

Computer Vision 4. Interest Points

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

《口》《聞》《臣》《臣》 王言 '오오오

Outline

- 1. Smoothing, Image Derivatives, Convolutions
- 2. Edges, Corners, and Interest Points
- 3. Image Patch Descriptors
- 4. Interest Point Matching
- 5. A Simple Application: Image Stitching

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Outline

1. Smoothing, Image Derivatives, Convolutions

- 2. Edges, Corners, and Interest Points
- 3. Image Patch Descriptors
- 4. Interest Point Matching
- 5. A Simple Application: Image Stitching

Smoothing / Blurring / Averaging

Smoothing: Replace each pixel by the weighted average of its surrounding patch:

$$egin{aligned} & I_{ ext{smooth}}(x,y;w) := \sum_{\Delta x,\Delta y} w(-\Delta x,-\Delta y) I(x+\Delta x,y+\Delta y) \ & = \sum_{x',y'} w(x-x',y-y') I(x',y') \end{aligned}$$

- **padding** with 0 at the image boundaries.
- example: box kernel

Gaussian Kernels

► Precomputed weights: (clipped) Gaussian density values

$$egin{aligned} & ilde{w}(\Delta x,\Delta y) := egin{cases} \mathcal{N}(\sqrt{\Delta x^2 + \Delta y^2}; 0, \sigma^2), & ext{if } |\Delta x| \leq \mathcal{K}, |\Delta y| \leq \mathcal{K} \ 0, & ext{else} \end{aligned} \ & w(\Delta x,\Delta y) := rac{ ilde{w}(\Delta x,\Delta y)}{\sum_{\Delta x',\Delta y'} ilde{w}(\Delta x,\Delta y)} \end{aligned}$$

- ► clipped: small support, window size K.
- example ($K = 2, \sigma^2 = 1$):

$$w_{-2:2,-2:2} := \begin{pmatrix} 0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\ 0.013 & 0.060 & 0.098 & 0.060 & 0.013 \\ 0.022 & 0.098 & 0.162 & 0.098 & 0.022 \\ 0.013 & 0.060 & 0.098 & 0.060 & 0.013 \\ 0.003 & 0.013 & 0.022 & 0.013 & 0.003 \end{pmatrix}$$

Note: $\mathcal{N}(x; \mu, \sigma^2) := \frac{1}{2\sigma^2} e^{-\frac{1}{2\sigma^2}}$. Lars Schmidt-Thieme, Information of Hildesheim, Germany Lab (ISMLL), University of Hildesheim, Germany

original:

シック 正所 エボットボット きょう

original:

シック 비론 《로》《로》《唱》《曰》

original:

・ 日 ト 《 四 ト 《 三 ト 《 三 ト 《 四 ト 《 四 ト

original:

シック 正則 エル・エリ・エリ・

Image Derivatives

Image Derivative: How does the intensity values change in x or y direction?

$$I_X(x,y) := I(x,y) - I(x-1,y)$$

$$I_Y(x,y) := I(x,y) - I(x,y-1)$$

or symmetric

$$I_X(x,y) := 2I(x,y) - I(x-1,y) - I(x+1,y)$$

$$I_Y(x,y) := 2I(x,y) - I(x,y-1) - (x,y-2)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト < 団ト < ヨト < ヨト < 国ト < ロト

Image Derivatives / Example

original (grayscale):

derivative in x-direction:

シック 三回 ヘルマ・ルマ・トロマ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 47

Image Derivatives / Example

original (grayscale):

derivative in y-direction:

Convolutions

convolution: an image where each pixel (x, y) represents the weighted sum around (x, y) in image I weighted with w:

$$(w * I)(x, y) := \sum_{x', y'} w(x - x', y - y')I(x', y')$$

► Examples:

Convolutions / Associativity

Convolutions are associative:

$$I * (J * K) = (I * J) * K$$

Example:

First smooth an image with Gaussian w from slide 2, then compute its x-derivative with $\begin{pmatrix} -1 & 2 & -1 \end{pmatrix}$: \rightarrow just convolve with $\begin{pmatrix} -1 & 2 & -1 \end{pmatrix} * w$

$$\left(\begin{array}{cccc} -1 & 2 & -1 \end{array}\right) * w = \left(\begin{array}{cccc} -0.007 & 0.002 & 0.017 & 0.002 & -0.007 \\ -0.033 & 0.008 & 0.077 & 0.008 & -0.033 \\ -0.054 & 0.077 & 0.128 & 0.077 & -0.054 \\ -0.033 & 0.008 & 0.077 & 0.008 & -0.033 \\ -0.007 & 0.002 & 0.017 & 0.002 & -0.007 \end{array}\right)$$

▲□▶▲母▶▲글▶▲글▶ 三百 めんの

Outline

1. Smoothing, Image Derivatives, Convolutions

2. Edges, Corners, and Interest Points

- 3. Image Patch Descriptors
- 4. Interest Point Matching
- 5. A Simple Application: Image Stitching

・日・《四・《川・《田・《日・

Edges, Corners, and Interest Points

- good candidates for points that are easy to recognize and match in two images are
 - points on edges
 - corners
 - i.e., points with sudden intensity changes.
- ▶ two stage approach: given an image $I \in \mathbb{R}^{N \times M}$,
 - 1. compute an interestingness measure $i \in \mathbb{R}^{N \times M}$ for points,
 - 2. select a useful set of points $p_1, \ldots, p_K \in [N] \times [M]$
 - with high interestingness measure
 - not too close to each other.
- ▶ many names: corners, interest points, keypoints, salient points, ...

Note: $[N] := \{1, ..., N\}.$

《日》《四》《王》《王》 레티 이익()

Gradient Magnitude (Canny Edge Detector)

Simply use the magnitude of the gradient as interestingness measure:

$$i(x,y) = \sqrt{(D_X * I)(x,y)^2 + (D_Y * I)(x,y)^2}$$

• D_X, D_Y : differentiation kernels, e.g.,

$$D_X := \begin{pmatrix} -1 & 2 & -1 \end{pmatrix}, \quad D_Y := \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Gradient Magnitude / Example

original (grayscale):

gradient magnitude:

Gradient Magnitude / Example

original (grayscale):

overlay with 500 interest points:

・ロト・4日ト・4日ト・4日ト 日日・990

Laplacian of Gaussian and Difference of Gaussian

Further simple interestingness measures:

• Laplacian of Gaussian (LoG):

$$i(x, y) = (((D_X * D_X + D_Y * D_Y) * G) * I)(x, y)$$

- uses second order information
- Difference of two Gaussians (DoG):

$$i(x,y) = ((G_{\sigma_1} - G_{\sigma_2}) * I)(x,y), \quad \sigma_1 \neq \sigma_2$$

- uses variations at different scales
- often interpreted as limit of Laplacian of Gaussians

$$((D_X * D_X + D_Y * D_Y) * G_{\sigma}) * I \approx \frac{\sigma}{\Delta\sigma} ((G_{\sigma + \Delta\sigma} - G_{\sigma - \Delta\sigma}) * I)$$

Harris Corner Detector

Represent a corner by its patch surrounding it, represent such a patch by a weight function

$$w:[N]\times[M] o\mathbb{R},$$

i.e.,

$$w(x,y) := \begin{cases} 1, & \text{if } |x - x_0| < 3 \text{ and } |y - y_0| < 3 \\ 0, & \text{else} \end{cases}$$

for a rectangular patch of size 5 centered around (x_0, y_0) .

A point is easy to identify, if its minimum in the autocorrelation surface is pronounced:

$$E(\Delta x, \Delta y; w) := \sum_{x,y} w(x,y) (I(x + \Delta x, y + \Delta y) - I(x,y))^2$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Shiversiter Fildesheiff

Note: left to right: flower bed, roof edge, cloud.

[Sze11, p. 187] • □ ▶ • 륜 ▶ • 토 ▶ 토 = ∽ ९...

Universiter.

<u>-</u>.

Harris Corner Detector

$$E(\Delta x, \Delta y; w) := \sum_{x,y} w(x,y)(I(x + \Delta x, y + \Delta y) - I(x,y))^2$$

with Hessian at minimum:

$$H(0,0;w) \approx 2 \sum_{x,y} w(x,y) \nabla I|_{(x,y)} \nabla I|_{(x,y)}^{T}, \quad \text{for } \frac{\partial^2 I}{\partial^2(x,y)} := 0$$
$$= 2w * \begin{pmatrix} (I_X)^2 & I_X I_Y \\ I_X I_Y & (I_Y)^2 \end{pmatrix},$$
$$I_X(x,y) := I(x+1,y) - I(x,y) \approx \frac{\partial I}{\partial x}(x,y)$$
$$I_Y(x,y) := I(x,y+1) - I(x,y) \approx \frac{\partial I}{\partial y}(x,y)$$

Note: $I * J(x,y) := \sum_{x',y'} I(x - x', y - y') J(x', y')$ convolution of two images.

Harris Corner Detector

use SVD to assess steepness

$$H = U \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix} U^T, \quad \sigma_1 \ge \sigma_2 \ge 0, UU^T = I$$

and define interestingness measure:

$$\begin{split} i_{\mathsf{Shi-Tomasi}}(x,y) &:= \sigma_2 \\ i_{\mathsf{Harris}}(x,y) &:= \sigma_1 \sigma_2 - \alpha (\sigma_1 + \sigma_2)^2 = \det H - \alpha \operatorname{trace}(H)^2, \qquad \alpha := 0.06 \\ i_{\mathsf{Triggs}}(x,y) &:= \sigma_2 - \alpha \sigma_1, \qquad \alpha := 0.05 \\ i_{\mathsf{Brown}}(x,y) &:= \sigma_1 \sigma_2 / (\sigma_1 + \sigma_2) = \det H / \operatorname{trace}(H) \end{split}$$

- the larger $\sigma_{1:2}$, the steeper the autocorrelation surface *E*.
- ► Harris and Brown avoid computing σ₁, σ₂ explicitly (which requires computing a square root).

Harris Corner Detector / Algorithm

1: procedure INTERESTPOINTS-HARRIS($I \in \mathbb{R}^{N \times M}$; $w \in \mathbb{R}^{-K:K \times -L:L}$, $\alpha \in \mathbb{R}$) 2: $I_X := D_X * I$ $I_{\mathbf{V}} := D_{\mathbf{V}} * I$ 3: $I_X^2 := I_X \cdot I_X$ 4: $I_Y^2 := I_Y \cdot I_Y$ 5: 6: $I_X I_Y := I_X \cdot I_Y$ $\triangleright \text{ compute } H(x, y) = \begin{pmatrix} A(x, y) & C(x, y) \\ C(x, y) & B(x, y) \end{pmatrix}$ $A := w * I_{x}^{2}$ 7: $B := w * I_{v}^{2}$ 8: $C := w * I_X I_Y$ 9: $i := A \cdot B - C \cdot C - \alpha (A + B) \cdot (A + B)$ 10: 11: return i • D_X, D_Y : differentiation kernels, e.g., $D_X := \begin{pmatrix} -1 & 2 & -1 \end{pmatrix}, D_Y := \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}.$ Note: \cdot denotes the element/pixelwise product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector / Example

(a)

(b)

(c)

a) original, b) Harris corners, c) DoG interest points

[Sze11, p. 213] 《 □ ▷ 《 큔 ▷ 《 壴 ▷ 《 壴 ▷ 훅 트 》 역 ()

Interest Points at Different Scales (SIFT Detector)

Interest points also can be identified at different scales in parallel:

$$i(p,s) := (G_{\sigma_{s+1}} * I - G_{\sigma_s} * I), \quad s \in [S]$$

where

$$\sigma_1 > \sigma_2 > \cdots > \sigma_S$$

where $S \in \mathbb{N}$ is the **number of scale levels**

- ► Often scale levels are grouped by octaves:
 - \blacktriangleright each octave is represented by a downsampling by a factor 2
 - scales within an octave are σ_s := 2^{s/S₀}σ
 (with S₀ the number of scale levels within an ocatve)

《曰》《聞》《臣》《臣》 토言 '오오오

Interest Points at Different Scales (SIFT Detector)

19 / 47

QC

Shiversiter

Non-Maximum Suppression

- Often neighbors of interest points have similar high interestingness, yielding redundant close-by interest points.
- Keep only interest points that are local maxima in their neighborhood:

$$i'(p) := egin{cases} i(p), & ext{if } i(p) > i(p') \ orall p' \in N(p) \ 0, & ext{else} \end{cases}, \quad p \in [N] imes [M]$$

with neighborhood

$$\begin{split} &N_{K}(p) := \{ p' \in [N] \times [M] \mid |p_{x} - p'_{x}| \leq K, |p_{y} - p'_{y}| \leq K, p' \neq p \} & \text{recta} \\ &N_{K}(p) := \{ p' \in [N] \times [M] \mid ||p - p'|| \leq K, p' \neq p \} & \text{circu} \end{split}$$

<ロ> < 団> < 団> < 三> < 三> 三三 のへで

Non-Maximum Suppression / Example

(c) ANMS 250, r = 24 (d) ANMS 500, r = 16Note: ANMS = adaptive non-maximum suppression; see the book for details = 1, p. 214]

Non-Maximum Suppression / At Different Scale

 Non-Maximum Suppression also can be extended to work on interest points at different scale:

$$egin{aligned} &\mathcal{N}_{\mathcal{K}}(p,s):=&\{(p',s')\in [\mathcal{N}] imes [\mathcal{M}] imes [\mathcal{S}]\mid |p_x-p_x'|\leq \mathcal{K}, |p_y-p_y'|\leq \mathcal{K}, \ &|s-s'|\leq 1, p'
eq p\} \end{aligned}$$

[Sze11, p. 216] ∢□▷∢률▷∢≧▷∢≧▷ ≜⊨ ୬९୯.

SIFT Interest Points

SIFT refines interest points by further steps:

- non-maximum suppression at different scale
- ► localization of interest points at sub-pixel granularity

うせん 正則 スポッスポッス セッ

Outline

- 1. Smoothing, Image Derivatives, Convolutions
- 2. Edges, Corners, and Interest Points
- 3. Image Patch Descriptors
- 4. Interest Point Matching
- 5. A Simple Application: Image Stitching

・ロト・(聞・・ヨト・(問・・ロト)

Sniversiter Fildesheim

Image Patch Descriptors

- ► Which properties from a patch to extract?
 - ► grayscale intensities, color intensities, gradient directions
- Which patches to extract?
 - ► orientation of the patch w.r.t. the image frame
 - ▶ offset of the patch w.r.t. the interest point (cells)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Histograms

- ▶ the most simple patch:
 - a square centered on the interest point

* □ > * @ > * E > * E > E = * 9 < 0</p>

Histograms

- ▶ the most simple patch:
 - a square centered on the interest point
- ► properties:
 - most simple: grayscale intensities of the pixels

- ▶ how to represent?
 - as a matrix or a vector

もしゃ 正明 ふばやえばや ふむやくしゃ
- ▶ the most simple patch:
 - a square centered on the interest point
- ► properties:
 - most simple: grayscale intensities of the pixels

- ▶ how to represent?
 - as a matrix or a vector
 - ► is affected by rotations

・日本・四本・山本・山本・山本・日本・日本

- ▶ the most simple patch:
 - a square centered on the interest point
- ► properties:
 - most simple: grayscale intensities of the pixels

- ▶ how to represent?
 - as a matrix or a vector
 - ► is affected by rotations
 - ▶ by some scalar properties (mean, standard deviation)

もうすい 正則 ふかす ふやす ふきゃくりゃ

- ▶ the most simple patch:
 - a square centered on the interest point
- ► properties:
 - most simple: grayscale intensities of the pixels

- ▶ how to represent?
 - as a matrix or a vector
 - is affected by rotations
 - ▶ by some scalar properties (mean, standard deviation)
 - represents only little information

シック 비토 《王》《王》《臣》《曰》

- ▶ the most simple patch:
 - a square centered on the interest point
- ► properties:
 - most simple: grayscale intensities of the pixels

- ▶ how to represent?
 - as a matrix or a vector
 - is affected by rotations
 - ▶ by some scalar properties (mean, standard deviation)
 - represents only little information
 - by its histogram

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

- ▶ the most simple patch:
 - a square centered on the interest point
- ► properties:
 - most simple: grayscale intensities of the pixels
 - is affected by global intensity fluctuations
 - gradient directions
- ▶ how to represent?
 - as a matrix or a vector
 - is affected by rotations
 - ▶ by some scalar properties (mean, standard deviation)
 - represents only little information
 - ► by its **histogram**

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Universiter Fildesheim

Histograms / Intensities

► represent interest point (x, y) by its B-dimensional intensity histogram features φ(x, y):

$$\begin{split} \phi(x,y)_b &:= |\{(x',y') \in \mathcal{N}(x,y) \mid I(x',y') \in bin_b\}|, \quad b = 0, \dots, B-1\\ bin_b &:= [\frac{b}{B}I_{\max}, \frac{b+1}{B}I_{\max}[\\ \mathcal{N}(x,y) &:= \{(x',y') \in [N] \times [M] \mid |x'-x| < K, |y'-y| < K\} \end{split}$$

for intensities I(x, y) in range $[0, I_{max}]$.

・日本・4日本・4日本・4日本・996で

Histograms / Smoothed Counting

- To avoid non-continuous changes if a value crosses bin boundaries, values can be counted
 - in both closest bins,
 - ► antiproportional to their distance from the bin center

$$\mathsf{binc}_b := \frac{b+0.5}{B} I_{\mathsf{max}}$$

$$\mathsf{bin}_b := \sum_{(x',y') \in \mathcal{N}(x,y)} \mathsf{max}(0, 1 - \frac{|I(x',y') - \mathsf{binc}_b|}{I_{\mathsf{max}}/B})$$

sometimes called trilinear counting.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Histograms / Gradient Directions

► represent interest point (x, y) by its B-dimensional gradient directions histogram features φ(x, y):

$$\begin{split} \phi(x,y)_b &:= |\{(x',y') \in \mathcal{N}(x,y) \mid d(x',y') \in bin_b\}|, \quad b = 0, \dots, B-1 \\ d(x,y) &:= \tan^{-1}((D_Y * I)(x,y)/(D_X * I)(x,y)) \\ bin_b &:= [\frac{b}{B}2\pi, \frac{b+1}{B}2\pi[\end{split}$$

・日本・西本・山田・山田・山市・今日・

Histograms / Gradient Directions

► represent interest point (x, y) by its B-dimensional gradient directions histogram features φ(x, y):

$$\begin{split} \phi(x,y)_b &:= |\{(x',y') \in \mathcal{N}(x,y) \mid d(x',y') \in bin_b\}|, \quad b = 0, \dots, B-1 \\ d(x,y) &:= \tan^{-1}((D_Y * I)(x,y)/(D_X * I)(x,y)) \\ bin_b &:= [\frac{b}{B} 2\pi, \frac{b+1}{B} 2\pi] \end{split}$$

► variant: weight gradients by their magnitude:

$$\phi(x,y)_b := \sum_{(x',y') \in \mathcal{N}(x,y), d(x',y') \in \mathsf{bin}_b} (D_X * I)(x',y')^2 + (D_Y * I)(x',y')^2$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Computer Vision 3. Image Patch Descriptors

Histograms / Gradients / Example

[Sze11, p. 217] < □ ▶ < 륜 ▶ < 토 ▶ 로 = ∽ 의 ೕ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 47

Block Descriptors

 Describe an interest point not just by features of the surrounding patch,

but by the features of several neighboring patches (blocks, cells):

$$\phi(x,y) := \bigoplus_{(x',y') \in \mathcal{C}(x,y)} \phi'(x',y')$$
$$\mathcal{C}(x,y) := \{x + c\Delta X, y + d\Delta Y \mid c, d \in \{-C, \dots, C\}\}$$

- Often a simple partition of a large $(2C+1)(2K+1) \times (2C+1)(2K+1)$ patch is used $(\Delta X = \Delta Y = 2K+1)$.
- Features have dimensions $(2C + 1)^2 B$.

Note: $(x_1, \ldots, x_N) \oplus (y_1, \ldots, y_M) := (x_1, \ldots, x_N, y_1, \ldots, y_M)$ concatenation.

Block Descriptors

[Low04, p. 15] 《 ロ ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ ③

うへで 31 / 47

Align Patches by the Gradient Direction of the Interest

- Extract features from the image rotated by
 - the negative gradient direction at the interest point
 - around the interest point

(afterwards the gradient at the interest point (x, y) points towards positive x-direction):

SIFT descriptors

- ► patches:
 - \blacktriangleright extract from the scaled image the interest point has been detected on
 - align patch by the gradient direction of the interest point
 - 16×16 , partitioned into 16 blocks a 4×4
- block features:
 - gradient directions
 - weighted by a Gaussian of the distance to the interest point
- block feature aggregation:
 - smoothly counted histograms
 - ► 8 bins
- $\blacktriangleright \ \leadsto$ feature vector $\phi \in \mathbb{R}^{128}$
- normalization in 3 steps:

$$\phi'_i := \phi_i / ||\phi||_2, \qquad \phi''_i := \min(0.2, \phi'_i), \qquad \phi'''_i := \phi''_i / ||\phi''||_2$$

◇ ▷ ♡ □ □ ■ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷

Image Descriptors

To describe a whole image (not just a patch), two main approaches are used:

- 1. Concatenate patch descriptors of equally spaced "interest points"
 - 1.1 e.g., used in Histograms of Oriented Gradients (HoG)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Universiter Hildesheim

Image Descriptors

To describe a whole image (not just a patch), two main approaches are used:

- 1. Concatenate patch descriptors of equally spaced "interest points"
 - 1.1 e.g., used in Histograms of Oriented Gradients (HoG)

2. Bag of words descriptors:

- 2.1 compute interest points and their descriptors for a set of images
- 2.2 discretize the descriptors
 - e.g., clustering in K clusters using k-means
- 2.3 represent each image by the ${\cal K}$ cluster frequencies of their interest point descriptors

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Computer Vision 3. Image Patch Descriptors

Histograms of Oriented Gradients (HoG)

Figure 13.17 HOG descriptor. a) Original image. b) Gradient orientation, quantized into nine bins from 0 to 180° . c) Gradient magnitude. d) Cell descriptors are 9D orientation histograms that are computed within 6×6 pixel regions. e) Block descriptors are computed by concatenating 3×3 blocks of cell descriptors. The block descriptors are normalized. The final HOG descriptor consists of the concatenated block descriptors.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 47

[Pri12, p. 343]

Outline

- 1. Smoothing, Image Derivatives, Convolutions
- 2. Edges, Corners, and Interest Points
- 3. Image Patch Descriptors
- 4. Interest Point Matching
- 5. A Simple Application: Image Stitching

・日・《四・《王・《田・《日・

Settings, Assumptions, Distances

Two settings:

- match interest points in different scenes
 - goal: detect similar objects (object identification)
 - coordinates of the points do not matter

$$d(\left(\begin{array}{c}x_1\\y_1\end{array}\right),\left(\begin{array}{c}x_2\\y_2\end{array}\right)):=d'(\phi(x_1,y_1),\phi(x_2,y_2))=||\phi(x_1,y_1)-\phi(x_2,y_2)||_2$$

$$d\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}) := \alpha d'\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} + \beta d'(\phi(x_1, y_1), \phi(x_2, y_2))$$
$$= \alpha || \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} ||_2 + \beta ||\phi(x_1, y_1) - \phi(x_2, y_2)||_2$$

Settings, Assumptions, Distances

Two settings:

- match interest points in different scenes
 - goal: detect similar objects (object identification)
 - coordinates of the points do not matter

$$d(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}) := d'(\phi(x_1, y_1), \phi(x_2, y_2)) = ||\phi(x_1, y_1) - \phi(x_2, y_2)||_2$$

- match interest points in two views of the same scene
 - goal: detect corresponding points in different views of the same scene (required for SLAM)
 - coordinates of corresponding points also should be close, e.g.,

$$d\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}) := \alpha d'\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} + \beta d'(\phi(x_1, y_1), \phi(x_2, y_2))$$
$$= \alpha ||\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} ||_2 + \beta ||\phi(x_1, y_1) - \phi(x_2, y_2)||_2$$

Simple methods

To match two sets P and Q of interest points:

match interest points by distance threshold

$$p \sim q : \Leftrightarrow d(p,q) < d_{\mathsf{max}}, \quad p \in P, q \in Q$$

► distance threshold d_{max} can be estimated from known matches and non-matches

Simple methods

To match two sets P and Q of interest points:

match interest points by distance threshold

$$p \sim q : \Leftrightarrow d(p,q) < d_{\mathsf{max}}, \quad p \in P, q \in Q$$

- ► distance threshold d_{max} can be estimated from known matches and non-matches
- match interest points by nearest neighbor

$$p \sim q : \Leftrightarrow q = \operatorname*{arg\,min}_{q \in Q} d(p,q)$$

シック 비로 《로》《로》《唱》《曰》

Nearest Neighbor Distance Ratio

► match interest points by nearest neighbor distance ratio (NNDR)

$$p \sim q :\Leftrightarrow i) \ q = \operatorname*{arg\,min}_{q \in Q} d(p,q) \text{ and}$$

 $ii) \ \operatorname{NNDR}(p,q) := \frac{d(p,q)}{d(p,q')} < \operatorname{NNDR}_{\min}, \quad q' := \operatorname*{arg\,min}_{q' \in Q \setminus \{q\}} d(p,q')$

Computer Vision 4. Interest Point Matching

Comparison of Different Descriptors & Matchings a) fixed threshold:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 47

Computer Vision 4. Interest Point Matching

Comparison of Different Descriptors & Matchings b) nearest neighbor:

Comparison of Different Descriptors & Matchings c) nearest neighbor distance ratio:

Mutual Nearest Neighbors

► match interest points if they **mutually** are nearest neighbors

$$p \sim q : \Leftrightarrow i) \; q = rgmin_{q \in Q} d(p,q) \; ext{and}$$
 $ii) \; p = rgmin_{p \in P} d(p,q)$

► also for more than two views P₁, P₂,..., P_V (called closed chains)

$$(p_1, p_2, \dots, p_V)$$
 corresponding tuple
 $:\Leftrightarrow i) p_{v+1} = \underset{q \in P_{v+1}}{\operatorname{arg min}} d(p_v, q), \quad v = 1, \dots, V-1 \text{ an}$
 $ii) p_1 = \underset{q \in P_V}{\operatorname{arg min}} d(p_1, q)$

シック・目前 (ボッ・(ボッ・(型)) (ロ)

Outline

- 1. Smoothing, Image Derivatives, Convolutions
- 2. Edges, Corners, and Interest Points
- 3. Image Patch Descriptors
- 4. Interest Point Matching
- 5. A Simple Application: Image Stitching

・ロト・中国・ 山田・ 山田・ 人日・

Image Stitching

 join several images depicting overlapping parts of the same real scene to one large image

ペロト 《四ト 《三ト 《三ト 》目上 のへで

Image Stitching

- ▶ join several images depicting overlapping parts of the same real scene to one large image
- ► algorithm:
 - 1. detect interest points in all images and extract their descriptors
 - 2. match interest points between every two images
 - 3. form a tree linking the best matching image pairs
 - 4. estimate a similarity transform between each two such images
 - 5. transform all images to joint coordinates
 - 6. average overlapping image regions

- 今夕今 正則 《田》《田》《田》《日》

Image Stitching

- ▶ join several images depicting overlapping parts of the same real scene to one large image
- ► algorithm:
 - 1. detect interest points in all images and extract their descriptors
 - 2. match interest points between every two images
 - 3. form a tree linking the best matching image pairs
 - 4. estimate a similarity transform between each two such images
 - 5. transform all images to joint coordinates
 - 6. average overlapping image regions
- also called panography

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Image Stitching / Example

[Sze11, p. 312] < □ ▷ < @ ▷ < ≣ ▷ < ≣ ▷ < ≣ ▷ < ≡ ▷ < < ♡ < ♡

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

42 / 47

Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Different Transforms

(a) translation [2 dof]

(b) affine [6 dof]

(c) perspective [8 dof] (d) 3D rotation [3+ d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

43 / 47

Image Stitching / Example

Summary

- Small intensity fluctuations can be damped by smoothing, intensity changes can be captured by image derivatives, both being convolutions.
- ► Interest points are found as maxima of an interestingness measure,
 - gradient magnitude, Laplacian of Gaussian (LoG), Different of two Gaussians (DoG)
 - Harris corners:
 - large eigenvalues of the Hessian
 - can be approximated efficiently: det $H \alpha (traceH)^2$
 - ► SIFT:
 - detected interest points at different scale
 - several further tweaks
- non-maximum suppressions:

ignore large values in the vicinity of a maximum

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

Summary (2/3)

- Interest points are characterized by local image information (descriptors)
- Descriptors often describe several patches (blocks/cells)
- Patches are described by histograms
- Histograms usually do not count pixel intensities, but gradient directions
- Descriptors sometimes
 - ► align patches with the orientation of the gradient at the interest point
 - weight gradient directions by their
 - gradient magnitude and/or
 - distance of the location to the interest point
- Common descriptors:
Summary (3/3)

Jniversiter Tildesheif

- Whole images can be described two ways:
 - by the descriptors on a fixed grid of "interest points"
 - by the cluster frequencies of descriptors of variably located interest points

Both is useful, e.g. for image classification.

- Interest points are matched by their descriptors
 - for geometric tasks: also by their positons
- ► To match interest points, nearest neighbors are used
 - with a maximal distance threshold to avoid wrong matches e.g. of points occluded in one view
 - Nearest Neighbor Distance Ratio
 - mutual nearest neighbors, closed chains in multiple views.
- Corresponding points can be used for
 - image stitching
 - ► SLAM, camera auto-calibration, ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Further Readings

- ▶ Interest points and patch descriptors: [Pri12, ch. 13], [Sze11, ch. 4].
- ▶ Image stitching: [Sze11, ch. 9].

- (日) - (四) - (三) - (三) - (四) - (2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

References

David G. Lowe.

Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110, 2004.

Simon JD Prince.

Computer vision: models, learning, and inference. Cambridge University Press, 2012.

Richard Szeliski.

Computer vision: algorithms and applications. Springer Science & Business Media, 2011.

うせん 正則 ふばやふぼやふ 見て ひょう

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany