Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision

Objects to estimate from data

- ► a 2D projectivity
- ► a 3D to 2D projection (camera)
- ▶ the Fundamental Matrix
- ▶ the Trifocal Tensor

Data:

▶ N pairs x_n, x_n' of corresponding points in two images (n = 1, ..., N)

Note: The Trifocal Tensor represents a relation between three images and thus requires N triples of corresponding points x_n, x_n', x_n'' in three images (n = 1, ..., N).

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (1/2) Inhomogeneous coordinates:

$$x'_{n} \stackrel{!}{=} \hat{x}'_{n} := Hx_{n}, \quad n = 1, \dots, N$$

$$= \begin{pmatrix} x_{n}^{T} & 0^{T} & 0^{T} \\ 0^{T} & x_{n}^{T} & 0^{T} \\ 0^{T} & 0^{T} & x_{n}^{T} \end{pmatrix} h, \quad h := \text{vect}(H) := \begin{pmatrix} H_{1,1} \\ H_{1,2} \\ H_{1,3} \\ H_{2,1} \\ \vdots \\ H_{3,3} \end{pmatrix}$$

Homogeneous coordinates:

$$x'_{n,i}: x'_{n,j} = \hat{x}'_{n,i}: \hat{x}'_{n,j}, \quad \forall i,j \in \{1,2,3\}, i \neq j$$

$$x'_{n,i}\hat{x}'_{n,j} - x'_{n,j}\hat{x}'_{n,i} = 0, \quad \text{and one equation is linear dependent}$$

$$\Rightarrow 0 \stackrel{!}{=} \underbrace{\begin{pmatrix} 0^T & -x'_{n,3}x_n^T & x'_{n,2}x_n^T \\ x'_{n,3}x_n^T & 0^T & -x'_{n,1}x_n^T \end{pmatrix}}_{=:A(x_n,x_n')} h$$

From Corresponding Points to Linear Equations (2/2)

$$A(x_{n}, x'_{n})h \stackrel{!}{=} 0, \quad n = 1, ..., N$$

$$\underbrace{\begin{pmatrix} A(x_{1}, x'_{1}) \\ A(x_{2}, x'_{2}) \\ \vdots \\ A(x_{N}, x'_{N}) \end{pmatrix}}_{=:A(x_{1:N}, x'_{1:N})} h = 0$$

- ▶ to estimate a general projectivity we need 4 points (8 equations, 8 dof)
- we are looking for non-trivial solutions $h \neq 0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. The Direct Linear Transformation Algorithm

3 / 40

More than 4 Points & Noise: Overdetermined

- ► For N > 4 points and exact coordinates, the system Ah = 0 still has rank 8 and a non-trivial solution $h \neq 0$.
- ▶ But for N > 4 points and **noisy coordinates**, the system Ah = 0 is overdetermined and (in general) has only the trivial solution h = 0.

Relax the objective Ah = 0 to

$$\underset{h:||h||=1}{\operatorname{arg\,min}} \frac{||Ah||}{||h||}$$

= (normed) eigenvector to smallest eigenvalue

and solve via SVD:

$$A^TA = USU^T$$
, $S = diag(s_1, ..., s_9)$, $s_i \ge s_{i+1} \forall i, UU^T = I$
 $h := U_{9,1:9}$

Degenerate Configurations: Underdetermined

▶ If three of the four points are collinear (in both images), A will have rank < 8 and thus h underdetermined, and thus there is no unique solution for h.

Degenerate Configuration:

Corresponding points that do not uniquely determine a transformation (in a particular class of transformations).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 1. The Direct Linear Transformation Algorithm

Direct Linear Transformation Algorithm (DLT)

1: procedure

EST-2D-PROJECTIVITY-DLT
$$(x_1, x_1', x_2, x_2', \dots, x_N, x_N' \in \mathbb{P}^2)$$

1: **procedure**

$$EST-2D-PROJECTIVITY-DLT(x_{1}, x'_{1}, x_{2}, x'_{2}, \dots, x_{N}, x'_{N} \in \mathbb{P}^{2})$$

$$A := \begin{pmatrix} A(x_{1}, x'_{1}) \\ A(x_{2}, x'_{2}) \\ \vdots \\ A(x_{N}, x'_{N}) \end{pmatrix} = \begin{pmatrix} 0^{T} & -x'_{1,3}x_{1}^{T} & x'_{1,2}x_{1}^{T} \\ x'_{1,3}x_{1}^{T} & 0^{T} & -x'_{1,1}x_{1}^{T} \\ 0^{T} & -x'_{2,3}x_{2}^{T} & x'_{2,2}x_{2}^{T} \\ x'_{2,3}x_{2}^{T} & 0^{T} & -x'_{2,1}x_{2}^{T} \\ \vdots \\ 0^{T} & -x'_{N,3}x_{N}^{T} & x'_{N,2}x_{N}^{T} \\ x'_{N,3}x_{N}^{T} & 0^{T} & -x'_{N,1}x_{N}^{T} \end{pmatrix}$$

3:
$$(U,S) := SVD(A^TA)$$

4:
$$h := U_{9,1\cdot 9}$$

4:
$$h := U_{9,1:9}$$
5: **return** $H := \begin{pmatrix} h_{1:3}^T \\ h_{4:6}^T \\ h_{7:9}^T \end{pmatrix}$

Note: Do not use this unnormalized version of DLT, but the one in section 3.

