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Computer Vision

Objects to estimate from data

» a 2D projectivity
» a 3D to 2D projection (camera)
» the Fundamental Matrix

the Trifocal Tensor

v

Data:

» N pairs x,,x;, of corresponding points in two images (n=1,...,N)

Note: The Trifocal Tensor represents a relation between three images and thus requires N
triples of corresponding points x,,x/, x// in three images (n=1,..., N).
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Computer Vision 1. The Direct Linear Transformation Algorithm
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From Corresponding Points to Linear Equations (1/2)

Inhomogeneous coordinates:

Computer Vision 1. The Direct Linear Transformation Algorithm

XgéQ;::HX,,, n=1....N (Zl’l\
1,2
xI 07 of Hi 3
= 07 xJ 0" |h hi=vect(H):=]
0T 07 xT 21

\ Hss )

Homogeneous coordinates:

/ . / _l .onl - . . .
Xpi Xnj=Xni Xnj Vi, j€{L1,2,3},i#]
! Al ! Al _ . . .

Xn.iXnj — XnjXni = 0, and one equation is linear dependent

T / T / T

1 0 _Xn,3Xn Xn,2Xn

0= x x0T —x" xT h
n,3*n n,1*n

=:A(xn,x")
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Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (2/2) “*.

A(xa, X )h =0, n=1,...,N

A(x1, x1)

A(x2, x5) _—

A(xn, xy)

=:A(X1:N5X]. )

» to estimate a general projectivity we need 4 points
(8 equations, 8 dof)

» we are looking for non-trivial solutions h # 0.
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Computer Vision 1. The Direct Linear Transformation Algorithm

More than 4 Points & Noise: Overdetermined
» For N > 4 points and exact coordinates,
the system Ah = 0 still has rank 8 and a non-trivial solution h # 0.

» But for N > 4 points and noisy coordinates,
the system Ah = 0 is overdetermined and (in general) has only the

trivial solution h = 0.

Relax the objective Ah =0 to

Ah
arg min ||Ah|| = arg min 1AR]
b [h|=1 ho Al

= (normed) eigenvector to smallest eigenvalue
and solve via SVD:
ATA=USUT, S =diag(ss,...,s),s > si1Vi,UUT = I
h:= Ug 1.9
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Computer Vision 1. The Direct Linear Transformation Algorithm

Sap
Degenerate Configurations: Underdetermined A

» If three of the four points are collinear (in both images),
A will have rank < 8 and thus h underdetermined,
and thus there is no unique solution for h.

Degenerate Configuration:
Corresponding points that do not uniquely determine a transformation
(in a particular class of transformations).
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Computer Vision 1. The Direct Linear Transformation Algorithm

Direct Linear Transformation Algorithm (DLT) A

1: procedure
EST-2D-PROJECTIVITY-DLT(x1, X{, X2, X5, . . . , Xpy, Xy € P?)

T / T / T
/ /
A / X1,3%1 0 —X1,1%1
(x1,x1) o7 o T T
2,3%2 2,252
A(x2, x5) : ’
( 25,2 / T OT U T
2: A= _ = X2 3% X2,1%2
A(xn, xy) :
N T / T / T
/ /
\ XN,3XN 0 —XN,1XN }
3: (U,S) := SVD(ATA)
: h:= Uy 1.9
-
h1:3
5: return H := hI6
bl

Note: Do not use this unnormalized version of DLT, but the one in section 3.
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Computer Vision 2. Error Functions
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2. Error Functions
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Computer Vision 2. Error Functions

Algebraic Distance

» the loss minimized by DLT, represented as distance between
» x’: point in 2nd image
» X' := Hx: estimated position of x" by H

€a|g(H;x,xl) = HA(X’,X)hH2
] 07 —xixT  xbxT B2
xkxT 0T —xxT
— H _X?i)?é + Xé)?é H2
X581 — X1 X3

— a|g(X/,)?/)2

daig (X, y) == \/ aj + a3, (31732,83)T = XXy
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Computer Vision 2. Error Functions

Geometric Distances: Transfer Errors
Transfer Error in One Image (2nd image):
Ceranst (H; x, X') :=d (X', Hx)? = d(x', %')?
with Euclidean distance in inhomogeneous coordinates
d(x,y) \/(Xl/X3 —1/y3)? + (x2/x3 = y2/y3)
B 1
[x3]]y3]

dalg(Xa.y)

