

Computer Vision

3. Estimating 2D Transformations

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Jriversitor.

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Objects to estimate from data

- ► a 2D projectivity
- ▶ a 3D to 2D projection (camera)
- ▶ the Fundamental Matrix
- ▶ the Trifocal Tensor

Data:

▶ *N* pairs x_n, x_n' of corresponding points in two images (n = 1, ..., N)

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation invariance and Norm
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

From Corresponding Points to Linear Equations (1/2) $\frac{1}{2}$ Inhomogeneous coordinates:

$$x'_{n} \stackrel{!}{=} \hat{x}'_{n} := Hx_{n}, \quad n = 1, \dots, N$$

$$= \begin{pmatrix} x_{n}^{T} & 0^{T} & 0^{T} \\ 0^{T} & x_{n}^{T} & 0^{T} \\ 0^{T} & 0^{T} & x_{n}^{T} \end{pmatrix} h, \quad h := \text{vect}(H) := \begin{pmatrix} H_{1,1} \\ H_{1,2} \\ H_{1,3} \\ H_{2,1} \\ \vdots \\ H_{3,3} \end{pmatrix}$$

From Corresponding Points to Linear Equations $\left(1/2\right)$

Inhomogeneous coordinates:

$$\begin{aligned} x_n' &\stackrel{!}{=} \hat{x}_n' := H x_n, & n = 1, \dots, N \\ &= \begin{pmatrix} x_n^T & 0^T & 0^T \\ 0^T & x_n^T & 0^T \\ 0^T & 0^T & x_n^T \end{pmatrix} h, & h := \text{vect}(H) := \begin{pmatrix} H_{1,1} \\ H_{1,2} \\ H_{1,3} \\ H_{2,1} \\ \vdots \\ H_{3,3} \end{pmatrix} \end{aligned}$$

Homogeneous coordinates:

$$\begin{aligned} x'_{n,i} : x'_{n,j} &= \hat{x}'_{n,i} : \hat{x}'_{n,j}, \quad \forall i,j \in \{1,2,3\}, i \neq j \\ x'_{n,i} \hat{x}'_{n,j} - x'_{n,j} \hat{x}'_{n,i} &= 0, \quad \text{and one equation is linear dependent} \\ & \leadsto 0 \stackrel{!}{=} \begin{pmatrix} 0^T & -x'_{n,3} x_n^T & x'_{n,2} x_n^T \\ x'_{n,3} x_n^T & 0^T & -x'_{n,1} x_n^T \end{pmatrix} h \end{aligned}$$

 $=:A(x_n,x_n')$

4 D > 4 A > 4 B > 4 B > 3 B = 990

From Corresponding Points to Linear Equations (2/2)

$$A(x_n, x'_n)h \stackrel{!}{=} 0, \quad n = 1, \dots, N$$

$$\underbrace{\begin{pmatrix} A(x_1, x'_1) \\ A(x_2, x'_2) \\ \vdots \\ A(x_N, x'_N) \end{pmatrix}}_{=:A(x_1, x'_1, x'_1, x)} h = 0$$

- to estimate a general projectivity we need 4 points (8 equations, 8 dof)
- we are looking for non-trivial solutions $h \neq 0$.

More than 4 Points & Noise: Overdetermined

- For N > 4 points and exact coordinates, the system Ah = 0 still has rank 8 and a non-trivial solution $h \neq 0$.
- ▶ But for N > 4 points and **noisy coordinates**, the system Ah = 0 is overdetermined and (in general) has only the trivial solution h = 0.

Relax the objective Ah = 0 to

$$\underset{h:||h||=1}{\arg\min} ||Ah|| = \underset{h}{\arg\min} \frac{||Ah||}{||h||}$$

= (normed) eigenvector to smallest eigenvalue

and solve via SVD:

$$A^TA = USU^T$$
, $S = diag(s_1, ..., s_9), s_i \ge s_{i+1} \forall i, UU^T = I$
 $h := U_{9,1\cdot 9}$

Degenerate Configurations: Underdetermined

▶ If three of the four points are collinear (in both images), A will have rank < 8 and thus h underdetermined, and thus there is no unique solution for h.

Degenerate Configuration:

Corresponding points that do not uniquely determine a transformation (in a particular class of transformations).

Direct Linear Transformation Algorithm (DLT)

1: procedure

EST-2D-PROJECTIVITY-DLT
$$(x_1, x_1', x_2, x_2', \dots, x_N, x_N' \in \mathbb{P}^2)$$

EST-2D-PROJECTIVITY-DLT
$$(x_1, x'_1, x_2, x'_2, \dots, x_N, x'_N \in \mathbb{P}^2)$$

2: $A := \begin{pmatrix} A(x_1, x'_1) \\ A(x_2, x'_2) \\ \vdots \\ A(x_N, x'_N) \end{pmatrix} = \begin{pmatrix} 0^T & -x'_{1,3}x_1^T & x'_{1,2}x_1^T \\ x'_{1,3}x_1^T & 0^T & -x'_{1,1}x_1^T \\ 0^T & -x'_{2,3}x_2^T & x'_{2,2}x_2^T \\ x'_{2,3}x_2^T & 0^T & -x'_{2,1}x_2^T \\ \vdots \\ 0^T & -x'_{N,3}x_N^T & 0^T & -x'_{N,1}x_N^T \end{pmatrix}$

3:
$$(U,S) := SVD(A^TA)$$

4:
$$h := U_{9,1:9}$$

5: **return**
$$H := \begin{pmatrix} h_{1:3}^I \\ h_{4:6}^T \\ h_{7:9}^T \end{pmatrix}$$

Note: Do not use this unnormalized version of DLT, but the one in section 3.

