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Computer Vision 1. Smoothing, Image Derivatives, Convolutions
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Smoothing / Blurring / Averaging
I Smoothing: Replace each pixel by the weighted average of its

surrounding patch:

Ismooth(x , y ;w) :=
∑

∆x ,∆y

w(−∆x ,−∆y)I (x + ∆x , y + ∆y)

=
∑
x ′,y ′

w(x − x ′, y − y ′)I (x ′, y ′)

I padding with 0 at the image boundaries.
I example: box kernel

w−2:2,−2:2(∆x ,∆y) :=
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


I Gaussian smoothing: smoothing with a Gaussian kernel.
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Gaussian Kernels

I Precomputed weights: (clipped) Gaussian density values

w̃(∆x ,∆y) :=

{
N (
√

∆x2 + ∆y2; 0, σ2), if |∆x | ≤ K , |∆y | ≤ K

0, else

w(∆x ,∆y) :=
w̃(∆x ,∆y)∑

∆x ′,∆y ′ w̃(∆x ,∆y)

I clipped: small support, window size K .

I example (K = 2, σ2 = 1):

w−2:2,−2:2 :=


0.003 0.013 0.022 0.013 0.003
0.013 0.060 0.098 0.060 0.013
0.022 0.098 0.162 0.098 0.022
0.013 0.060 0.098 0.060 0.013
0.003 0.013 0.022 0.013 0.003


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Note: N (x ;µ, σ2) := 1√
2πσ2

e
− (x−µ)2

2σ2 .



Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives

I Image Derivative: How does the intensity values change in x or y
direction?

IX (x , y) := I (x , y)− I (x − 1, y)

IY (x , y) := I (x , y)− I (x , y − 1)

or symmetric

IX (x , y) := 2I (x , y)− I (x − 1, y)− I (x + 1, y)

IY (x , y) := 2I (x , y)− I (x , y − 1)− (x , y − 2)
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions
I Smoothing, Image Derivatives and further operations such as filtering

can be represented by a
I convolution: an image where each pixel (x , y) represents the weighted

sum around (x , y) in image I weighted with w :

(w ∗ I )(x , y) :=
∑
x′,y ′

w(x − x ′, y − y ′)I (x ′, y ′)
I Examples:

Ismooth = w ∗ I
IX (x , y) := I (x , y)− I (x − 1, y) =

(
1 −1

)
∗ I

IY (x , y) := I (x , y)− I (x , y − 1) =

(
1
−1

)
∗ I

or IX (x , y) := 2I (x , y)− I (x − 1, y)− I (x + 1, y) =
(
−1 2 −1

)
∗ I

IY (x , y) := 2I (x , y)− I (x , y − 1)− (x , y − 2) =

 −1
2
−1

 ∗ I
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 26



Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions / Associativity

I Convolutions are associative:

I ∗ (J ∗ K ) = (I ∗ J) ∗ K

I Example:
First smooth an image with Gaussian w from slide 2,
then compute its x-derivative with

(
−1 2 −1

)
:

 just convolve with
(
−1 2 −1

)
∗ w

(
−1 2 −1

)
∗ w =


−0.007 0.002 0.017 0.002 −0.007
−0.033 0.008 0.077 0.008 −0.033
−0.054 0.077 0.128 0.077 −0.054
−0.033 0.008 0.077 0.008 −0.033
−0.007 0.002 0.017 0.002 −0.007


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Computer Vision 2. Edges, Corners, and Interest Points
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Computer Vision 2. Edges, Corners, and Interest Points

Edges, Corners, and Interest Points

I good candidates for points that are easy to recognize and match in
two images are

I points on edges
I corners

i.e., points with sudden intensity changes.

I two stage approach: given an image I ∈ RN×M ,

1. compute an interestingness measure i ∈ RN×M for points,
2. select a useful set of points p1, . . . , pK ∈ [N]× [M]

I with high interestingness measure
I not too close to each other.

I many names: corners, interest points, keypoints, salient points, . . .
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Note: [N] := {1, . . . ,N}.



Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude (Canny Edge Detector)

I Simply use the magnitude of the gradient as interestingness
measure:

i(x , y) =
√

(DX ∗ I )(x , y)2 + (DY ∗ I )(x , y)2

I DX ,DY : differentiation kernels, e.g.,

DX :=
(
−1 2 −1

)
, DY :=

 −1
2
−1


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Computer Vision 2. Edges, Corners, and Interest Points

Laplacian of Gaussian and Difference of Gaussian
Further simple interestingness measures:

I Laplacian of Gaussian (LoG):

i(x , y) = (((DX ∗ DX + DY ∗ DY ) ∗ G ) ∗ I )(x , y)

I uses second order information

I Difference of two Gaussians (DoG):

i(x , y) = ((Gσ1 − Gσ2) ∗ I )(x , y), σ1 6= σ2

I uses variations at different scales
I often interpreted as limit of Laplacian of Gaussians

((DX ∗ DX + DY ∗ DY ) ∗ Gσ) ∗ I ≈ σ

∆σ
((Gσ+∆σ − Gσ−∆σ) ∗ I )
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

I Represent a corner by its patch surrounding it,
represent such a patch by a weight function

w : [N]× [M]→ R,
i.e.,

w(x , y) :=

{
1, if |x − x0| < 3 and |y − y0| < 3

0, else

for a rectangular patch of size 5 centered around (x0, y0).

I A point is easy to identify, if its minimum in the autocorrelation
surface is pronounced:

E (∆x ,∆y ;w) :=
∑
x ,y

w(x , y)(I (x + ∆x , y + ∆y)− I (x , y))2
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector / Autocorrelation Surface

4.1. Points 209

(a)

(b) (c) (d)

Figure 4.5: Three different auto-correlation surfaces EAC(∆u) shown as both grayscale images
and surface plots. (Each grid point in figures b–d is one value of ∆u.) The original image (a)
is marked with three red crosses to denote where these auto-correlation surfaces were computed.
Patch (b) is from the flower bed (good unique minimum), patch (c) is from the roof edge (one-
dimensional aperture problem), and patch (d) is from the cloud (no good peak).
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[Sze11, p. 187]Note: left to right: flower bed, roof edge, cloud.



Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

E (∆x ,∆y ;w) :=
∑
x ,y

w(x , y)(I (x + ∆x , y + ∆y)− I (x , y))2

with Hessian at minimum:

H(0, 0;w) ≈ 2
∑
x ,y

w(x , y)∇I |(x ,y)∇I |T(x ,y), for
∂2I

∂2(x , y)
:= 0

= 2w ∗
(

(IX )2 IX IY
IX IY (IY )2

)
,

IX (x , y) := I (x + 1, y)− I (x , y) ≈ ∂I

∂x
(x , y)

IY (x , y) := I (x , y + 1)− I (x , y) ≈ ∂I

∂y
(x , y)
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Note: I ∗ J(x , y) :=
∑

x′,y′ I (x − x ′, y − y ′)J(x ′, y ′) convolution of two images.



Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

use SVD to assess steepness

H = U

(
σ1 0
0 σ2

)
UT , σ1 ≥ σ2 ≥ 0,UUT = I

and define interestingness measure:

iShi-Tomasi(x , y) := σ2

iHarris(x , y) := σ1σ2 − α(σ1 + σ2)2 = detH − α trace(H)2, α := 0.06

iTriggs(x , y) := σ2 − ασ1, α := 0.05

iBrown(x , y) := σ1σ2/(σ1 + σ2) = detH/trace(H)

I the larger σ1:2, the steeper the autocorrelation surface E .

I Harris and Brown avoid computing σ1, σ2 explicitly
(which requires computing a square root).
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector / Algorithm
1: procedure interestpoints-harris(I ∈ RN×M ;w ∈ R−K :K×−L:L, α ∈ R)
2: IX := DX ∗ I
3: IY := DY ∗ I
4: I 2

X := IX · IX
5: I 2

Y := IY · IY
6: IX IY := IX · IY
7: A := w ∗ I 2

X . compute H(x , y) =

(
A(x , y) C (x , y)
C (x , y) B(x , y)

)
8: B := w ∗ I 2

Y

9: C := w ∗ IX IY
10: i := A · B − C · C − α(A + B) · (A + B)
11: return i

I DX ,DY : differentiation kernels, e.g.,

DX :=
(
−1 2 −1

)
,DY :=

 −1
2
−1

.
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Note: · denotes the element/pixelwise product.



Computer Vision 2. Edges, Corners, and Interest Points

Interest Points at Different Scales (SIFT Detector)

I Interest points also can be identified at different scales in parallel:

i(p, s) :=(Gσs+1 ∗ I − Gσs ∗ I ), s ∈ [S ]

where

σ1 > σ2 > · · · > σS

where S ∈ N is the number of scale levels

I Often scale levels are grouped by octaves:
I each octave is represented by a downsampling by a factor 2
I scales within an octave are σs := 2s/Soσ

(with So the number of scale levels within an ocatve)
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Computer Vision 2. Edges, Corners, and Interest Points

Interest Points at Different Scales (SIFT Detector)
216 Computer Vision: Algorithms and Applications (February 27, 2010 draft)

 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

√
2.

An efficient approach to construction of D(x, y, σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima of D(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11: Scale-space feature detection using a sub-octave Difference of Gaussian pyramid
(Lowe 2004). (a) Adjacent levels of a sub-octave Gaussian pyramid are subtracted to produce
Difference of Gaussian images. (b) Extrema (maxima and minima) in the resulting 3D volume are
detected by comparing a pixel to its 26 neighbors.

and then rejecting keypoints for which

Tr(H)2

Det(H)
> 10. (4.13)

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced by
such techniques and can therefore be used in conjunction with these other approaches.) In order
to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and Schmid (2004)
evaluate the Laplacian of a Gaussian function at each detected Harris point (in a multi-scale pyra-
mid) and keep only those points for which the Laplacian is extremal (larger or smaller than both
its coarser and finer-level values). An optional iterative refinement for both scale and position is
also proposed and evaluated. Additional examples of scale invariant region detectors can be found
in (Mikolajczyk et al. 2005, Tuytelaars and Mikolajczyk 2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algorithms
need to deal with (at least) in-plane image rotation. One way to deal with this problem is to design
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Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression

I Often neighbors of interest points have similar high interestingness,
yielding redundant close-by interest points.

I Keep only interest points that are local maxima in their
neighborhood:

i ′(p) :=

{
i(p), if i(p) > i(p′) ∀p′ ∈ N(p)

0, else
, p ∈ [N]× [M]

with neighborhood

NK (p) :={p′ ∈ [N]× [M] | |px − p′x | ≤ K , |py − p′y | ≤ K , p′ 6= p} rectangular

NK (p) :={p′ ∈ [N]× [M] | ||p − p′|| ≤ K , p′ 6= p} circular

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression / At Different Scale

I Non-Maximum Suppression also can be extended to work on interest
points at different scale:

NK (p, s) :={(p′, s ′) ∈ [N]× [M]× [S ] | |px − p′x | ≤ K , |py − p′y | ≤ K ,

|s − s ′| ≤ 1, p′ 6= p}
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Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression / At Different Scale

I SIFT refines interest points by further steps:
I localization at sub-pixel granularity
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Computer Vision 3. Image Patch Descriptors
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Computer Vision 3. Image Patch Descriptors

Histograms

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 26



Computer Vision 3. Image Patch Descriptors

SIFT descriptors

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 26



Computer Vision 3. Image Patch Descriptors

Histograms of Oriented Gradients (HoG)
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Computer Vision 3. Image Patch Descriptors

Bag of Words Descriptors
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Computer Vision 3. Image Patch Descriptors

?? Dimensionality Reduction
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Computer Vision 4. Interest Point Matching
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Computer Vision 4. Interest Point Matching

...
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Computer Vision 5. A Simple Application: Image Stitching
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Computer Vision 5. A Simple Application: Image Stitching

...
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Computer Vision 5. A Simple Application: Image Stitching

Summary

I ...
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Computer Vision

Further Readings

I Interest points and patch descriptors: [Pri12, ch. 13], [Sze11, ch. 4].

I Image stitching: [Sze11, ch. 9].
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