» DLT /algebraic error equals geometric error for affine transformations
(xs=y3 =1)
Symmetric Transfer Error:
Cotrans(H; x, X') :==d(x, H1x")? + d(x, Hx)?
=d(x,8)* +d(x', %), KR:=H X
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Computer Vision 2. Error Functions

Transfer Errors: Probabilistic Interpretation

Assume
» measurements x, in the 1st image are noise-free,
» measurements x/, in the 2nd image are distributed Gaussian around

true values Hx,:

2) _ L —d (), Hxn)?2/(202)
2102

log-likelihood for Transfer Error in One Image:

(Xl N>X1 N ’ H)P(H)

p(Xn ‘ HXI’H

p(H | xi.n, x1.y) = PO, X)) Bayes
ocp(xun; x| H)p(H) o p(xn | Hyxan)p(H)
N N
=p(H) H p(xp | H,xp) o [ p(xi | H,xa)
= n=1
log p(H | x1.n, X1-p) Z d(x., Hx,)? = transfer error
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Computer Vision 2. Error Functions

Reprojection Error

11

» additionally to projectivity H, also find noise-free / perfectly matching

. A /\/.
pairs X, X':

N
---KHAA/ s ol . d s \2 d/A/2
minimize {yep(H, X1, X1, ..., XN, Xy) 1= (Xn, Xn)= + d(x,, X))
n=1
w.r.t.
R =HX,, n=1,...,N
over

H, X1, X1, -, XN, Xy
Reprojection Error:

lep(H, 2,8 x,X') :=d(x,8)? + d(X', %)%, with & = HX

» analogue probabilistic interpretation:
» measurements x, x’ are Gaussian around true values X, X’
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Computer Vision 3. Transformation Invariance and Normalization

Are Solutions Invariant under Transformations?

» Given corresponding points X, x/,,
a method such as DLT will find a projectivity H.

» Now assume

» the first image is transformed by projectivity T,
» the second image is transformed by projectivity T’

before we apply the estimation method.
» Corresponding points now will be X, := Tx,, X/ = T'x],

» Let H be the projectivity estimated by the method applied to X, X/.

> |s it guaranteed that H and H are “the same” (equivalent) ?
AL T HT

» This may depend on the class of projectivities allowed for T, T".

» at least invariance under similarities would be useful !
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Computer Vision 3. Transformation Invariance and Normalization

DLT is not Invariant under Similarities

» If T’ is a similarity transformation with scale factor s
and T any projectivity, then one can show

[|Ah|| = s||An]|

» But solutions H and H will not be equivalent nevertheless,
as DLT minimizes under constraint ||h|| =1
and this constraint is not scaled with s !

» So DLT is not invariant under similarity transforms.

Note: A := A(X,X'), h := vect(H)
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Computer Vision 3. Transformation Invariance and Normalization e

N : N3
Transfer /Reprojection Errors are Invariant under d
Similarities

» If T' is Euclidean:

d(x., /5/)“(n)2 =d(T'x/, T'HT ! Tx,,)2
:X;,TT/T T'HT 1 Tx, = x,QHx,, — d(x,’” Hxn)2

» If T’ is a similarity with scale factor s:

d(%n, Fi%0)> =d(T'x3,, T'HT ~ Txp)°
X, T'TT'HT 1 Tx, = X582 Hxp = s2d(x, Hxp)?

» Error is just scaled, so attains minimum at same position.
~~ Transfer /Reprojection Errors are invariant under similarities.
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization

» |Image coordinates of corresponding points are usually finite:
X = (X17X27 1)T1
thus have different scale (100, 100, 1) when measured in pixels.