Outline

2. Error Functions

- 4. Iterative Minimization Methods
- 6. Estimating a 2D Transformation

Algebraic Distance

- ▶ the loss minimized by DLT, represented as distance between
 - \triangleright x': point in 2nd image
 - $\hat{x}' := Hx$: estimated position of x' by H

$$\begin{aligned} \ell_{\mathsf{alg}}(H; x, x') &:= ||A(x', x)h||^2 \\ &= ||\begin{pmatrix} 0^T & -x_3'x^T & x_2'x^T \\ x_3'x^T & 0^T & -x_1'x^T \end{pmatrix} h||^2 \\ &= ||\begin{pmatrix} -x_3'\hat{x}_2' + x_2'\hat{x}_3' \\ x_3'\hat{x}_1' - x_1'\hat{x}_3' \end{pmatrix} ||^2 \\ &= d_{\mathsf{alg}}(x', \hat{x}')^2 \end{aligned}$$

with

$$d_{alg}(x,y) := \sqrt{a_1^2 + a_2^2}, \quad (a_1, a_2, a_3)^T = x \times y$$

Jrivers/tal

Geometric Distances: Transfer Errors

Transfer Error in One Image (2nd image):

$$\ell_{\text{trans1}}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$d(x,y) := \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2}$$

Geometric Distances: Transfer Errors

Transfer Error in One Image (2nd image):

$$\ell_{\text{trans1}}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$d(x,y) := \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2}$$
$$= \frac{1}{|x_3||y_3|} d_{\mathsf{alg}}(x,y)$$

▶ DLT/algebraic error equals geometric error for affine transformations $(x_3 = y_3 = 1)$

Shivers/Fig.

Geometric Distances: Transfer Errors

Transfer Error in One Image (2nd image):

$$\ell_{\text{trans1}}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$d(x,y) := \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2}$$
$$= \frac{1}{|x_3||y_3|} d_{alg}(x,y)$$

▶ DLT/algebraic error equals geometric error for affine transformations $(x_3 = y_3 = 1)$

Symmetric Transfer Error:

$$\ell_{\text{strans}}(H; x, x') := d(x, H^{-1}x')^2 + d(x', Hx)^2$$

= $d(x, \hat{x})^2 + d(x', \hat{x}')^2, \quad \hat{x} := H^{-1}x'$

Transfer Errors: Probabilistic Interpretation

Assume

- \blacktriangleright measurements x_n in the 1st image are noise-free,
- \blacktriangleright measurements x'_n in the 2nd image are distributed Gaussian around true values Hx_n :

$$p(x'_n \mid Hx_n, \sigma^2) = \frac{1}{2\pi\sigma^2} e^{-d(x'_n, Hx_n)^2/(2\sigma^2)}$$

log-likelihood for Transfer Error in One Image:

$$\log p(H \mid x_{1:N}, x'_{1:N}) \propto -\sum_{n=1}^{N} d(x'_n, Hx_n)^2 = \text{transfer error}$$

Reprojection Error

▶ additionally to projectivity H, also find noise-free / perfectly matching pairs \hat{x}, \hat{x}' :

minimize
$$\ell_{rep}(H, \hat{x}_1, \hat{x}'_1, \dots, \hat{x}_N, \hat{x}'_N) := \sum_{n=1}^N d(x_n, \hat{x}_n)^2 + d(x'_n, \hat{x}'_n)^2$$

w.r.t.

$$\hat{x}'_n = H\hat{x}_n, \quad n = 1, \dots, N$$

over

$$H, \hat{x}_1, \hat{x}'_1, \ldots, \hat{x}_N, \hat{x}'_N$$

Reprojection Error:

$$\ell_{\text{rep}}(H, \hat{x}, \hat{x}'; x, x') := d(x, \hat{x})^2 + d(x', \hat{x}')^2$$
, with $\hat{x}' = H\hat{x}$

- ► analogue probabilistic interpretation:
 - measurements x, x' are Gaussian around true values \hat{x}, \hat{x}'

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Are Solutions Invariant under Transformations?

► Given corresponding points x_n, x'_n , a method such as DLT will find a projectivity H.

Are Solutions Invariant under Transformations?

- ► Given corresponding points x_n, x'_n , a method such as DLT will find a projectivity H.
- ▶ Now assume
 - ▶ the first image is transformed by projectivity T,
 - lacktriangleright the second image is transformed by projectivity T'

before we apply the estimation method.

- ▶ Corresponding points now will be $\tilde{x}_n := Tx_n, \tilde{x}'_n := T'x'_n$
- ▶ Let \hat{H} be the projectivity estimated by the method applied to $\tilde{x}_n, \tilde{x}'_n$.
- ▶ Is it guaranteed that H and \tilde{H} are "the same" (equivalent) ?

$$\tilde{H} \stackrel{?}{=} T'HT^{-1}$$

Are Solutions Invariant under Transformations?

- ► Given corresponding points x_n, x'_n , a method such as DLT will find a projectivity H.
- ▶ Now assume
 - ► the first image is transformed by projectivity *T*,
 - lacktriangleright the second image is transformed by projectivity T'

before we apply the estimation method.

- Corresponding points now will be $\tilde{x}_n := Tx_n, \tilde{x}'_n := T'x'_n$
- ▶ Let \tilde{H} be the projectivity estimated by the method applied to $\tilde{x}_n, \tilde{x}'_n$.
- ▶ Is it guaranteed that H and \tilde{H} are "the same" (equivalent) ?

$$\tilde{H} \stackrel{?}{=} T'HT^{-1}$$

- ▶ This may depend on the class of projectivities allowed for T, T'.
 - at least invariance under similarities would be useful!

DLT is not Invariant under Similarities

▶ If T' is a similarity transformation with scale factor s and T any projectivity, then one can show

$$||\tilde{A}\tilde{h}|| = s||Ah||$$

Jriversit

DLT is not Invariant under Similarities

▶ If T' is a similarity transformation with scale factor s and T any projectivity, then one can show

$$||\tilde{A}\tilde{h}|| = s||Ah||$$

- ▶ But solutions H and \tilde{H} will not be equivalent nevertheless, as DLT minimizes under constraint ||h|| = 1 and this constraint is not scaled with s!
- ► So DLT is not invariant under similarity transforms.

Note: $\tilde{A} := A(\tilde{x}_{\cdot}, \tilde{x}'_{\cdot}), \tilde{h} := \text{vect}(\tilde{H})$

Transfer/Reprojection Errors are Invariant under Similarities

▶ If T' is Euclidean:

$$d(\tilde{x}'_n, \tilde{H}\tilde{x}_n)^2 = d(T'x'_n, T'HT^{-1}Tx_n)^2$$

= $x'_n^T T'^T T'HT^{-1}Tx_n = x'_n Hx_n = d(x'_n, Hx_n)^2$

▶ If T' is a similarity with scale factor s:

$$d(\tilde{x}'_n, \tilde{H}\tilde{x}_n)^2 = d(T'x'_n, T'HT^{-1}Tx_n)^2$$

= $x'_n T'^T T'HT^{-1}Tx_n = x'_n s^2 Hx_n = s^2 d(x'_n, Hx_n)^2$

► Error is just scaled, so attains minimum at same position.

→ Transfer/Reprojection Errors are invariant under similarities.

Stilldesheit

DLT with Normalization

- ► Image coordinates of corresponding points are usually finite: $x = (x_1, x_2, 1)^T$,
- thus have different scale (100, 100, 1) when measured in pixels.
- ▶ Therefore, entries in A(x, x') will have largely different scale:

$$A(x,x') = \begin{pmatrix} 0^T & -x_3'x^T & x_2'x^T \\ x_3'x^T & 0^T & -x_1'x^T \end{pmatrix} = \begin{pmatrix} 0^T & -x^T & x_2'x^T \\ x^T & 0^T & -x_1'x^T \end{pmatrix}$$

• some in 100s (x^T) , some in 10.000s $(x_2'x^T, -x_1'x^T)$

DLT with Normalization

▶ normalize $x_{1:N}$:

$$\tilde{x}_{1:N} := \text{normalize}(x_{1:N}) := (\frac{x_n - \mu(x_{1:N})}{\tau(x_{1:N})/\sqrt{2}})_{n=1,...,N},$$

with

$$\mu(x_{1:N}) := \frac{1}{N} \sum_{n=1}^{N} x_n$$

centroid/mean

$$au(x_{1:N}) := \frac{1}{N} \sum_{n=1}^{N} d(x_n, \mu(x_{1:N}))$$
 avg. distance to centroid

► afterwards:

$$\mu(\tilde{\mathbf{x}}_{1:N}) = 0, \quad \tau(\tilde{\mathbf{x}}_{1:N}) = \sqrt{2}$$

► Normalization is a similarity transform:

$$T:=T_{\mathsf{norm}}(x_{1:N}):=\left(egin{array}{ccc} \sqrt{2}/ au(x_{1:N})I & -\mu(x_{1:N})\sqrt{2}/ au(x_{1:N}) \ 0 & 1 \end{array}
ight)$$

DLT with Normalization / Algorithm

1: procedure

return H

8.

EST-2D-PROJECTIVITY-DLTN
$$(x_1, x_1', x_2, x_2', \dots, x_N, x_N' \in \mathbb{P}^2)$$

2: $T := T_{\text{norm}}(x_{1:N}) := \begin{pmatrix} \sqrt{2}/\tau(x_{1:N})I & -\mu(x_{1:N})\sqrt{2}/\tau(x_{1:N}) \\ 0 & 1 \end{pmatrix}$
3: $T' := T_{\text{norm}}(x_{1:N}') := \begin{pmatrix} \sqrt{2}/\tau(x_{1:N}')I & -\mu(x_{1:N}')\sqrt{2}/\tau(x_{1:N}') \\ 0 & 1 \end{pmatrix}$
4: $\tilde{x}_n := Tx_n \quad \forall n = 1, \dots, N \quad \Rightarrow \text{normalize } x_n$
5: $\tilde{x}_n' := T'x_n' \quad \forall n = 1, \dots, N \quad \Rightarrow \text{normalize } x_n'$
6: $\tilde{H} := \text{est-2d-projectivity-dlt}(\tilde{x}_1, \tilde{x}_1', \tilde{x}_2, \tilde{x}_2', \dots, \tilde{x}_N, \tilde{x}_N')$
7: $H := T'^{-1}\tilde{H}T \quad \Rightarrow \text{unnormalize } \tilde{H}$

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 5. ITalisionnation invalidnce and Norma
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

- ▶ The transformation estimation problem for the
 - algebraic distance/loss can be cast into a single
 - linear system of equations (DLTn).
- ▶ The transformation estimation problem for the
 - transfer distance/loss as well as for the
 - reconstruction loss is more complicated and has to be handled by an explicit
 - iterative minimization procedure.

Jniversiter.

Minimization **Objectives** $f: \mathbb{R}^M \to \mathbb{R}$

a) transfer distance in one image:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2$$

b) symmetric transfer distance:

minimize
$$f(H) := \sum_{n=1} d(x'_n, Hx_n)^2 + d(x_n, H^{-1}x'_n)^2$$

c) reconstruction loss:

minimize
$$f(H, \hat{x}_{1:N}) := \sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x'_n, H\hat{x}_n)^2$$

- \blacktriangleright x_n, x_n' are constants, $H, \hat{x}_{1:N}$ variables
- ▶ a), b) have M := 9 parameters / variables
 - ► as *H* as only 8 dof, the objective is slightly **overparametrized**
- ightharpoonup c) has M := 2N + 9 parameters / variables
 - ▶ allowing only finite points for \hat{x}_n

Jriversite.

Objectives of type $f = e^T e (1/3)$

All three objectives f are L_2 norms of (parametrized) vectors, i.e. can be written as

$$f(x) = e(x)^T e(x), \quad h: \mathbb{R}^M \to \mathbb{R}^N$$

a) transfer distance in one image:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2$$

 $= e(H)^T e(H),$
 $e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (Hx_1)_1/(Hx_1)_3 \\ x'_{1,2}/x'_{1,3} - (Hx_1)_2/(Hx_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (Hx_N)_1/(Hx_N)_3 \\ x'_{N,2}/x'_{N,3} - (Hx_N)_2/(Hx_N)_3 \end{pmatrix}$

Shivers/to

Objectives of type $f = e^T e$ (2/3)

b) symmetric transfer distance:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2 + d(x_n, H^{-1}x'_n)^2 = e(H)^T e(H),$$

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (Hx_1)_1/(Hx_1)_3 \\ x'_{1,2}/x'_{1,3} - (Hx_1)_2/(Hx_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (Hx_N)_1/(Hx_N)_3 \\ x'_{N,2}/x'_{N,3} - (Hx_N)_2/(Hx_N)_3 \\ x_{1,1}/x_{1,3} - (H^{-1}x'_1)_1/(H^{-1}x'_1)_3 \\ \vdots \\ x_{N,1}/x_{N,3} - (H^{-1}x'_1)_2/(H^{-1}x'_1)_3 \\ \vdots \\ x_{N,1}/x_{N,3} - (H^{-1}x'_N)_1/(H^{-1}x'_N)_3 \\ x_{N,2}/x_{N,3} - (H^{-1}x'_N)_2/(H^{-1}x'_N)_3 \end{pmatrix}$$

Objectives of type $f = e^T e$ (3/3)

c) reconstruction loss:

minimize
$$f(H, \hat{x}_{1:N}) := \sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x'_n, H\hat{x}_n)^2 = e(H)^T e(H),$$

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (H\hat{x}_1)_1/(H\hat{x}_1)_3 \\ x'_{1,2}/x'_{1,3} - (H\hat{x}_1)_2/(H\hat{x}_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (H\hat{x}_N)_1/(H\hat{x}_N)_3 \\ x'_{N,2}/x'_{N,3} - (H\hat{x}_N)_2/(H\hat{x}_N)_3 \\ \vdots \\ x_{1,1}/x_{1,3} - \hat{x}_{1,1} \\ x_{1,2}/x_{1,3} - \hat{x}_{1,2} \\ \vdots \\ x_{N,1}/x_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x_{N,3} - \hat{x}_{N,1} \end{pmatrix}$$

Jaivers/tai

Minimizing f (I): Gradient Descent

To minimize $f: \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

Minimizing f (I): Gradient Descent

To minimize $f: \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

- 2. computes as **descent direction** $d^{(t)}$ **at** $x^{(t)}$
 - direction where f decreases the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_{x} f|_{x^{(t)}} := -(\frac{\partial f}{\partial x_{m}}(x^{(t)}))_{m=1,...,M}$$

Minimizing f (I): Gradient Descent

To minimize $f: \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

computes as descent direction d^(t) at x^(t)
 direction where f decreases —
 the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_{x} f|_{x^{(t)}} := -\left(\frac{\partial f}{\partial x_{m}}(x^{(t)})\right)_{m=1,\dots,M}$$

3. moves into the descent direction:

$$x^{(t+1)} := x^{(t)} + d$$

Jrivers/tal

Minimizing f (I): Gradient Descent

To minimize $f: \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

- 2. computes as **descent direction** $d^{(t)}$ **at** $x^{(t)}$
 - direction where f decreases the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{X^{(t)}} := -(\frac{\partial f}{\partial x_m}(X^{(t)}))_{m=1,\dots,M}$$

3. moves into the descent direction:

$$x^{(t+1)} := x^{(t)} + d$$

Beware:

- f decreases only in the neighborhood of $x^{(t)}$
- ► A full gradient step may be too large and **not** leading to a decrease!

Minimizing f (I): Gradient Descent w. Steplength Control To minimize $f : \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as descent direction d^(t) at x^(t)
— direction where f decreases —
the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_{x} f|_{x^{(t)}} := -\left(\frac{\partial f}{\partial x_{m}}(x^{(t)})\right)_{m=1,\dots,M}$$

3. finds a steplength $\alpha \in \mathbb{R}^+$ so that f actually decreases:

$$\alpha := \max\{\alpha := 2^{-k} \mid k = 0, 1, 2, \dots, f(x + \alpha d) < f(x)\}$$

4. moves a step into the descent direction:

$$x^{(t+1)} := x^{(t)} + \alpha d$$

return x

10:

Minimizing f (I): Gradient Descent / Algorithm

```
1: procedure MIN-GD(f: \mathbb{R}^M \to \mathbb{R}, x_0 \in \mathbb{R}^M, \nabla_x f: \mathbb{R}^M \to \mathbb{R}^M, \epsilon \in \mathbb{R}^+)
2:
          x := x_0
          do
3:
4.
                 d := -\nabla_{\mathbf{x}} f|_{\mathbf{x}}
                \alpha := 1
5:
                while f(x + \alpha d) \ge f(x) do
6:
                       \alpha := \alpha/2
7:
                 x := x + \alpha d
8:
          while ||d|| > \epsilon
9:
```

Minimizing f (II): Newton

The Newton algorithm computes a better descent direction:

 \blacktriangleright approximate f by the quadratic Taylor expansion at $x^{(t)}$:

$$f(x+d) \approx \tilde{f}(d) := f(x^{(t)}) + \nabla_x f|_{x^{(t)}}^T d + \frac{1}{2} d^T \nabla_x^2 f|_{x^{(t)}}^T d$$
$$= f(x^{(t)}) + g_{x^{(t)}}^T d + \frac{1}{2} d^T H_{x^{(t)}} d$$

where

$$\nabla_x^2 f|_x := H_x := (\frac{\partial^2 f}{\partial x_m \partial x_k})_{m,k=1,\dots,M}$$
 Hessian of f

▶ the approximation attains its minimum at

$$0 \stackrel{!}{=} \nabla_d \tilde{f}(d) = g_{\chi^{(t)}} + H_{\chi^{(t)}} d$$

$$H_{\chi^{(t)}} d = -g_{\chi^{(t)}}$$
 normal equations

► solve this linear system of equations to find descent direction

Minimizing f (II): Newton / Algorithm

```
1: procedure MIN-NEWTON(f: \mathbb{R}^M \to \mathbb{R}, x_0 \in \mathbb{R}^M,
                 \nabla_{\mathbf{x}} f: \mathbb{R}^M \to \mathbb{R}^M, \nabla_{\mathbf{x}}^2 f: \mathbb{R}^M \to \mathbb{R}^{M \times M}, \epsilon \in \mathbb{R}^+
 2:
           x := x_0
            do
 3:
                  g := \nabla_{\mathbf{x}} f|_{\mathbf{x}}
 4:
                  H := \nabla^2_{\vee} f|_{\vee}
 5:
                   d := solve_d(Hd = -g)
 6:
 7:
                  \alpha := 1
                   while f(x + \alpha d) > f(x) do
 8.
                         \alpha := \alpha/2
 9:
                   x := x + \alpha d
10:
            while ||d|| > \epsilon
11:
12:
             return x
```


Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- ► that approximates the Hessian:

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for **objectives of type** $f(x) = e(x)^T e(x)$
- ► that approximates the Hessian:

$$|\nabla_x f|_x = 2\nabla_x e|_x^T e(x)$$

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for **objectives of type** $f(x) = e(x)^T e(x)$
- ► that approximates the Hessian:

$$\nabla_x f|_x = 2\nabla_x e|_x^T e(x)$$

$$\nabla_x^2 f|_x = 2\nabla_x e|_x^T \nabla_x e|_x + 2\nabla_x^2 e|_x^T e(x)$$

Jaiversites,

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for **objectives of type** $f(x) = e(x)^T e(x)$
- ► that approximates the Hessian:

$$\nabla_x f|_x = 2\nabla_x e|_x^T e(x)$$

$$\nabla_x^2 f|_x = 2\nabla_x e|_x^T \nabla_x e|_x + 2\nabla_x^2 e|_x^T e(x)$$

Now approximate e by a linear Taylor expansion, i.e.

$$\nabla_x^2 e|_x \approx 0$$

$$V_x^2 f|_x \approx 2\nabla_x e|_x^T \nabla_x e|_x$$

Jrivers/to

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for **objectives of type** $f(x) = e(x)^T e(x)$
- ► that approximates the Hessian:

$$\nabla_x f|_x = 2\nabla_x e|_x^T e(x)$$

$$\nabla_x^2 f|_x = 2\nabla_x e|_x^T \nabla_x e|_x + 2\nabla_x^2 e|_x^T e(x)$$

Now approximate e by a linear Taylor expansion, i.e.

$$\nabla_x^2 e|_x \approx 0$$

$$V_x^2 f|_x \approx 2\nabla_x e|_x^T \nabla_x e|_x$$

▶ all we need is the gradient of *e* !

13:

return x

Minimizing $f = e^T e$ (I): Gauss-Newton / Algorithm

```
1: procedure MIN-GAUSS-
     NEWTON(e: \mathbb{R}^M \to \mathbb{R}^N, x_0 \in \mathbb{R}^M, \nabla_{\mathbf{x}} e: \mathbb{R}^M \to \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^+)
 2:
           x := x_0
 3:
           do
 4:
                 J := \nabla_{\mathbf{x}} e|_{\mathbf{x}}
                g := J^T e(x)
 5:
                H := I^T I
 6:
                 d := solve_d(Hd = -g)
 7:
                \alpha := 1
 8:
                 while e(x + \alpha d)^T e(x + \alpha d) > e(x)^T e(x) do
 9:
                      \alpha := \alpha/2
10:
11:
                 x := x + \alpha d
           while ||d|| > \epsilon
12:
```

Jrivers/ida

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

► slight variation of the Gauss-Newton method

$$J^TJ\,d=-g$$
 Gauss-Newton Normal Eq. $\left(J^TJ+\lambda I\right)d=-g$ Levenberg-Marquardt Normal Eq.

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

slight variation of the Gauss-Newton method

$$J^TJd=-g$$
 Gauss-Newton Normal Eq. $(J^TJ+\lambda I)\,d=-g$ Levenberg-Marquardt Normal Eq.

- lacktriangleright if new objective value is worse, try again with larger λ
 - for large λ : equivalent to Gradient descent with small stepsize $1/\lambda$

$$(J^T J + \lambda I) \approx \lambda I, \qquad (J^T J + \lambda I) d = -g \qquad \rightsquigarrow d = -\frac{1}{\lambda} g$$

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

slight variation of the Gauss-Newton method

$$J^TJ\,d=-g$$
 Gauss-Newton Normal Eq. $(J^TJ+\lambda I)\,d=-g$ Levenberg-Marquardt Normal Eq.

- lacktriangleright if new objective value is worse, try again with larger λ
 - for large λ : equivalent to Gradient descent with small stepsize $1/\lambda$

$$(J^T J + \lambda I) \approx \lambda I, \qquad (J^T J + \lambda I) d = -g \qquad \rightsquigarrow d = -\frac{1}{\lambda} g$$

- \blacktriangleright once new objective value is smaller, accept and decrease λ
 - for small λ : equivalent to Gauss-Newton with (large) stepsize 1

15:

Minimizing $f = e^T e$ (I): Levenberg-Marquardt / Algorithm

```
1: procedure MIN-LEVENBERG-
     MARQUARDT(e: \mathbb{R}^M \to \mathbb{R}^N, x_0 \in \mathbb{R}^M, \nabla_x e: \mathbb{R}^M \to \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^+)
          x := x_0
       \lambda := 1
 3:
        do
 4.
 5:
               J := \nabla_{\mathbf{x}} e|_{\mathbf{x}}
               g := J^T e(x)
 6:
               \lambda := (\lambda/10)/10
 7:
 8:
               dο
                     H := I^T I + \lambda I
 9:
                     d := solve_d(Hd = -g)
10:
                     \lambda := 10\lambda
11:
               while e(x+d)^T e(x+d) > e(x)^T e(x)
12:
13:
               x := x + d
          while ||d|| > \epsilon
14:
          return x
```


Example: Reconstruction Loss (1/2)

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (H\hat{x}_1)_1/(H\hat{x}_1)_3 \\ x'_{1,2}/x'_{1,3} - (H\hat{x}_1)_2/(H\hat{x}_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (H\hat{x}_N)_1/(H\hat{x}_N)_3 \\ x'_{N,2}/x'_{N,3} - (H\hat{x}_N)_2/(H\hat{x}_N)_3 \\ x_{1,1}/x_{1,3} - \hat{x}_{1,1} \\ x_{1,2}/x_{1,3} - \hat{x}_{1,2} \\ \vdots \\ x_{N,1}/x_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x_{N,3} - \hat{x}_{N,2} \end{pmatrix} = \text{vect}(\begin{pmatrix} e_{1:N,1:2}^1 \\ e_{1:N,1:2}^1 \\ e_{1:N,1:2}^1 \end{pmatrix})$$

with

$$e_{n,i}^1 := x'_{n,i}/x'_{n,3} - (H\hat{x}_n)_i/(H\hat{x}_n)_3$$

 $e_{n,i}^2 := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$

Example: Reconstruction Loss (2/2)

$$e_{n,i}^1 := \frac{x'_{n,i}}{x'_{n,3}} - \frac{(H\hat{x}_n)_i}{(H\hat{x}_n)_3}$$

 $e_{n,i}^2 := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}}e^1_{n,i}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}}e_{n,i}^2$$

$$\nabla_{H_{\tilde{i},\tilde{j}}}e^1_{n,i}$$

$$\nabla_{H_{\tilde{i},\tilde{i}}}e_{n,i}^2$$

Note: $(H\hat{x}_n)_i = \sum_{i=1}^3 H_{i,j} \hat{x}_{n,j}$.

Computer Vision 4. It

Example: Reconstruction Loss (2/2)

$$\begin{split} e_{n,i}^1 &:= \frac{x_{n,i}'}{x_{n,3}'} - \frac{(H\hat{x}_n)_i}{(H\hat{x}_n)_3} \\ e_{n,i}^2 &:= x_{n,i}/x_{n,3} - \hat{x}_{n,i} \\ \nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^1 &= \begin{cases} -\frac{H_{i,\tilde{i}}}{(H\hat{x}_n)_3} + \frac{(H\hat{x}_n)_i}{(H\hat{x}_n)_3^2} H_{3,\tilde{i}}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases} \\ \nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^2 \\ \nabla_{H_{\tilde{i},\tilde{i}}} e_{n,i}^1 \end{split}$$

Note: $(H\hat{x}_n)_i = \sum_{i=1}^3 H_{i,i}\hat{x}_{n,i}$.

 $\nabla_{H_{i,i}}e_{n,i}^2$

Example: Reconstruction Loss (2/2)

Computer Vision

$$e_{n,i}^{1} := \frac{x'_{n,i}}{x'_{n,3}} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,\tilde{i}}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} H_{3,\tilde{i}}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2}$$

Note: $(H\hat{x}_n)_i = \sum_{i=1}^3 H_{i,j} \hat{x}_{n,j}$.

4日 → 4周 → 4 至 → 4 至 → 至 | 至 り へ ○ ○

Jaiversite.

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x'_{n,i}}{x'_{n,3}} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,\tilde{i}}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} H_{3,\tilde{i}}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1} = -\delta(\tilde{i} = i) \frac{\hat{x}_{n,\tilde{j}}}{(H\hat{x}_{n})_{3}} + \delta(\tilde{i} = 3) \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} \hat{x}_{n,3}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2} = \frac{1}{2} \frac{1}{2}$$

Note: $(H\hat{x}_n)_i = \sum_{i=1}^3 H_{i,j} \hat{x}_{n,j}$.

4 D > 4 B > 4 E > 4 E > 4 B > 9 Q P

Shiversite.

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x'_{n,i}}{x'_{n,3}} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,\tilde{i}}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} H_{3,\tilde{i}}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

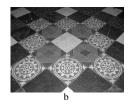
$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1} = -\delta(\tilde{i} = i) \frac{\hat{x}_{n,\tilde{j}}}{(H\hat{x}_{n})_{3}} + \delta(\tilde{i} = 3) \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}} \hat{x}_{n,3}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2} = 0$$

Note: $(H\hat{x}_n)_i = \sum_{i=1}^3 H_{i,j} \hat{x}_{n,j}$.

Example: Comparison of Different Methods

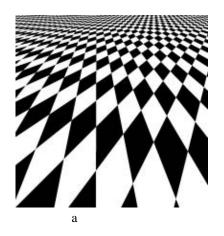
Computer Vision 4. Iterative Minimization Methods

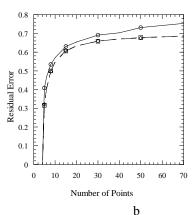


والمناف والموسور المنافاتون

	residual error in pixels		
method	pair a,b	pair a,c	
DLT unnormalized	0.4080	26.2056	
DLT normalized	0.4078	0.6602	
Transfer distance in one image	0.4077	0.6602	
Reconstruction loss	0.4078	0.6602	
affine	6.0095	2.8481	

Example: Comparison of Different Methods



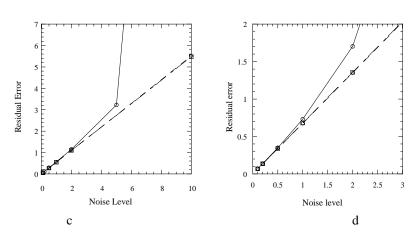


Note: solid: DLTn, dashed: reconstruction loss

[HZ04, p. 116]

Jaivers/top.

Example: Comparison of Different Methods



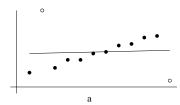
Note: solid: DLTn, dashed: reconstruction loss; c) 10 points, d) 50 points [HZ04, p. 116]

Outline

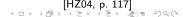
- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 5. Halisioilliation ilivaliance and Norn
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Outliers and Robust Estimation

- When estimating a transformation from pairs of corresponding points, having these correspondences estimated from data themselves, we expect noise: wrong correspondences.
- Wrong correspondences could be not just a little bit off, but way off: outliers.
- ► Some losses, esp. least squares, are **sensitive to outliers**:



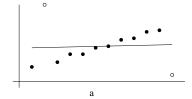
▶ Robust estimation: estimation that is less sensitive to outliers.

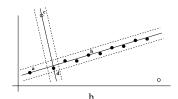


Random Sample Consensus (RANSAC)

idea:

- 1. draw iteratively random samples of data points
 - many and small enough so that some will have no outliers with high probability
- 2. estimate the model from such a sample
- 3. grade the samples by the **support** of their models
 - support: number of well-explained points,i.e., points with a small error under the model (inliers)
- 4. reestimate the model on the support of the best sample





Model Estimation Terminology

- ► RANSAC works like a wrapper around any estimation method.
- examples:
 - estimating a transformation from point correspondences
 - estimating a line (a linear model) from 2d points
- model estimation terminology:

$${\mathcal X}$$
 data space, e.g. ${\mathbb R}^2$

$$\mathcal{D} \subseteq \mathcal{X}$$
 dataset, e.g. $\mathcal{D} = \{x_1, \dots, x_N\}$

$$f(\theta \mid \mathcal{D}) := \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \ell(x, \theta)$$
 objective

$$\ell: \mathcal{X} \times \Theta \to \mathbb{R} \text{ loss/error}, \text{ e.g. } \ell(\left(egin{array}{c} x \\ y \end{array} \right); \left(egin{array}{c} heta_1 \\ heta_2 \end{array} \right)) := \left(y - \left(heta_1 + heta_2 x \right) \right)$$

$$\Theta$$
 (model) parameter space, e.g. \mathbb{R}^2

$$a:\mathcal{P}(\mathcal{X}) o \Theta$$
 estimation method, e.g. gradient descent

aiming at
$$a(\mathcal{D}) pprox arg \min f(\theta \mid \mathcal{D})$$

RANSAC Algorithm

return $\hat{\theta}$

10:

1: procedure EST-RANSAC($\mathcal{D}, \ell, a; N' \in \mathbb{N}, T \in \mathbb{N}, \ell_{\mathsf{max}} \in \mathbb{R}, \mathsf{sup}_{\mathsf{min}} \in \mathbb{N}$) $S_{\mathsf{hest}} := \emptyset$ for t = 1, ..., T or until $|S| \ge \sup_{\min} do$ 3: $\mathcal{D}' \sim \mathcal{D}$ of size N'4: $\hat{\theta} := a(\mathcal{D}')$ ▷ estimate the model 5: $\mathcal{S} := \{ x \in \mathcal{D} \mid \ell(x, \hat{\theta}) < \ell_{\mathsf{max}} \}$ 6: if $|\mathcal{S}| > |\mathcal{S}_{\text{best}}|$ then 7: $S_{\mathsf{hest}} := S$ 8: $\hat{\theta} := a(S_{\mathsf{best}})$ > reestimate the model g.

What is a good sample size N'?

▶ often the minimum number to get a unique solution is used.

What is a good maximal support loss ℓ_{max} ?

- for squared distance/L2 loss: $\ell(x, x') := (x x')^2$
- ▶ assume Gaussian noise: $x_{\text{obs}} \sim \mathcal{N}(x_{\text{true}}, \Sigma)$,
 - ▶ isotrop noise
 - but no noise in some directions
 - e.g., points on a line: noise only orthogonal to the line

$$\rightarrow \Sigma = USU^T$$
, $S = \operatorname{diag}(s_1, s_2), s_i \in \{\sigma^2, 0\}, UU^T = I$

$$ightarrow \ell(x_{
m obs}, x_{
m true}) \sim \sigma^2 \chi_m^2, \quad m := {\sf rank}(S) \ {\sf degrees} \ {\sf of} \ {\sf freedom}$$

▶ inlier:
$$\ell(x_{\text{obs}}, x_{\text{true}}) < \ell_{\text{max}}$$
 with probability α $\ell_{\text{max}} := \sigma^2 \text{CDF}_{\chi^2_m}^{-1}(\alpha)$

m	model	$\ell_{\sf max}(lpha={\sf 0.95})$
1	line, fundamtental matrix	$3.84\sigma^{2}$
2	projectivity, camera matrix	$5.99\sigma^{2}$
3	trifocal tensor	$7.81\sigma^{2}$

What is a good sample frequency T?

- ▶ find T s.t. at least one of the samples contains no outliers with high probability $\alpha := 0.99$.
- ▶ denote $p(x \text{ is an outlier}) = \epsilon$:

$$p(\mathcal{D}' \text{ contains no outliers}) = (1-\epsilon)^{N'}$$

$$p(\text{at least one } \mathcal{D}' \text{ contains no outliers}) = 1 - (1-(1-\epsilon)^{N'})^T \stackrel{!}{=} \alpha$$

$$\rightsquigarrow \quad T = \frac{1-\alpha}{1-(1-\epsilon)^{N'}}$$

What is a good sample frequency T?

- ▶ find T s.t. at least one of the samples contains no outliers with high probability $\alpha := 0.99$.
- ▶ denote $p(x \text{ is an outlier}) = \epsilon$:

$$p(\mathcal{D}' \text{ contains no outliers}) = (1 - \epsilon)^{N'}$$

$$p(\text{at least one } \mathcal{D}' \text{ contains no outliers}) = 1 - (1 - (1 - \epsilon)^{N'})^T \stackrel{!}{=} \alpha$$

$$ightarrow T = rac{1-lpha}{1-(1-\epsilon)^{N'}}$$

	$\epsilon = p(x \text{ is an outlier})$						
N′	5%	10%	20%	30%	40%	50%	
2	2	3	5	7	11	17	
3	3	4	7	11	19	35	
4	3	5	9	17	34	72	
5	4	6	12	26	57	146	
6	4	7	16	37	97	293	
7	4	8	20	54	163	588	
8	5	9	26	78	272	1177	

What is a good sufficient support size sup_{min}?

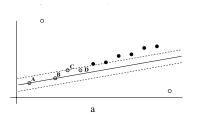
- ► the sufficient support size is an **early stopping criterion**.
- stop if we have as many inliers as expected:

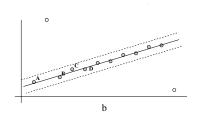
$$\sup_{\min} = N(1 - \epsilon)$$

RANSAC Algorithm / Repeated Reestimation

```
1: procedure
       EST-RANSAC-RERE(\mathcal{D}, \ell, a; N' \in \mathbb{N}, T \in \mathbb{N}, \ell_{\mathsf{max}} \in \mathbb{R}, \mathsf{sup}_{\mathsf{min}} \in \mathbb{N})
             \mathcal{S} := \mathcal{S}_{\mathsf{hest}}
 8:
             do
 9:
                    S_{\mathsf{final}} := S
10:
                    \hat{\theta} := a(\mathcal{S}_{\mathsf{final}})
11:
                                                                                                    > reestimate the model
                    S := \{ x \in \mathcal{D} \mid \ell(x, \hat{\theta}) < \ell_{\text{max}} \}
12:
                                                                                                            while S_{\text{final}} \neq S
13:
              return \hat{\theta}
14:
```

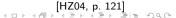

RANSAC: Repeated Reestimation





a) estimation from initial sample

b) reestimation from sample plus support



Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions

- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

1. interest points:

compute interest points in each image.

- 1. interest points:
 - compute interest points in each image.
- 2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

- 1. interest points:
 - compute interest points in each image.
- 2. putative matches:
 - compute matching pairs of interest points from their proximity and intensity neighborhood.
- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):

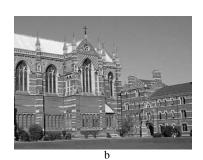
Jriversitati

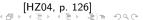
- 1. interest points:
 - compute interest points in each image.
- 2. putative matches:
 - compute matching pairs of interest points from their proximity and intensity neighborhood.
- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity *H* from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)

- 1. interest points:
 - compute interest points in each image.
- 2. putative matches:
 - compute matching pairs of interest points from their proximity and intensity neighborhood.
- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity H from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)
 - 3.2 reestimate the projectivity H using the best sample and all its support/inliers (using Levenberg-Marquardt; RANSAC final step)

- 1. interest points:
 - compute interest points in each image.
- 2. putative matches:
 - compute matching pairs of interest points from their proximity and intensity neighborhood.
- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity H from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)
 - 3.2 reestimate the projectivity H using the best sample and all its support/inliers (using Levenberg-Marquardt; RANSAC final step)
 - 3.3 **Guided Matching**: use projectivity H to identify a search region about the transferred points (with relaxed threshold)

Left and right image:

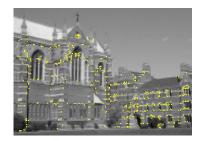


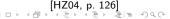


Still Site of the State of the

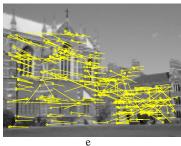
Example

ca. 500+500 interest points ("corners"):



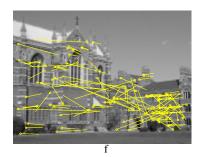


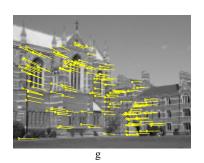
268 putative matches:



Example

117 outlier — 151 inlier matches:



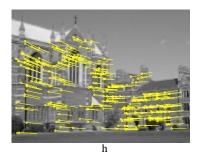


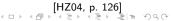
[HZ04, p. 126]

Scivers/

Example

262 final matches (after guided matching):





▶ ...

Further Readings

- ► [HZ04, ch. 4].
- ► For iterative estimation methods in CV see [HZ04, appendix 6].
- ➤ You may also read [HZ04, ch. 5] which will not be covered in the lecture explicitly.

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision. Cambridge university press, 2004.