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 2. Error Functions

Jrivers/is

Algebraic Distance

- ▶ the loss minimized by DLT, represented as distance between
 - \triangleright x': point in 2nd image
 - $\hat{x}' := Hx$: estimated position of x' by H

$$\ell_{\mathsf{alg}}(H; x, x') := ||A(x', x)h||^{2}$$

$$= ||\begin{pmatrix} 0^{T} & -x_{3}'x^{T} & x_{2}'x^{T} \\ x_{3}'x^{T} & 0^{T} & -x_{1}'x^{T} \end{pmatrix} h||^{2}$$

$$= ||\begin{pmatrix} -x_{3}'\hat{x}_{2}' + x_{2}'\hat{x}_{3}' \\ x_{3}'\hat{x}_{1}' - x_{1}'\hat{x}_{3}' \end{pmatrix}||^{2}$$

$$= d_{\mathsf{alg}}(x', \hat{x}')^{2}$$

with

$$d_{\text{alg}}(x,y) := \sqrt{a_1^2 + a_2^2}, \quad (a_1, a_2, a_3)^T = x \times y$$

Geometric Distances: Transfer Errors

Transfer Error in One Image (2nd image):

$$\ell_{\text{trans1}}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$d(x,y) := \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2}$$
$$= \frac{1}{|x_3||y_3|} d_{alg}(x,y)$$

▶ DLT/algebraic error equals geometric error for affine transformations $(x_3 = y_3 = 1)$

Symmetric Transfer Error:

$$\ell_{\mathsf{strans}}(H; x, x') := d(x, H^{-1}x')^2 + d(x', Hx)^2$$
$$= d(x, \hat{x})^2 + d(x', \hat{x}')^2, \quad \hat{x} := H^{-1}x'$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 48

Computer Vision 2. Error Functions

Transfer Errors: Probabilistic Interpretation

Assume

- \blacktriangleright measurements x_n in the 1st image are noise-free,
- ▶ measurements x'_n in the 2nd image are distributed Gaussian around true values Hx_n :

$$p(x'_n \mid Hx_n, \sigma^2) = \frac{1}{2\pi\sigma^2} e^{-d(x'_n, Hx_n)^2/(2\sigma^2)}$$

log-likelihood for Transfer Error in One Image:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Reprojection Error

▶ additionally to projectivity H, also find noise-free / perfectly matching pairs \hat{x}, \hat{x}' :

minimize
$$\ell_{rep}(H, \hat{x}_1, \hat{x}'_1, \dots, \hat{x}_N, \hat{x}'_N) := \sum_{n=1}^N d(x_n, \hat{x}_n)^2 + d(x'_n, \hat{x}'_n)^2$$

w.r.t.

$$\hat{x}'_n = H\hat{x}_n, \quad n = 1, \dots, N$$

over

$$H, \hat{x}_1, \hat{x}'_1, \dots, \hat{x}_N, \hat{x}'_N$$

Reprojection Error:

$$\ell_{\text{rep}}(H, \hat{x}, \hat{x}'; x, x') := d(x, \hat{x})^2 + d(x', \hat{x}')^2$$
, with $\hat{x}' = H\hat{x}$

- ► analogue probabilistic interpretation:
 - measurements x, x' are Gaussian around true values \hat{x}, \hat{x}'

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 3. Transformation Invariance and Normalization

10 / 48

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Are Solutions Invariant under Transformations?

- ► Given corresponding points x_n, x'_n , a method such as DLT will find a projectivity H.
- ▶ Now assume
 - ▶ the first image is transformed by projectivity *T*,
 - ightharpoonup the second image is transformed by projectivity T'

before we apply the estimation method.

- Corresponding points now will be $\tilde{x}_n := Tx_n, \tilde{x}'_n := T'x'_n$
- ▶ Let \tilde{H} be the projectivity estimated by the method applied to $\tilde{x}_n, \tilde{x}'_n$.
- ▶ Is it guaranteed that H and \tilde{H} are "the same" (equivalent) ?

$$\tilde{H} \stackrel{?}{=} T'HT^{-1}$$

- ▶ This may depend on the class of projectivities allowed for T, T'.
 - ▶ at least invariance under similarities would be useful!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 3. Transformation Invariance and Normalization

11 / 48

DLT is not Invariant under Similarities

▶ If T' is a similarity transformation with scale factor s and T any projectivity, then one can show

$$||\tilde{A}\tilde{h}|| = s||Ah||$$

- ▶ But solutions H and \tilde{H} will not be equivalent nevertheless, as DLT minimizes under constraint ||h||=1 and this constraint is not scaled with s!
- ► So DLT is not invariant under similarity transforms.

