ ︸
=:A(x.,x ′. )

h = 0

I to estimate a general projectivity we need 4 points
(8 equations, 8 dof)

I we are looking for non-trivial solutions h 6= 0.
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Computer Vision 1. The Direct Linear Transformation Algorithm

More than 4 Points & Noise: Overdetermined
I For N > 4 points and exact coordinates,

the system Ah = 0 still has rank 8 and a non-trivial solution h 6= 0.
I But for N > 4 points and noisy coordinates,

the system Ah = 0 is overdetermined and (in general) has only the
trivial solution h = 0.

Relax the objective Ah = 0 to

arg min
h:||h||=1

||Ah|| = arg min
h

||Ah||
||h||

= (normed) eigenvector to smallest eigenvalue

and solve via SVD:

ATA = USUT , S = diag(s1, . . . , s9), si ≥ si+1∀i ,UUT = I

h := U9,.
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Computer Vision 1. The Direct Linear Transformation Algorithm

Degenerate Configurations: Underdetermined

I If three of the four points are collinear (in both images),
A will have rank < 8 and thus h underdetermined,
and thus there is no unique solution for h.

Degenerate Configuration:
Corresponding points that do not uniquely determine a transformation
(in a particular class of transformations).
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Computer Vision 1. The Direct Linear Transformation Algorithm

Direct Linear Transformation Algorithm (DLT)

1: procedure
est-2d-projectivity-dlt(x1, x

′
1, x2, x

′
2, . . . , xN , x

′
N ∈ P2)

2: A :=




A(x1, x
′
1)

A(x2, x
′
2)

...
A(xN , x

′
N)


 =




0T −x ′1,3xT1 x ′1,2x
T
1

x ′1,3x
T
1 0T −x ′1,1xT1

0T −x ′2,3xT2 x ′2,2x
T
2

x ′2,3x
T
2 0T −x ′2,1xT2

...
0T −x ′N,3xTN x ′N,2x

T
N

x ′N,3x
T
N 0T −x ′N,1xTN




3: (U, S) := SVD(ATA)
4: h := U9,.

5: return H :=




h1:3
h4:6
h7:9
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Note: Do not use this unnormalized version of DLT, but the one in section 3.
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Computer Vision 2. Error Functions

Algebraic Distance

I the loss minimized by DLT, represented as distance between
I x ′: point in 2nd image
I x̂ ′ := Hx : estimated position of x ′ by H

`alg(H; x , x ′) := ||A(x ′, x)h||2

= ||
(

0T −x ′3xT x ′2x
T

x ′3x
T 0T −x ′1xT

)
h||2

= ||
(
−x ′3x̂ ′2 + x ′2x̂

′
3

x ′3x̂
′
1 − x ′1x̂

′
3

)
||2

= dalg(x ′, x̂ ′)

with

dalg(x , y) :=
√

a21 + a22, (a1, a2, a3)T = x × y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 32



Computer Vision 2. Error Functions

Geometric Distances: Transfer Errors
Transfer Error in One Image (2nd image):

`trans1(H; x , x ′) :=d(x ′,Hx)2 = d(x ′, x̂ ′)2

with Euclidean distance in inhomogeneous coordinates

d(x , y) :=
√

(x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2

=
√

1/(x3y3) dalg(x , y)

I DLT/algebraic error equals geometric error for affine transformations
(x3 = y3 = 1)

Symmetric Transfer Error:

`strans(H; x , x ′) :=d(x ,H−1x ′)2 + d(x ′,Hx)2

=d(x , x̂)2 + d(x ′, x̂ ′)2, x̂ := H−1x ′
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Computer Vision 2. Error Functions

Transfer Errors: Probabilistic Interpretation
Assume
I measurements xn in the 1st image are noise-free,
I measurements x ′n in the 2nd image are distributed Gaussian around

true values Hxn:

p(x ′n | Hxn, σ2) =
1

2πσ2
e−d(x

′
n,Hxn)2/(2σ2)

log-likelihood for Transfer Error in One Image:

p(H | x1:N , x ′1:N) =
p(x1:N , x

′
1:N | H)p(H)

p(x1:N , x
′
1:N)

Bayes

∝p(x1:N , x
′
1:N | H)p(H) ∝ p(x ′1:N | H, x1:N)p(H)

=p(H)
N∏

n=1

p(x ′n | H, xn) ∝
N∏

n=1

p(x ′n | H, xn)

log p(H | x1:N , x ′1:N) ∝−
N∑

n=1

d(x ′n,Hxn)2 = transfer error
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Computer Vision 2. Error Functions

Reprojection Error
I additionally to projectivity H, also find noise-free / perfectly matching

pairs x̂ , x̂ ′:

minimize `rep(H, x̂1, x̂
′
1, . . . , x̂N , x̂

′
N) :=

N∑

n=1

d(xn, x̂n)2 + d(x ′n, x̂
′
n)2

w.r.t.

x̂ ′n =Hx̂n, n = 1, . . . ,N

over

H, x̂1, x̂
′
1, . . . , x̂N , x̂

′
N

Reprojection Error:

`rep(H, x̂ , x̂ ′; x , x ′) :=d(x , x̂)2 + d(x ′, x̂ ′)2, with x̂ ′ = Hx̂

I analogue probabilistic interpretation:
I measurements x , x ′ are Gaussian around true values x̂ , x̂ ′
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Computer Vision 3. Transformation Invariance and Normalization

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 32



Computer Vision 3. Transformation Invariance and Normalization

Are Solutions Invariant under Transformations?

I Given corresponding points xn, x
′
n,

a method such as DLT will find a projectivity H.
I Now assume

I the first image is transformed by projectivity T ,
I the second image is transformed by projectivity T ′

before we apply the estimation method.
I Corresponding points now will be x̃n := Txn, x̃

′
n := T ′x ′n

I Let H̃ be the projectivity estimated by the method applied to x̃n, x̃
′
n.

I Is it guaranteed that H and H̃ are “the same” (equivalent) ?

H̃
?
= T ′HT−1

I This may depend on the class of projectivities allowed for T ,T ′.
I at least invariance under similarities would be useful !
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Computer Vision 3. Transformation Invariance and Normalization

DLT is not Invariant under Similarities

I If T ′ is a similarity transformation with scale factor s
and T any projectivity, then one can show

||Ãh̃|| = s||Ah||

I But solutions H and H̃ will not be equivalent nevertheless,
as DLT minimizes under constraint ||h|| = 1
and this constraint is not scaled with s !

I So DLT is not invariant under similarity transforms.
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Note: Ã := A(x̃., x̃ ′. ), h̃ := vect(H̃)



Computer Vision 3. Transformation Invariance and Normalization

Transfer/Reprojection Errors are Invariant under
Similarities

I If T ′ is Euclidean:

d(x̃ ′n, H̃x̃n)2 =d(T ′x ′n,T
′HT−1Txn)2

=x ′nT
′TT ′HT−1Txn = x ′nHxn = d(x ′n,Hxn)2

I If T ′ is a similarity with scale factor s:

d(x̃ ′n, H̃x̃n)2 =d(T ′x ′n,T
′HT−1Txn)2

=x ′nT
′TT ′HT−1Txn = x ′ns

2Hxn = s2d(x ′n,Hxn)2

I Error is just scaled, so attains minimum at same position.
 Transfer/Reprojection Errors are invariant under similarities.
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization

I Image coordinates of corresponding points are usually finite:
x = (x1, x2, 1)T ,
thus have different scale (100, 100, 1) when measured in pixels.

I Therefore, entries in A(x , x ′) will have largely different scale:

A(x , x ′) =

(
0T −x ′3xT x ′2x

T

x ′3x
T 0T −x ′1xT

)
=

(
0T −xT x ′2x

T

xT 0T −x ′1xT
)

I some in 100s (xT ), some in 10.000s (x ′2x
T ,−x ′1xT )
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization
I normalize x.:

x̃. :=normalize(x.) := (
xn − µ(x.)

τ(x.)/
√

2
)n=1,...,N ,

with

µ(x.) :=
1

N

N∑

n=1

xn centroid/mean

τ(x.) :=
1

N

N∑

n=1

d(xn − µ(x.), 0) avg. distance to centroid

I afterwards:

µ(x̃.) =0, τ(x̃.) =
√

2

I Normalization is a similarity transform:

T := Tnorm(x.) :=

( √
2/τ(x.)I −µ(x.)

√
2/τ(x.)

0 1

)
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization / Algorithm

1: procedure
est-2d-projectivity-dltn(x1, x

′
1, x2, x

′
2, . . . , xN , x

′
N ∈ P2)

2: T := Tnorm(x.) :=

( √
2/τ(x.)I −µ(x.)

√
2/τ(x.)

0 1

)

3: T ′ := Tnorm(x ′. ) :=

( √
2/τ(x ′. )I −µ(x ′. )

√
2/τ(x ′. )

0 1

)

4: x̃n := Txn ∀n = 1, . . . ,N . normalize xn
5: x̃ ′n := T ′x ′n ∀n = 1, . . . ,N . normalize x ′n
6: H̃ := est-2d-projectivity-dlt(x̃1, x̃

′
1, x̃2, x̃

′
2, . . . , x̃N , x̃

′
N)

7: H := T ′–1H̃T . unnormalize H̃
8: return H
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Computer Vision 4. Iterative Minimization Methods

Types of Problems

I The transformation estimation problem for the
I algebraic distance/loss can be cast into a single
I linear system of equations (DLTn).

I The transformation estimation problem for the
I transfer distance/loss as well as for the
I reconstruction loss is more complicated and has to be handled by an

explicit
I iterative minimization procedure.
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Computer Vision 4. Iterative Minimization Methods

Minimization Objectives f : RM → R
a) transfer distance in one image:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2

b) symmetric transfer distance:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2 + d(xn,H
−1x ′n)2

c) reconstruction loss:

minimize f (H, x̂1:N) :=
N∑

n=1

d(xn, x̂n)2 + d(x ′n,Hx̂n)2

I xn, x
′
n are constants, H, x̂1:N variables

I a), b) have M := 9 parameters / variables
I as H as only 8 dof, the objective is slightly overparametrized

I c) has M := 2N + 9 parameters / variables
I allowing only finite points for x̂n
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Computer Vision 4. Iterative Minimization Methods

Objectives of type f = eTe (1/3)
All three objectives f are L2 norms of (parametrized) vectors, i.e. can be
written as

f (x) = e(x)T e(x), h : RM → RN

a) transfer distance in one image:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2

= e(H)T e(H),

e(H) :=




x ′1,1/x
′
1,3 − (Hx1)1/(Hx1)3

x ′1,2/x
′
1,3 − (Hx1)2/(Hx1)3

...
x ′N,1/x

′
N,3 − (HxN)1/(HxN)3

x ′N,2/x
′
N,3 − (HxN)2/(HxN)3
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Computer Vision 4. Iterative Minimization Methods

Objectives of type f = eTe (2/3)

b) symmetric transfer distance:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2 + d(xn,H
−1x ′n)2 = e(H)T e(H),

e(H) :=




x ′1,1/x
′
1,3 − (Hx1)1/(Hx1)3

x ′1,2/x
′
1,3 − (Hx1)2/(Hx1)3

...
x ′N,1/x

′
N,3 − (HxN)1/(HxN)3

x ′N,2/x
′
N,3 − (HxN)2/(HxN)3

x1,1/x1,3 − (H−1x ′1)1/(H−1x ′1)3
x1,2/x1,3 − (H−1x ′1)2/(H−1x ′1)3

...
xN,1/xN,3 − (H−1x ′N)1/(H−1x ′N)3
xN,2/xN,3 − (H−1x ′N)2/(H−1x ′N)3




Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 32

Computer Vision 4. Iterative Minimization Methods

Objectives of type f = eTe (3/3)

c) reconstruction loss:

minimize f (H, x̂1:N) :=
N∑

n=1

d(xn, x̂n)2 + d(x ′n,Hx̂n)2 = e(H)T e(H),

e(H) :=




x ′1,1/x
′
1,3 − (Hx̂1)1/(Hx̂1)3

x ′1,2/x
′
1,3 − (Hx̂1)2/(Hx̂1)3

...
x ′N,1/x

′
N,3 − (Hx̂N)1/(Hx̂N)3

x ′N,2/x
′
N,3 − (Hx̂N)2/(Hx̂N)3
x1,1/x1,3 − x̂1,1
x1,2/x1,3 − x̂1,2

...
xN,1/xN,3 − x̂N,1
xN,2/xN,3 − x̂N,2
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Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. moves into the descent direction:

x (t+1) := x (t) + d

Beware:
I f decreases only in the neighborhood of x (t)

I A full gradient step may be too large and not leading to a decrease !
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Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent w. Steplength Control
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. finds a steplength α ∈ R+ so that f actually decreases:

α := max{α := 2−k | k = 0, 1, 2, . . . , f (x + αd) < f (x)}
4. moves a step into the descent direction:

x (t+1) := x (t) + αd
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Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent / Algorithm

1: procedure min-gd(f : RM → R, x0 ∈ RM ,∇x f : RM → RM , ε ∈ R+)
2: x := x0
3: do
4: d := −∇x f |x
5: α := 1
6: while f (x + αd) ≥ f (x) do
7: α := α/2

8: x := x + αd
9: while ||d || > ε

10: return x
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Computer Vision 4. Iterative Minimization Methods

Minimizing f (II): Newton
The Newton algorithm computes a better descent direction:

I approximate f by the quadratic Taylor expansion at x (t):

f (x + d) ≈ f̃ (d) := f (x (t)) +∇x f |Tx(t)d +
1

2
dT∇2

x f |Tx(t)d

= f (x (t)) + gT
x(t)

d +
1

2
dTHx(t)d

where

∇2
x f |x := Hx := (

∂2f

∂xm∂xk
)m,k=1,...,M Hessian of f

I the approximation attains its minimum at

0
!

=∇d f̃ (d) = gx(t) + Hx(t)d

Hx(t)d =− gx(t)

I solve this linear system of equations to find descent direction
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Computer Vision 4. Iterative Minimization Methods

Minimizing f (II): Newton / Algorithm

1: procedure min-newton(f : RM → R, x0 ∈ RM ,
∇x f : RM → RM ,∇2

x f : RM → RM×M , ε ∈ R+)
2: x := x0
3: do
4: g := ∇x f |x
5: H := ∇2

x f |x
6: d := solved(Hd = −g)
7: α := 1
8: while f (x + αd) ≥ f (x) do
9: α := α/2

10: x := x + αd
11: while ||d || > ε
12: return x
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Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton

Gauss-Newton is

I a specialization of the Newton algorithm

I for objectives of type f (x) = e(x)T e(x)

I that approximates the Hessian:

∇x f |x = 2∇xe|Tx e(x)

∇2
x f |x = 2∇xe|Tx ∇xe|x + 2∇2

xe|Tx e(x)

Now approximate e by a linear Taylor expansion, i.e.

∇2
xe|x ≈ 0

 ∇2
x f |x ≈ 2∇xe|Tx ∇xe|x
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Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton / Algorithm

1: procedure min-gauss-
newton(f : RM → R, x0 ∈ RM ,∇xe : RM → RN×M , ε ∈ R+)

2: x := x0
3: do
4: J := ∇xe|x
5: g := JT e(x)
6: H := JT J
7: d := solved(Hd = −g)
8: α := 1
9: while f (x + αd) ≥ f (x) do

10: α := α/2

11: x := x + αd
12: while ||d || > ε
13: return x
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Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (II): Levenberg-Marquardt
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Computer Vision 5. Robust Estimation
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Computer Vision 5. Robust Estimation

...
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Computer Vision 6. Estimating a 2D Transformation

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation
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Computer Vision 6. Estimating a 2D Transformation

Summary

I ...
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Further Readings

I [HZ04, ch. 4].

I For iterative estimation methods in CV see [HZ04, appendix 6].

I You may also read [HZ04, ch. 5] which will not be covered in the
lecture explicitly.
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