» Therefore, entries in A(x, x’) will have largely different scale:

Alx, ') = o’ —x4x T xhxT (0T —xT xdxT
U xgxT o7 —xixT ) 7 U xT 0T —xxT

» some in 100s (x), some in 10.000s (xsx T, —x{xT)
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Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization A
» normalize xy.py:

— p(x1:n)

T(x1n)/ V2

X1.n :=normalize(xy.pn) := ( Jn=1....N;

with

1(x1:n) g Xn centroid/mean

T(x1.n) Z d(xn, u(x1:n)) avg. distance to centroid

» afterwards:
p(Fn) =0, T(%an) = V2

» Normalization is a similarity transform:

T = Tnorm(Xl:N) = ( S/i/T(Xl:N)I _'u(Xl:N)\/i/T(XliN) >

1
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Computer Vision 3. Transformation Invariance and Normalization
. L . 22
DLT with Normalization / Algorithm A
1: procedure
EST-2D-PROJECTIVITY-DLTN(X1, X, X2, X}, - - . , Xy, Xy € P?)
V2 r(xan) —p(xan)V2/7(x1n
2: T = 7-norm(Xl:N)I:<O / ( ' ) 1'u( ' ) / ( ' )
V2/1(x ) — (X V27 (X
3. T = Thorm(X,.p) = ( 2/7(x1.n) 1#( 1n)V2/T(X1N) )
4: Xo = TIx, VYn=1,...,N > normalize x,
5 X :=Tx ¥Yn=1,...,N > normalize x/,
6: H = est- 2d prOJect|V|ty dlt(xl,xl, Xo, R, ..., XN, Kp)
7: H:=T-1AT > unnormalize H
8: return H

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 48



Computer Vision 4. lterative Minimization Methods

Outline A

4. |terative Minimization Methods
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Computer Vision 4. lterative Minimization Methods

Types of Problems d

» The transformation estimation problem for the

» algebraic distance/loss can be cast into a single
» linear system of equations (DLTn).

» The transformation estimation problem for the

» transfer distance/loss as well as for the

» reconstruction loss is more complicated and has to be handled by an
explicit

» iterative minimization procedure.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
17 / 48



Computer Vision 4. lterative Minimization Methods e
Minimization Objectives f : RM — R A
a) transfer distance in one image:

N
minimize f(H) := Z d(x, HXn)2
n=1

b) symmetric transfer distance:
minimize f(H) = Z d(x), Hx,)? + d(xn, H1x)?

n=1

c) reconstruction loss: N
minimize f(H,Xq.n) = Z d(Xn, Xn)? + d(x,, H%p)?

n=1

> X, X, are constants, H, Xy. variables
> a), b) have M := 9 parameters / variables

» as H as only 8 dof, the objective is slightly overparametrized
» c) has M := 2N 4 9 parameters / variables

» allowing only finite points for X,
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Computer Vision 4. lterative Minimization Methods

" §Us
Objectives of type f = e’ e (1/3) A
All three objectives f are Ly norms of (parametrized) vectors, i.e. can be
written as

f(x)=e(x)Te(x), h:RM RN

a) transfer distance in one image:
N
minimize f(H) := Z d(x!, Hx,)?
n=1

= e(H)"e(H),

[ xaa/xs— (Hxa)i/(Hx)s
X12/x13 — (Hx1)2/(Hx1)3
e(H) := :
Xy 1/Xn3 — (Hxn)1/(Hxn)s

\ Xh2/xs — (Hxw)/ (Han)s /
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Computer Vision 4. lterative Minimization Methods

V
Objectives of type f = e’ e (2/3) A

b) symmetric transfer distance:

minimize f(H) = Z d(x', Hxp)? + d(xn, H1x")? = e(H) T e(H),
( x11/x13 — (Hx1)1/(Hx1)3 \
x12/x13 — (Hx1)2/(Hx1)3

Xy 1/Xn3 — (Hxn)1/(Hxn)s
e(H) — XI/V2/XI/V3 (HXN)Q/(HXN)3
X1 1/X13—(H Ix))1/(H™1x{)3
x12/x13 — (H'x{)2/(H™'x{)3

XN1/XN3—(H X/\/)l/(H /\/)3
\ v /xns — (H-1xt )/ (H-1xt )5 )
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Computer Vision 4. lterative Minimization Methods

Sype
Objectives of type f = e’ e (3/3) A

c) reconstruction loss:

N
minimize f(H, %1.n) := Z d(Xn, %0)? + d(x., HZ,)? = e(H) T e(H),
n=1
x11/x13 — (Hx1)1/(Hx1)3 \
X10/x13 — (HX1)2/(HX1)3

Xiy.1/ X3 — (H&n)1/(HSw)3
e(H) = X//V,2/XI/V,3 — (HXn)2/(HXn)3
X1,1/X1,3 — X1,1
X1,2/X13 — X1,

XN.1/XN3 — RN1

\ XN.2/XN3 — N2 )
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Computer Vision 4. lterative Minimization Methods

Minimizing f (l): Gradient Descent A
To minimize f : RM — R over x € RM Gradient Descent

1. starts at a random starting point xg € RV
t:=0, x(8) = x,

2. computes as descent direction d(t) at x(t)
— direction where f decreases —
the gradient of f:

of
d(t) = —g(t) = —VXf|X(t) = —(%(X(t)))mzl,...,l\/l

3. moves into the descent direction:
X = x(O) 4 ¢

Beware:
» f decreases only in the neighborhood of x(t)
» A full gradient step may be too large and not leading to a decrease !
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Computer Vision 4. lterative Minimization Methods

Minimizing f (1): Gradient Descent w. Steplength Contr‘dzﬁ
To minimize f : RM — R over x € RM Gradient Descent

1. starts at a random starting point xg € R"
t =0, x() .= X0

2. computes as descent direction d() at x(t)
— direction where f decreases —
the gradient of f:

of.

OXm

dt) .= _g(t) .= —Vxfl o = —( (X(t)))mzl,...,M

3. finds a steplength o € R™ so that f actually decreases:
o =max{fa =25 k=0,1,2,...,f(x + ad) < f(x)}
4. moves a step into the descent direction:

Xt = x(O) 4 d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods

v
Minimizing f (1): Gradient Descent / Algorithm A

1: procedure MIN-GD(f : RM = R, xg € RM. V. f : RM - RM ¢ € RY)
2 X 1= X

3 do

4: d = —V,flx

5: a:=1

6 while f(x + ad) > f(x) do
7 a = /2

8 X =x-+ad

9 while ||d|| > ¢

10: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods

Minimizing f (II): Newton
The Newton algorithm computes a better descent direction:
» approximate f by the quadratic Taylor expansion at x(1):

" 1
f(x +d) = F(d) = F(x1)) + Vi | [y d + SdTViF| [y d

1
= F(x)) + gl d + ngqu)d
where
P

2fly i= Hy 1= (———
VX ‘ (8Xman

)m.k=1,....m Hessian of f

» the approximation attains its minimum at

I ~
0=V4f(d) =g, + H,»d

H.nd =— g, normal equations

» solve this linear system of equations to find descent direction

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods

Minimizing f (II): Newton / Algorithm A

1: procedure MIN-NEWTON(f : RM — R, xo € RM,
Vif :RM 5 RM v2f . RM — RMXM ¢ ¢ RT)

2: X 1= Xp

3: do

4: g = Viflx

5: H:= Vif’x

6: d := solveg(Hd = —g)
7 a:=1

8: while f(x + ad) > f(x) do
9: = a2

10: X:=x+ ad

11: while ||d|| > €

12: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods
Minimizing f = e e (I): Gauss-Newton

Gauss-Newton is
» a specialization of the Newton algorithm
» for objectives of type f(x) = e(x) " e(x)

» that approximates the Hessian:

Vif|x = 2Vyel] e(x)
271 _ T 2 (T
Viflx =2Vye|, Vxelx +2Viel, e(x)
Now approximate e by a linear Taylor expansion, i.e.
Vel ~0
v V2f|, = 2Ve|] Vielx

» all we need is the gradient of e |

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods

Y

Minimizing f = e’e (I): Gauss-Newton / Algorithm

1: procedure MIN-GAUSS-
NEWTON(e : RM — RN xg € RM, Ve : RM — RVXM ¢ ¢ RT)

2: X 1= Xp

3: do

4. J = Vxe\x

5: g :=Je(x)

6: H:=J"J

7: d := solveq(Hd = —g)
8: a:=1

9: while e(x + ad)"e(x + ad) > e(x)"e(x) do
10: o= a2

11: X :=x-+ad

12: while ||d|| > €

13: return x
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Computer Vision 4. lterative Minimization Methods

Minimizing f = e”e (Il): Levenberg-Marquardt

» slight variation of the Gauss-Newton method

JTJd=—g Gauss-Newton Normal Eq.
JTJ+XN)d =—g Levenberg-Marquardt Normal Eq.

» if new objective value is worse, try again with larger A
» for large \: equivalent to Gradient descent with small stepsize 1/

1
(JT T+ X)) = A, JTJ+A)d=—¢g Wd:_Xg

» once new objective value is smaller, accept and decrease A

» for small \: equivalent to Gauss-Newton with (large) stepsize 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods

Minimizing f = e’ e (I): Levenberg-Marquardt / Algoriftﬁnf
1: procedure MIN-LEVENBERG-
MARQUARDT(e : RM — RN x5 € RM Ve : RM — RVXM ¢ c RY)

e S A~

=
nel

15:

X 1= Xp
A=1
do
J:=Ve|x
g = JTe(x)
A= (A/10)/10
do
H:=JTJ+ M
d := solvey(Hd = —g)
A= 10\
while e(x 4 d)Te(x + d) > e(x) "e(x)
xX:=x+d
while ||d|| > ¢
return x
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Computer Vision 4. lterative Minimization Methods

Example: Reconstruction Loss (1/2)

with

30 / 48

( x1.1/X13 — (Hx1)1/(Hx1)3 \
X12/X13 — (Hx1)2/(HX1)3

Xy 1/Xn 3 — (HXn)1/(HXn)3

e(H) := Xno/Xn 3 — (HRn)2/(HSN)s | _ vect(( ell:N,1:2 >)

e

€

x1,1/x13 — X1
X1,2/X13 — K12

€1N,1:2

XN1/XN3 — XN )
\ XN2/XN3 — RN 2

r11,i = X,{,,i/X,{,,3 — (HXn)i/(HXp)3

2 . . S
ni - — Xn,l/Xn,3 — Xn,i

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 4. lterative Minimization Methods

Example: Reconstruction Loss (2/2)

el — Xr/ui _ (HXn)i
n,r - XI/7,3 (H)?n)3

en,i = Xn,i/Xn,3 — Xn,i

H. -
i HR)igy i =

Vs el = (%) T (HR)3 3.0

n,i ) 0, else

2 _1, |f ﬁ = n, 7: [

V;(N 7en P =

e 0, else

H X HX.,)i

le-:—é': 5 _3( nIA

4300 = =00 = gz 90 =) s

Note: (HXn); = Z _1 HijXnj.
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Computer Vision 4. lterative Minimization Methods

Example: Comparison of Different Methods

residual error in pixels

method pair a,b pair a,c
DLT unnormalized 0.4080 26.2056
DLT normalized 0.4078 0.6602
Transfer distance in one image  0.4077 0.6602
Reconstruction loss 0.4078 0.6602
affine 6.0095 2.8481

[HZ04, p. 115]
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Computer Vision 4. lterative Minimization Methods

Example: Comparison of Different Methods

05
04 F

03 [

Residual Error

02 F

01 F

0:‘ N N R AANEN AV AANEN AVANE AN YRR AR
0 10 20 30 40 50 60 70

Number of Points

a b

Note: solid: DLTn, dashed: reconstruction loss [HZ04, p. 116]
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Computer Vision 4. lterative Minimization Methods

Example: Comparison of Different Methods

:HH S HH‘H/:

Ve

Residual Error
w
|
Residual error

Noise Level Noise level

Note: solid: DLTn, dashed: reconstruction loss; c) 10 points, d) 50 points [HZ04, p. 116]
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Computer Vision 5. Robust Estimation

Outline A

5. Robust Estimation
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Computer Vision 5. Robust Estimation e

Qutliers and Robust Estimation A

» When estimating a transformation from pairs of corresponding points,
having these correspondences estimated from data themselves,
we expect noise: wrong correspondences.

» Wrong correspondences could be not just a little bit off,
but way off: outliers.

» Some losses, esp. least squares, are sensitive to outliers:

o

» Robust estimation: estimation that is less sensitive to outliers.
[HZ04, p. 117]
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Computer Vision 5. Robust Estimation

Random Sample Consensus (RANSAC) %
idea:
1. draw iteratively random samples of data points
» many and small enough so that some will have no outliers
with high probability
2. estimate the model from such a sample
3. grade the samples by the support of their models
» support: number of well-explained points,
i.e., points with a small error under the model (inliers)

4. reestimate the model on the support of the best sample

[HZ04, p. 117]
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Computer Vision 5. Robust Estimation

Model Estimation Terminology

» RANSAC works like a wrapper around any estimation method.
» examples:

» estimating a transformation from point correspondences

» estimating a line (a linear model) from 2d points

» model estimation terminology:

X data space, e.g. R?
D C X dataset, eg. D= {x1,...,xn}

f(01D) = — 3 ¢(x,0) objective
‘D| xeD
¢: X x © — R loss/error, e.g. E(( ; ) : ( gl )) = (y — (01 + 62x))
2

© (model) parameter space, e.g. R?
a: P(X) — © estimation method, e.g. gradient descent
aiming at a(D) ~ argmin (0 | D)
USS)
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Computer Vision 5. Robust Estimation

RANSAC Algorithm 85

1: procedure
EST-RANSAC(D, l,a; N' € N, T € N, lnax € R, sup,i, € N)
2: Sbest =0
3: for t =1,..., T or until |S| > sup,,;, do
4: D' ~ D of size N > draw a sample
5; 0 := a(D) > estimate the model
6: S:={xeD|Ux,0) < lmax} > compute support
7 if |5‘ > ’Sbest’ then
8: Shest .= S
9: 0= a(Spest) > reestimate the model
10: return 0
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Computer Vision 5. Robust Estimation

What is a good sample size N'?

» often the minimum number to get a unique solution is used.
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Computer Vision 5. Robust Estimation

What is a good maximal support loss /.7

» for squared distance/L2 loss: £(x,x’) := (x — x")?
» assume Gaussian noise: Xobs ~ N (Xtrue, L),

> isotrop noise
» but no noise in some directions

> e.g., points on a line: noise only orthogonal to the line
~ ¥ = USUT, S = diag(s1, s2),s; € {02,0}, UUT = I
s U Xobss Xtrue) ~ 02x2,  m = rank(S) degrees of freedom

> inlier: ¢(Xobs, Xtrue) < fmax With probability a
lnax 1= O'ZCDF;;(OA)

model Cmax(a = 0.95)
line, fundamtental matrix  3.84¢2
projectivity, camera matrix 5.9902
trifocal tensor 7.8102

(JOI\)I—‘S
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What is a good sample frequency 77

» find T s.t. at least one of the samples contains no outliers
with high probability « := 0.99.
» denote p(x is an outlier) = e:

p(D' contains no outliers) = (1 — ¢)V'

p(at least one D’ contains no outliers) =1 — (1 — (1 — e)M)7 = a
l -«
T =
1—(1—¢eN

e = p(x is an outlier)
N | 5% 10% 20% 30% 40% 50%
2 3 5 7 11 17
7 11 19 35
9 17 34 (2
12 26 57 146
16 37 9r 293
20 54 163 588
8 5 9 26 78 272 1177
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Computer Vision 5. Robust Estimation ;
: . . . NN
What is a good sufficient support size sup,;? A

» the sufficient support size is an early stopping criterion.

» stop if we have as many inliers as expected:

SUPmin = N(1 —¢)
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Computer Vision 5. Robust Estimation
RANSAC Algorithm / Repeated Reestimation A
1: procedure
EST-RANSAC-RERE(D, l,a; N € N, T € N, lax € R, sup,yi, € N)

8: S = Sbest

9: do

10: Sﬁna| =S

11 0 := a(Sfinal) > reestimate the model
12: S:={xeD|lx,0) < lmax} > compute support
13: while Sg4 75 S

14: return 6
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Computer Vision 5. Robust Estimation

fi)yt
RANSAC: Repeated Reestimation A

b) reestimation from sample plus

a) estimation from initial sample
support

[HZ04, p. 121]
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Computer Vision 6. Estimating a 2D Transformation

Outline A

6. Estimating a 2D Transformation
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Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify

outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)
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Computer Vision 6. Estimating a 2D Transformation

Example
Left and right image:

RRET o B R e
s P - ‘I_Il
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Computer Vision 6. Estimating a 2D Transformation

Summary
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Computer Vision

Further Readings

» [HZ04, ch. 4].
» For iterative estimation methods in CV see [HZ04, appendix 6].

» You may also read [HZ04, ch. 5] which will not be covered in the
lecture explicitly.
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