Note: $\tilde{A} := A(\tilde{x}_{\cdot}, \tilde{x}'_{\cdot}), \tilde{h} := \text{vect}(\tilde{H})$

Transfer/Reprojection Errors are Invariant under Similarities

▶ If T' is Euclidean:

$$d(\tilde{x}'_n, \tilde{H}\tilde{x}_n)^2 = d(T'x'_n, T'HT^{-1}Tx_n)^2$$

= $x'_n^T T'^T T'HT^{-1}Tx_n = x'_n Hx_n = d(x'_n, Hx_n)^2$

▶ If T' is a similarity with scale factor s:

$$d(\tilde{x}'_n, \tilde{H}\tilde{x}_n)^2 = d(T'x'_n, T'HT^{-1}Tx_n)^2$$

= $x'_n T'^T T'HT^{-1}Tx_n = x'_n s^2 Hx_n = s^2 d(x'_n, Hx_n)^2$

► Error is just scaled, so attains minimum at same position.

¬→ Transfer/Reprojection Errors are invariant under similarities.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 3. Transformation Invariance and Normalization

Jivers/

DLT with Normalization

- ▶ Image coordinates of corresponding points are usually finite: $x = (x_1, x_2, 1)^T$, thus have different scale (100, 100, 1) when measured in pixels.
- ▶ Therefore, entries in A(x, x') will have largely different scale:

$$A(x,x') = \begin{pmatrix} 0^T & -x_3'x^T & x_2'x^T \\ x_3'x^T & 0^T & -x_1'x^T \end{pmatrix} = \begin{pmatrix} 0^T & -x^T & x_2'x^T \\ x^T & 0^T & -x_1'x^T \end{pmatrix}$$

▶ some in 100s (x^T) , some in 10.000s $(x_2'x^T, -x_1'x^T)$

DLT with Normalization

▶ normalize $x_{1:N}$:

$$\tilde{x}_{1:N} := \text{normalize}(x_{1:N}) := (\frac{x_n - \mu(x_{1:N})}{\tau(x_{1:N})/\sqrt{2}})_{n=1,...,N},$$

with

$$\mu(x_{1:N}) := \frac{1}{N} \sum_{n=1}^{N} x_n$$
 centroid/mean

$$au(x_{1:N}) := \frac{1}{N} \sum_{n=1}^{N} d(x_n, \mu(x_{1:N}))$$
 avg. distance to centroid

► afterwards:

$$\mu(\tilde{\mathbf{x}}_{1:N}) = 0, \quad \tau(\tilde{\mathbf{x}}_{1:N}) = \sqrt{2}$$

► Normalization is a similarity transform:

$$T := T_{\mathsf{norm}}(x_{1:N}) := \left(egin{array}{cc} \sqrt{2}/ au(x_{1:N})I & -\mu(x_{1:N})\sqrt{2}/ au(x_{1:N}) \\ 0 & 1 \end{array}
ight)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 3. Transformation Invariance and Normalization

15 / 48

DLT with Normalization / Algorithm

1: procedure

EST-2D-PROJECTIVITY-DLTN $(x_1, x_1', x_2, x_2', \dots, x_N, x_N' \in \mathbb{P}^2)$

2:
$$T := T_{\text{norm}}(x_{1:N}) := \begin{pmatrix} \sqrt{2}/\tau(x_{1:N})I & -\mu(x_{1:N})\sqrt{2}/\tau(x_{1:N}) \\ 0 & 1 \end{pmatrix}$$

3:
$$T' := T_{\text{norm}}(x'_{1:N}) := \begin{pmatrix} \sqrt{2}/\tau(x'_{1:N})I & -\mu(x'_{1:N})\sqrt{2}/\tau(x'_{1:N}) \\ 0 & 1 \end{pmatrix}$$

4:
$$\tilde{x}_n := Tx_n \quad \forall n = 1, ..., N$$
 \triangleright normalize x_n

5:
$$\tilde{x}'_n := T'x'_n \quad \forall n = 1, \dots, N$$
 \triangleright normalize x'_n

6:
$$\hat{H} := \text{est-2d-projectivity-dlt}(\tilde{x}_1, \tilde{x}'_1, \tilde{x}_2, \tilde{x}'_2, \dots, \tilde{x}_N, \tilde{x}'_N)$$

7:
$$H:=T'^{-1}\tilde{H}T$$
 ho unnormalize \tilde{H}

8: **return** *H*

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Jrivers/to

Types of Problems

- ► The transformation estimation problem for the
 - ► algebraic distance/loss can be cast into a single
 - ► linear system of equations (DLTn).
- ► The transformation estimation problem for the
 - transfer distance/loss as well as for the
 - reconstruction loss is more complicated and has to be handled by an explicit
 - **▶** iterative minimization procedure.

Minimization Objectives $f: \mathbb{R}^M \to \mathbb{R}$

a) transfer distance in one image:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2$$

- b) symmetric transfer distance: $\min_{n=1}^{N} d(x_n', Hx_n)^2 + d(x_n, H^{-1}x_n')^2$
- c) reconstruction loss: $\min \text{minimize } f(H, \hat{x}_{1:N}) := \sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x_n', H\hat{x}_n)^2$
 - ► x_n, x'_n are constants, $H, \hat{x}_{1:N}$ variables
 - ightharpoonup a), b) have M := 9 parameters / variables
 - ► as H as only 8 dof, the objective is slightly overparametrized
 - ightharpoonup c) has M := 2N + 9 parameters / variables
 - allowing only finite points for \hat{x}_n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

18 / 48

Objectives of type $f = e^T e (1/3)$

All three objectives f are L_2 norms of (parametrized) vectors, i.e. can be written as

$$f(x) = e(x)^T e(x), \quad h: \mathbb{R}^M \to \mathbb{R}^N$$

a) transfer distance in one image:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2$$

 $= e(H)^T e(H),$
 $e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (Hx_1)_1/(Hx_1)_3 \\ x'_{1,2}/x'_{1,3} - (Hx_1)_2/(Hx_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (Hx_N)_1/(Hx_N)_3 \\ x'_{N,2}/x'_{N,3} - (Hx_N)_2/(Hx_N)_3 \end{pmatrix}$

Objectives of type $f = e^T e (2/3)$

b) symmetric transfer distance:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2 + d(x_n, H^{-1}x'_n)^2 = e(H)^T e(H),$$

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (Hx_1)_1/(Hx_1)_3 \\ x'_{1,2}/x'_{1,3} - (Hx_1)_2/(Hx_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (Hx_N)_1/(Hx_N)_3 \\ x'_{N,2}/x'_{N,3} - (Hx_N)_2/(Hx_N)_3 \\ x_{1,1}/x_{1,3} - (H^{-1}x'_1)_1/(H^{-1}x'_1)_3 \\ \vdots \\ x_{N,1}/x_{N,3} - (H^{-1}x'_1)_2/(H^{-1}x'_1)_3 \\ \vdots \\ x_{N,1}/x_{N,3} - (H^{-1}x'_N)_1/(H^{-1}x'_N)_3 \\ x_{N,2}/x_{N,3} - (H^{-1}x'_N)_2/(H^{-1}x'_N)_3 \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Objectives of type $f = e^T e (3/3)$

c) reconstruction loss:

minimize
$$f(H, \hat{x}_{1:N}) := \sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x'_n, H\hat{x}_n)^2 = e(H)^T e(H),$$

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (H\hat{x}_1)_1/(H\hat{x}_1)_3 \\ x'_{1,2}/x'_{1,3} - (H\hat{x}_1)_2/(H\hat{x}_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (H\hat{x}_N)_1/(H\hat{x}_N)_3 \\ x'_{N,2}/x'_{N,3} - (H\hat{x}_N)_2/(H\hat{x}_N)_3 \\ x_{1,1}/x_{1,3} - \hat{x}_{1,1} \\ x_{1,2}/x_{1,3} - \hat{x}_{1,2} \\ \vdots \\ x_{N,1}/x_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x_{N,2} - \hat{x}_{N,2} \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing f (I): Gradient Descent

To minimize $f: \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as **descent direction** $d^{(t)}$ **at** $x^{(t)}$ — direction where f decreases the **gradient of** f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{X^{(t)}} := -(\frac{\partial f}{\partial x_m}(X^{(t)}))_{m=1,\dots,M}$$

3. moves into the descent direction:

$$x^{(t+1)} := x^{(t)} + d$$

Beware:

- f decreases only in the neighborhood of $x^{(t)}$
- ► A full gradient step may be too large and **not** leading to a decrease!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent w. Steplength Control

To minimize $f: \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as **descent direction** $d^{(t)}$ **at** $x^{(t)}$ — direction where f decreases the **gradient of** f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{X^{(t)}} := -(\frac{\partial f}{\partial x_m}(X^{(t)}))_{m=1,...,M}$$

3. finds a steplength $\alpha \in \mathbb{R}^+$ so that f actually decreases:

$$\alpha := \max\{\alpha := 2^{-k} \mid k = 0, 1, 2, \dots, f(x + \alpha d) < f(x)\}$$

4. moves a step into the descent direction:

$$x^{(t+1)} := x^{(t)} + \alpha d$$

Minimizing f (I): Gradient Descent / Algorithm


```
procedure MIN-GD(f: \mathbb{R}^M \to \mathbb{R}, x_0 \in \mathbb{R}^M, \nabla_x f: \mathbb{R}^M \to \mathbb{R}^M, \epsilon \in \mathbb{R}^+)
            x := x_0
 2:
             do
 3:
                   d := -\nabla_{\mathbf{x}} f|_{\mathbf{x}}
 4:
                   \alpha := 1
 5:
                   while f(x + \alpha d) \ge f(x) do
 6:
                        \alpha := \alpha/2
 7:
                   x := x + \alpha d
 8:
            while ||d|| > \epsilon
 9:
            return x
10:
```

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Jainers/¿six

Minimizing f (II): Newton

The Newton algorithm computes a better descent direction:

▶ approximate f by the quadratic Taylor expansion at $x^{(t)}$:

$$f(x+d) \approx \tilde{f}(d) := f(x^{(t)}) + \nabla_x f|_{x^{(t)}}^T d + \frac{1}{2} d^T \nabla_x^2 f|_{x^{(t)}}^T d$$
$$= f(x^{(t)}) + g_{x^{(t)}}^T d + \frac{1}{2} d^T H_{x^{(t)}} d$$

where

$$\nabla_x^2 f|_x := H_x := (\frac{\partial^2 f}{\partial x_m \partial x_k})_{m,k=1,\dots,M}$$
 Hessian of f

▶ the approximation attains its minimum at

$$0\stackrel{!}{=}
abla_d ilde{f}(d) = g_{X^{(t)}} + H_{X^{(t)}} d$$
 $H_{X^{(t)}} d = -g_{X^{(t)}}$ normal equations

solve this linear system of equations to find descent direction

Minimizing f (II): Newton / Algorithm


```
1: procedure MIN-NEWTON(f : \mathbb{R}^M \to \mathbb{R}, x_0 \in \mathbb{R}^M,
                 \nabla_{\mathbf{v}} f: \mathbb{R}^M \to \mathbb{R}^M, \overset{\circ}{\nabla_{\mathbf{v}}^2} f: \mathbb{R}^M \to \mathbb{R}^{M \times M}, \epsilon \in \mathbb{R}^+)
             x := x_0
 2:
             do
 3:
                   g := \nabla_X f|_X
 4:
                   H := \nabla_x^2 f|_X
 5:
                   d := solve_d(Hd = -g)
 6:
                   \alpha := 1
 7:
                   while f(x + \alpha d) \ge f(x) do
 8:
                         \alpha := \alpha/2
 9:
                   x := x + \alpha d
10:
             while ||d|| > \epsilon
11:
             return x
12:
```

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- ▶ that approximates the Hessian:

$$\nabla_{x} f|_{x} = 2\nabla_{x} e|_{x}^{T} e(x)$$

$$\nabla_{x}^{2} f|_{x} = 2\nabla_{x} e|_{x}^{T} \nabla_{x} e|_{x} + 2\nabla_{x}^{2} e|_{x}^{T} e(x)$$

Now approximate e by a linear Taylor expansion, i.e.

$$\nabla_x^2 e|_x \approx 0$$

$$\rightsquigarrow \quad \nabla_x^2 f|_x \approx 2\nabla_x e|_x^T \nabla_x e|_x$$

▶ all we need is the gradient of e!

Minimizing $f = e^T e$ (I): Gauss-Newton / Algorithm


```
1: procedure MIN-GAUSS-
     NEWTON(e: \mathbb{R}^M \to \mathbb{R}^N, x_0 \in \mathbb{R}^M, \nabla_x e: \mathbb{R}^M \to \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^+)
 2:
           x := x_0
           do
 3:
                J := \nabla_{\mathbf{x}} e|_{\mathbf{x}}
 4:
                g := J^T e(x)
 5:
                H := I^T I
 6:
                d := solve_d(Hd = -g)
 7:
                \alpha := 1
 8:
                while e(x + \alpha d)^T e(x + \alpha d) \ge e(x)^T e(x) do
 9:
                      \alpha := \alpha/2
10:
                x := x + \alpha d
11:
           while ||d|| > \epsilon
12:
           return x
13:
```

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Jaivers/

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

slight variation of the Gauss-Newton method

$$J^TJ\,d=-g$$
 Gauss-Newton Normal Eq. $(J^TJ+\lambda I)\,d=-g$ Levenberg-Marquardt Normal Eq.

- lacktriangle if new objective value is worse, try again with larger λ
 - for large λ : equivalent to Gradient descent with small stepsize $1/\lambda$

$$(J^T J + \lambda I) \approx \lambda I, \qquad (J^T J + \lambda I) d = -g \qquad \rightsquigarrow d = -\frac{1}{\lambda} g$$

- lacktriangle once new objective value is smaller, accept and decrease λ
 - for small λ : equivalent to Gauss-Newton with (large) stepsize 1

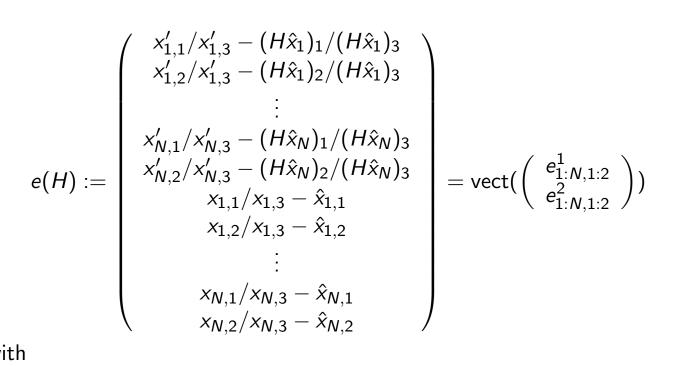
Minimizing $f = e^T e$ (I): Levenberg-Marquardt / Algorithm

```
1: procedure MIN-LEVENBERG-
     MARQUARDT(e: \mathbb{R}^M \to \mathbb{R}^N, x_0 \in \mathbb{R}^M, \nabla_x e: \mathbb{R}^M \to \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^+)
          x := x_0
 2:
          \lambda := 1
 3:
                J := \nabla_x e|_x
 5:
                g := J^T e(x)
                \lambda := (\lambda/10)/10
 7:
                do
 8:
                      H := J^T J + \lambda I
 9:
                      d := \operatorname{solve}_d(Hd = -g)
10:
                \lambda := 10\lambda while e(x+d)^T e(x+d) \ge e(x)^T e(x)
11:
12:
                x := x + d
13:
           while ||d|| > \epsilon
14:
15:
           return x
```

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (1/2)



with

$$e_{n,i}^1 := x'_{n,i}/x'_{n,3} - (H\hat{x}_n)_i/(H\hat{x}_n)_3$$

 $e_{n,i}^2 := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x'_{n,i}}{x'_{n,3}} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,\tilde{i}}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} H_{3,\tilde{i}}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1} = -\delta(\tilde{i} = i) \frac{\hat{x}_{n,\tilde{j}}}{(H\hat{x}_{n})_{3}} + \delta(\tilde{i} = 3) \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} \hat{x}_{n,3}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2} = 0$$

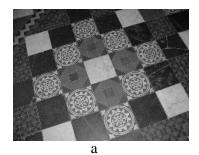
Note: $(H\hat{x}_n)_i = \sum_{j=1}^3 H_{i,j} \hat{x}_{n,j}$.

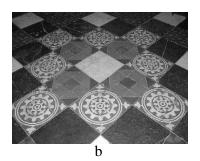
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

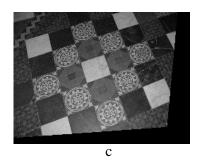
Computer Vision 4. Iterative Minimization Methods

32 / 48

Example: Comparison of Different Methods





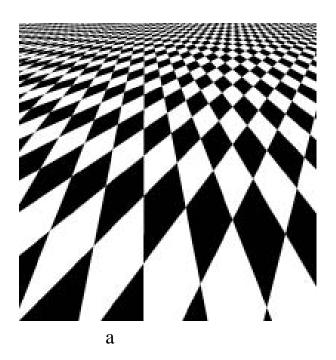


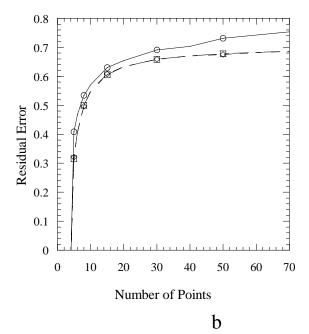
rocidual orror in nivole

	residual erro	or in pixeis
method	pair a,b	pair a,c
DLT unnormalized	0.4080	26.2056
DLT normalized	0.4078	0.6602
Transfer distance in one image	0.4077	0.6602
Reconstruction loss	0.4078	0.6602
affine	6.0095	2.8481

[HZ04, p. 115]

Example: Comparison of Different Methods





Note: solid: DLTn, dashed: reconstruction loss

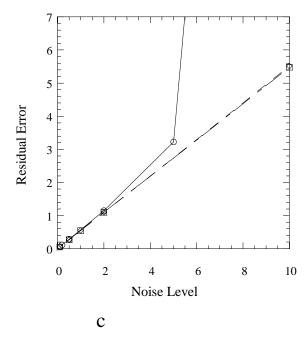
[HZ04, p. 116]

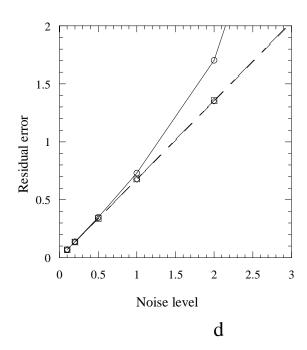
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 4. Iterative Minimization Methods

Shivers/

Example: Comparison of Different Methods





Note: solid: DLTn, dashed: reconstruction loss; c) 10 points, d) 50 points [HZ04, p. 116]

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

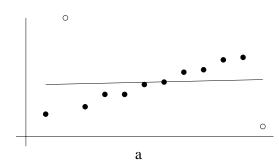
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Robust Estimation

Shivers/

Outliers and Robust Estimation

- ► When estimating a transformation from pairs of corresponding points, having these correspondences estimated from data themselves, we expect **noise**: wrong correspondences.
- Wrong correspondences could be not just a little bit off, but way off: outliers.
- ► Some losses, esp. least squares, are sensitive to outliers:

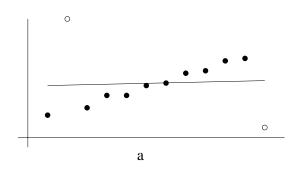


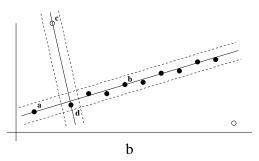
Robust estimation: estimation that is less sensitive to outliers.
[HZ04, p. 117]

Random Sample Consensus (RANSAC)

idea:

- 1. draw iteratively random samples of data points
 - many and small enough so that some will have no outliers with high probability
- 2. estimate the model from such a sample
- 3. grade the samples by the support of their models
 - support: number of well-explained points,i.e., points with a small error under the model (inliers)
- 4. reestimate the model on the support of the best sample





[HZ04, p. 117]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Robust Estimation

37 / 48

Model Estimation Terminology

- ► RANSAC works like a wrapper around any estimation method.
- ► examples:
 - estimating a transformation from point correspondences
 - estimating a line (a linear model) from 2d points
- ► model estimation terminology:

$$\mathcal{X}$$
 data space, e.g. \mathbb{R}^2

$$\mathcal{D} \subseteq \mathcal{X}$$
 dataset, e.g. $\mathcal{D} = \{x_1, \dots, x_N\}$

$$f(\theta \mid \mathcal{D}) := \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \ell(x, \theta)$$
 objective

$$\ell: \mathcal{X} \times \Theta \to \mathbb{R}$$
 loss/error, e.g. $\ell(\begin{pmatrix} x \\ y \end{pmatrix}; \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}) := (y - (\theta_1 + \theta_2 x))^2$

 Θ (model) parameter space, e.g. \mathbb{R}^2

 $a: \mathcal{P}(\mathcal{X}) \to \Theta$ **estimation method**, e.g. gradient descent aiming at $a(\mathcal{D}) \approx \arg\min f(\theta \mid \mathcal{D})$

RANSAC Algorithm

1: procedure

```
EST-RANSAC(\mathcal{D}, \ell, a; N' \in \mathbb{N}, T \in \mathbb{N}, \ell_{\mathsf{max}} \in \mathbb{R}, \mathsf{sup}_{\mathsf{min}} \in \mathbb{N})
              \mathcal{S}_{\mathsf{best}} := \emptyset
 2:
              for t = 1, ..., T or until |S| \ge \sup_{\min} do
 3:
                    \mathcal{D}' \sim \mathcal{D} of size N'
                                                                                                                 4:
                    \hat{\theta} := a(\mathcal{D}')
                                                                                                       ▷ estimate the model
 5:
                    \mathcal{S} := \{ x \in \mathcal{D} \mid \ell(x, \hat{\theta}) < \ell_{\mathsf{max}} \}
 6:
                                                                                                            if |\mathcal{S}| > |\mathcal{S}_{\text{best}}| then
 7:
                           \mathcal{S}_{\mathsf{best}} := \mathcal{S}
 8:
              \hat{\theta} := a(\mathcal{S}_{\mathsf{best}})
                                                                                                    > reestimate the model
 9:
              return \hat{\theta}
10:
```

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 48

Computer Vision 5. Robust Estimation

What is a good sample size N'?

▶ often the minimum number to get a unique solution is used.

What is a good maximal support loss ℓ_{max} ?

- for squared distance/L2 loss: $\ell(x, x') := (x x')^2$
- ▶ assume Gaussian noise: $x_{\sf obs} \sim \mathcal{N}(x_{\sf true}, \Sigma)$,
 - ► isotrop noise
 - but no noise in some directions
 - ▶ e.g., points on a line: noise only orthogonal to the line

$$\leadsto \Sigma = USU^T$$
, $S = diag(s_1, s_2), s_i \in \{\sigma^2, 0\}, UU^T = I$

- $\rightarrow \ell(x_{\rm obs}, x_{\rm true}) \sim \sigma^2 \chi_{m}^2, \quad m := {\rm rank}(S) \ {\rm degrees} \ {\rm of} \ {\rm freedom}$
 - ▶ inlier: $\ell(x_{\text{obs}}, x_{\text{true}}) < \ell_{\text{max}}$ with probability α $\ell_{\text{max}} := \sigma^2 \text{CDF}_{\chi^2_m}^{-1}(\alpha)$

m	model	$\ell_{\sf max}(lpha={\sf 0.95})$
1	line, fundamtental matrix	$3.84\sigma^{2}$
2	projectivity, camera matrix	$5.99\sigma^2$
3	trifocal tensor	$7.81\sigma^2$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Robust Estimation

What is a good sample frequency T?

- ▶ find T s.t. at least one of the samples contains no outliers with high probability $\alpha := 0.99$.
- ▶ denote $p(x \text{ is an outlier}) = \epsilon$:

$$p(\mathcal{D}' \text{ contains no outliers}) = (1 - \epsilon)^{N'}$$

 $p(\text{at least one } \mathcal{D}' \text{ contains no outliers}) = 1 - (1 - (1 - \epsilon)^{N'})^T \stackrel{!}{=} \alpha$

$$\rightarrow T = \frac{1-\alpha}{1-(1-\epsilon)^{N'}}$$

	$\epsilon = p(x \text{ is an outlier})$						
N'	5%	10%	20%	30%	40%	50%	
2	2	3	5	7	11	17	
3	3	4	7	11	19	35	
4	3	5	9	17	34	72	
5	4	6	12	26	57	146	
6	4	7	16	37	97	293	
7	4	8	20	54	163	588	
8	5	9	26	78	272	1177	

What is a good sufficient support size sup_{min}?

- ▶ the sufficient support size is an early stopping criterion.
- stop if we have as many inliers as expected:

$$\sup_{\min} = N(1 - \epsilon)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

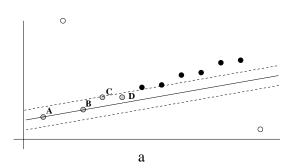
Computer Vision 5. Robust Estimation

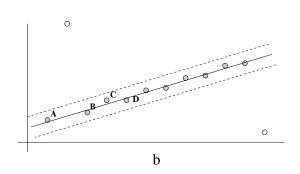
Skiners/is

RANSAC Algorithm / Repeated Reestimation

```
1: procedure
        EST-RANSAC-RERE(\mathcal{D}, \ell, a; N' \in \mathbb{N}, T \in \mathbb{N}, \ell_{\mathsf{max}} \in \mathbb{R}, \mathsf{sup}_{\mathsf{min}} \in \mathbb{N})
               \mathcal{S} := \mathcal{S}_{\mathsf{best}}
  8:
                do
  9:
                       \mathcal{S}_{\mathsf{final}} := \mathcal{S}
10:
                       \hat{	heta} := a(\mathcal{S}_{\mathsf{final}})
\mathcal{S} := \{x \in \mathcal{D} \mid \ell(x, \hat{	heta}) < \ell_{\mathsf{max}}\}
                                                                                                                 > reestimate the model
11:
                                                                                                                          12:
                while S_{\mathsf{final}} \neq S
13:
                return \hat{\theta}
14:
```

RANSAC: Repeated Reestimation





- a) estimation from initial sample
- b) reestimation from sample plus support

[HZ04, p. 121]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 6. Estimating a 2D Transformation

45 / 48

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:

compute interest points in each image.

2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity *H* from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)
 - 3.2 reestimate the projectivity H using the best sample and all its support/inliers

(using Levenberg-Marquardt; RANSAC final step)

3.3 **Guided Matching**: use projectivity H to identify a search region about the transferred points (with relaxed threshold)

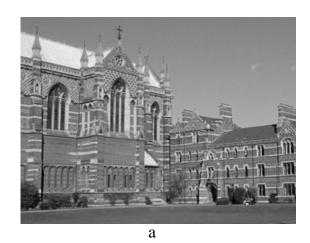
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

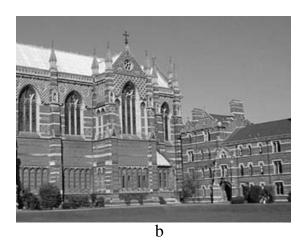
46 / 48

Computer Vision 6. Estimating a 2D Transformation

Example

Left and right image:





ca. 500+500 interest points ("corners"):

Summary

> ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision

Further Readings

- ► [HZ04, ch. 4].
- ► For iterative estimation methods in CV see [HZ04, appendix 6].
- ▶ You may also read [HZ04, ch. 5] which will not be covered in the lecture explicitly.

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision.

Cambridge university press, 2004.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany