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Computer Vision

1. Smoothing, Image Derivatives, Convolutions
Qutline
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Smoothing / Blurring / Averaging

» Smoothing: Replace each pixel by the weighted average of its
surrounding patch:

lsmooth (X, y; w) == Z w(—Ax, —Ay)l(x + Ax,y + Ay)
Ax,Ay

= Z W(X_ley _y/)l(xlvy/)
X/7_yl

» padding with 0 at the image boundaries.
» example: box kernel

1 1111
1 1111
W_2.2 _2.2(Ax,Ay) = % 11111
1 1111
1 1111

» Gaussian smoothing: smoothing with a Gaussian, kernel.
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Gaussian Kernels

» Precomputed weights: (clipped) Gaussian density values

N(V/Ax2 + Ay?;0,0%), if |Ax| < K,|Ay| < K

w(Ax, Ay) =
0, else

w(Ax, Ay)
ZAX’ WNY W(AX Ay)

» clipped: small support, window size K.

w(Ax, Ay) =

> example (K = 2,02 =1):

0.003 0.013 0.022 0.013 0.003
0.013 0.060 0.098 0.060 0.013
W_z2 _22:=| 0.022 0.098 0.162 0.098 0.022
0.013 0.060 0.098 0.060 0.013
0.003 0.013 0.022 0.013 0.003

_x= u)
Note: N(x; i, 02) := —L—e™ 202
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:

blurred by G(K =5,0 = 1):
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:

blurred by G(K = 5,0 = 10)
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:

blurred by G(K = 50,0 = 10):
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives

» Image Derivative: How does the intensity values change in x or y
direction?

Ix(x,y) = 1(x,y) = I(x = 1,y)
Iy(x,y) = 1(x,y) = I(x,y = 1)
or symmetric
Ix(x,y):==2l(x,y) = I(x = 1,y) = I(x + 1,y)
Iy(x,y) :=21(x,y) = I(x,y = 1) = (x,y — 2)
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives / Example

[

original (grayscale):

derivative in x-direction

] = =
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives / Example

[

original (grayscale):

derivative in y-direction:

] = =
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions

» Smoothing, Image Derivatives and further operations such as filtering
can be represented by a
» convolution: an image where each pixel (x, y) represents the weighted
sum around (x,y) in image | weighted with w:

(wx1)0xy) =Y wix=xy —y)I(x,y)

» Examples: Xy’

lsmooth =w=xl

Ix(x,y) = 1(x,y) = I(x = 1,y) =(1 —1)=I
1

Iy (x.y) = 1(xy) ~ oy — 1) (1)

or Ix(x,y) :==2l(x,y) = I(x = 1L,y) = I(x+1,y) =(-1 2 =1 )

-1

/Y(Xv)/) ::2I(X,y)—/(X,y—l)—(X,y+1) - 2 *
-1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions / Associativity

» Convolutions are associative:

I« (JxK)=(xJ)xK

» Example:

First smooth an image with Gaussian w from slide 2,

then compute its x-derivative with ( =1 2 -1 ):
~> just convolve with ( -1 2 -1 ) * W

—0.007
—0.033
(-1 2 -1 )xw=| —0.054
—0.033
—0.007

0.002
0.008
0.077
0.008
0.002

0.017
0.077
0.128
0.077
0.017

0.002
0.008
0.077
0.008
0.002

—0.007
—0.033
—0.054
—0.033
—0.007
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Computer Vision

2. Edges, Corners, and Interest Points
Qutline

2. Edges, Corners, and Interest Points
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Computer Vision 2. Edges, Corners, and Interest Points

Edges, Corners, and Interest Points

» good candidates for points that are easy to recognize and match in
two images are
» points on edges
» corners

i.e., points with sudden intensity changes.

» two stage approach: given an image | € RVXM,

1. compute an interestingness measure i € RV*M for points,
2. select a useful set of points py,. .., pk € [N] x [M]

» with high interestingness measure
» not too close to each other.

» many names: corners, interest points, keypoints, salient points, ...

Note: [N] :={1,...,N}.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude (Canny Edge Detector)

» Simply use the magnitude of the gradient as interestingness
measure:

i(x.y) = /(Dx * )(x.y) + (Dy * 1)(x. )2

» Dy, Dy: differentiation kernels, e.g.,

DX::(—l 2 —1), Dy = 2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude / Example

original (grayscale): gradient magnitude:

4 x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

B
Gradient Magnitude / Example i

original (grayscale): overlay with 500 interest points:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Laplacian of Gaussian and Difference of Gaussian
Further simple interestingness measures:
» Laplacian of Gaussian (LoG):

i(x,¥) = ((Dx * Dx + Dy % Dy) x G) * 1)(x, y)

» uses second order information

» Difference of two Gaussians (DoG):

i(X7y):((G01_GU2)*/)(Xay)v o1 # 02

» uses variations at different scales
» often interpreted as limit of Laplacian of Gaussians

((Dx % Dx + Dy * Dy)  G,) % | ~ &((GHA(, — Gy_po) % 1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

» Represent a corner by its patch surrounding it,
represent such a patch by a weight function

w: [N] x [M] = R,
1, if[x —x| <3and |y —y| <3
w(x,y) =
0, else

for a rectangular patch of size 5 centered around (xo, yo)-

» A point is easy to identify, if its minimum in the autocorrelation
surface is pronounced:

E(Ax,Ay;w) = Z w(x,y)(I(x + Ax,y + Ay) — I(x,y))?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points
Harris Corner Detector / Autocorrelation Surface
\ 1 S

Note: left to right: flower bed, roof edge, cloud.

[m]

7

[Sz§11, p. 18
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

E(Ax, Ay;w) =Y w(x,y)(I(x + Bx,y + Ay) = I(x, y))
X7.y
with Hessian at minimum:

5?1
H(0,0;w) ~ 2 w(x,y)VI|xy)VII{,,y for 0y = 0
X,y ’
_ (Ix)? Ixly
_2W>k< Incly (/y)2 ,
ol
Ix(x,y) =1l(x+1y)—I(x,y) = afx(xay)

ol
/Y(X,)/) = I(Xa.y+1) - I(Xay) ~ @(va)

Note: [ J(x,y) =32,/ I(x = x',y —y")J(x', y") convolution of two images.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

use SVD to assess steepness
o1 0
H:U( . )UT, 01> 0, >0,UUT =1
0 oo
and define interestingness measure:
iShi-Tomasi(Xv}/) =02

iHarris (X, y) := 0102 — a(o1 + 02)% = det H — a trace(H)?,
iTriggs(Xv}/) =02 —Qoy,
(X y) : 0102/(01 + 02) = det H/trace(H)

IBrown X,

» the larger o1.0, the steeper the autocorrelation surface E.
» Harris and Brown avoid computing o1, 02 explicitly
(which requires computing a square root).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

B
Harris Corner Detector / Algorithm i

1. procedure INTERESTPOINTS-HARRIS(/ € RVXM: w € R-K:K*-LL o ¢ R)
2: Ix ;= Dx * |

3: Iy = Dy * [

4: /)2< =Ix - Ix

5: /3/ =1y -ly

6: Ixly .= Ix - Iy

7: A=wxl3 > compute H(x,y) = ( éEX y% CE;( i; )
8: B:=wxl}

9: CZ:W*I)(IY
10: i=A-B-C-C—a(A+B)-(A+B)
11: return |

» Dy, Dy: differentiation kernels, e.g.,
-1

Dx:=(-12 —-1),Dy:={ 2
-1

Note: - denotes the element/pixelwise product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

2. Edges, Corners, and Interest Points

Harris Corner Detector / Example

(a)

(b)
a) original, b) Harris corners, c) DoG interest points

()

[m]

[Sz§11, p. 21
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Computer Vision 2. Edges, Corners, and Interest Points

B
Interest Points at Different Scales (SIFT Detector) i

» Interest points also can be identified at different scales in parallel:

i(p,s) :==(Go,,, x| — Gy, % 1), selS]
where

01 >032>--->0§
where S € N is the number of scale levels

» Often scale levels are grouped by octaves:

» each octave is represented by a downsampling by a factor 2
» scales within an octave are g, := 25/%¢
(with S, the number of scale levels within an ocatve)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

B
Interest Points at Different Scales (SIFT Detector) i

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

(a)

[Szell, p. 216]
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Computer Vision 2. Edges, Corners, and Interest Points

NN
Non-Maximum Suppression “

» Often neighbors of interest points have similar high interestingness,
yielding redundant close-by interest points.

» Keep only interest points that are local maxima in their
neighborhood:

) i(p), ifi(p)>i(p)Vp € N(p
i(p) = P T HOY=HEVTRENE) ey
0, else
with neighborhood
Nk(p) ={p" € [N] x [M] | |px — pi| < K, |py — Pl < K,p' # p} rect

Nk(p) :={p" € [N] x [M] | [[p— P'l| < K.p' # p} circu

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

2. Edges, Corners, and Interest Points

Non-Maximum Suppression / Example

(c

ANMS 250, r = 24

v ) . (d) ANMS 500, r = 16
Note: ANMS = adaptive non-maximum suppression; see the booléI for c[iﬁeta

fRzell, p. 214

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression / At Different Scale

» Non-Maximum Suppression also can be extended to work on interest
points at different scale:

Nk(p,s) :=={(p',s") € [N] x [M] x [S] | |px — PLI < K, |py — P} | < K,
|s—s'| <1,p #p}

[Szell, p. 216]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

SIFT Interest Points

SIFT refines interest points by further steps:
» non-maximum suppression at different scale

» localization of interest points at sub-pixel granularity

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

3. Image Patch Descriptors

Outline

3. Image Patch Descriptors
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Computer Vision 3. Image Patch Descriptors

Image Patch Descriptors

» Which properties from a patch to extract?
» grayscale intensities, color intensities, gradient directions

» Which patches to extract?

» orientation of the patch w.r.t. the image frame
» offset of the patch w.r.t. the interest point (cells)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

3. Image Patch Descriptors
Histograms
» the most simple patch:

» a square centered on the interest point
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
> as a matrix or a vector

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
» as a matrix or a vector
> is affected by rotations
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
> as a matrix or a vector
> is affected by rotations
» by some scalar properties (mean, standard deviation)
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
» as a matrix or a vector
> is affected by rotations
» by some scalar properties (mean, standard deviation)
> represents only little information
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
> as a matrix or a vector
> is affected by rotations
» by some scalar properties (mean, standard deviation)

> represents only little information

» by its histogram
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels
» is affected by global intensity fluctuations
» gradient directions

» how to represent?
» as a matrix or a vector
» is affected by rotations
» by some scalar properties (mean, standard deviation)
> represents only little information
» by its histogram

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Intensities

» represent interest point (x, y) by its B-dimensional intensity
histogram features ¢(x, y):

d)(X,}/)b ::H(X/ay/) EN(va) ‘ I(X,ay,) € binb}|’ b= Oa---aB -1

) b b+1
binp ::[Elmam T/max[

N(xy) ={(x".y) € IN| x [M] | X' = x| < K, ]y = y| < K}

for intensities /(x, y) in range [0, fmax]-

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Smoothed Counting

» To avoid non-continuous changes if a value crosses bin boundaries,
values can be counted

» in both closest bins,
» antiproportional to their distance from the bin center

. b+ 0.5
blan = Tlmax

[1(x, ") — bincy|
Imax/ B

biny, 1= Z max(0,1 —

(x",y")eEN(x.y)

)

» sometimes called trilinear counting.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Gradient Directions

> represent interest point (x,y) by its B-dimensional gradient
directions histogram features ¢(x, y):

¢(X7y)b ::|{(X/)y/) € N(Xay) | d(Xla.yl) € binb}|7 b= 07 ) B-1

d(x,y) 'Ztanfl((DY #1)(x,¥)/(Dx * 1)(x,))

b+1
biny : [ 2, 2271'[

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Gradient Directions

> represent interest point (x,y) by its B-dimensional gradient
directions histogram features ¢(x, y):

¢(X7y)b ::|{(X/)y/) € N(Xay) | d(Xla.yl) € binb}|7 b= O) ) B-1
d(x,y) 'Ztanfl((DY #1)(x,y)/(Dx * 1)(x,y))
b+1

bing :=[=2
|nb[7rB

27[

» variant: weight gradients by their magnitude:

P(x,¥)p = > (Dx * )(x',y") + (Dy = 1)(x',y')?

(X/7yI)EN(X7y)7d(X/7y/)€binb

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

3. Image Patch Descriptors

Histograms / Gradients / Example

0

2n

angle histogram

Image gradients

[m]

[Szell, p. 21
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Block Descriptors

» Describe an interest point not just by features of the surrounding
patch,

but by the features of several neighboring patches (blocks, cells):

s(xy)= B  JKY)
(x'y)EC(x.y)
C(x,y) :={x+cAX,y +dAY | c,d € {-C,...,C}}

» Often a simple partition of a large
(2C+1)(2K +1) x (2C 4+ 1)(2K + 1) patch is used
(AX =AY =2K + 1).

» Features have dimensions (2C + 1)2B.

Note: (x1,...,xn) ® (Vi,---,¥m) == (X1, -, XN, Y1, .-.,¥YM) cOncatenation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

NN
Block Descriptors v

.l < N
AN 4 713
711
- et
LN\ ]
T— AV T ¥ > oa| o~
=5 o | o P
" o A e v —
A LK z | %
NS NP 4
Image gradients Keypoint descriptor

[Low04, p. 15]
o E E == DAl
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

NN
Align Patches by the Gradient Direction of the Interest “
Point

» Extract features from the image rotated by

» the negative gradient direction at the interest point
» around the interest point

(afterwards the gradient at the interest point (x, y) points towards
positive x-direction):

( ::_d(Xay)

;o X cosy —siny X X

v = (5 )+ (G e ) (G )-(3))

li(x,y) =1 = (x = [x)) X = (v = ly])) 1([x), L
+(x=xDA-=( =)  Ix] Ly
+ (A== Dy — Lyl (LxJ, T
+ (x = IxDly = y]) I(IxT, T

(bilinear interpolation)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

NN
SIFT descriptors “

» patches:
» extract from the scaled image the interest point has been detected on
» align patch by the gradient direction of the interest point
» 16 x 16, partitioned into 16 blocks a 4 x 4

block features:

» gradient directions
» weighted by a Gaussian of the distance to the interest point

v

v

block feature aggregation:

» smoothly counted histograms
» 8 bins

» ~ feature vector ¢ € R1%8

» normalization in 3 steps:

¢; =¢i/l14ll2, i :==min(0.2, ¢}), i =i /19" Iz

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Image Descriptors

To describe a whole image (not just a patch),
two main approaches are used:

1. Concatenate patch descriptors of equally spaced “interest points”

1.1 e.g., used in Histograms of Oriented Gradients (HoG)

[m]

=
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Computer Vision 3. Image Patch Descriptors

Image Descriptors

To describe a whole image (not just a patch),
two main approaches are used:
1. Concatenate patch descriptors of equally spaced “interest points”
1.1 e.g., used in Histograms of Oriented Gradients (HoG)

2. Bag of words descriptors:

2.1 compute interest points and their descriptors for a set of images
2.2 discretize the descriptors

» e.g., clustering in K clusters using k-means
2.3 represent each image by the K cluster frequencies of their interest
point descriptors

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

NS
Histograms of Oriented Gradients (HoG) i

/|y
/ \
|
Lt
/
P
/| -
{1
LI IRN
Figure 13.17 HOG descriptor. a) Original image. b) Gradient orientation,
quantized into nine bins from 0 to 180°. ¢) Gradient magnitude. d) Cell
descriptors are 9D orientation histograms that are computed within 6 x 6
pixel regions. e) Block descriptors are computed by concatenating 3 x 3
blocks of cell descriptors. The block descriptors are normalized. The final
HOG descriptor consists of the concatenated block descriptors.
[Pri12, p. 343

[m]
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Computer Vision

4. Interest Point Matching

Outline

4. Interest Point Matching
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Computer Vision 4. Interest Point Matching

. . . P2
Settings, Assumptions, Distances v
Two settings:

» match interest points in different scenes
» goal: detect similar objects
(object identification)
» coordinates of the points do not matter

a2 ) (32 )= o0t ) = ) o)l

a(( 7). (2 Pmaa( ) (02 )+ 50 0an) o 2)

—all (2 )= (22 )1l + Bl n) - o0l
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Computer Vision 4. Interest Point Matching

Settings, Assumptions, Distances

Two settings:
» match interest points in different scenes
» goal: detect similar objects
(object identification)
» coordinates of the points do not matter

d(( " ) ’ < ) >) = d'(¢(x1, 1), 032, y2)) = llo(x1, y1) — P(x2, y2)lI2

1 y2

» match interest points in two views of the same scene
» goal: detect corresponding points in different views of the same scene
(required for SLAM)
» coordinates of corresponding points also should be close, e.g.,

a(( 7). (2 Pmaa( ) (02 )+ 50 0an) o 2)

=l (32) = (32 ) e+ Bkt ) — sl

Y1 Yy
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Computer Vision 4. Interest Point Matching

Simple methods

To match two sets P and @ of interest points:

» match interest points by distance threshold

p~q:=d(p,q) <dmx, PEP,gEQ

» distance threshold dn.x can be estimated from known matches and
non-matches
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Computer Vision 4. Interest Point Matching

Simple methods

To match two sets P and @ of interest points:

» match interest points by distance threshold

p~q:=d(p,q) <dmx, PEP,gEQ

» distance threshold dn.x can be estimated from known matches and
non-matches

» match interest points by nearest neighbor

p~ q:& q=argmind(p,q)
qeR
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Computer Vision 4. Interest Point Matching

. . . -2
Nearest Neighbor Distance Ratio “
» match interest points by nearest neighbor distance ratio (NNDR)
p~q:<i)q=argmind(p,q) and
geR

. d(p, q) / . /
if) NNDR(p, q) == ———= < NNDRpin, ¢q := argmin d(p,q
: i d(p,q') 7cQ\{q} (p.7)

[Szell, p. 228]
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Computer Vision

4. Interest Point Matching

Comparison of Different Descriptors & Matchings
a) fixed threshold:

[m]

[Sz§11, p. 22

9]
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Computer Vision 4. Interest Point Matching

NN
Comparison of Different Descriptors & Matchings “

b) nearest neighbor:

*——= gloh #———x cross correlation
e 1 - 0 sift += = == gradient moments
=2 W L eiese pea -sift @0 complex filters
@———% shape context ——— diffarential invariants
o7l spin +-—+ steerable filters

# - ——# hes-lap glch

e T

[Sz§11, p. 229

[m]
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Computer Vision 4. Interest Point Matching

NN
Comparison of Different Descriptors & Matchings “

c) nearest neighbor distance ratio:

*=——= gloh » ® gross correlation
1] [ We—— 0 sift «= - — = gradient momenis
= 9% pea -sift g0 complex filters

¢——= shape conlext
o3l PP spin
»— - % hes-lap gloh

v 7 differential invariants
+———+ steerable filters

[Sz§11, p. 229

=]
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Computer Vision 4. Interest Point Matching

Mutual Nearest Neighbors
» match interest points if they mutually are nearest neighbors
p~q:<i)q=argmind(p,q) and
qeQ
ii) p=argmind(p,q)

peP

» also for more than two views P, P2, ..., Py
(called closed chains)

(p1,p2,- .., pv) corresponding tuple
& i) py41 =argmind(py,q), v=1,...,V—1an
qEPy 11

i) p1 = argmind(p1,q)
qePy
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Computer Vision

5. A Simple Application: Image Stitching
Qutline

5. A Simple Application: Image Stitching

[m]

=
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Computer Vision

5. A Simple Application: Image Stitching

Image Stitching

» join several images depicting overlapping parts of the same real scene
to one large image

[m]

=
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Computer Vision

Image Stitching

5. A Simple Application: Image Stitching

» join several images depicting overlapping parts of the same real scene
to one large image

» algorithm:

1.

oo~

detect interest points in all images and extract their descriptors
match interest points between every two images

form a tree linking the best matching image pairs

estimate a similarity transform between each two such images
transform all images to joint coordinates

average overlapping image regions
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching

» join several images depicting overlapping parts of the same real scene
to one large image

» algorithm:

1. detect interest points in all images and extract their descriptors
match interest points between every two images
form a tree linking the best matching image pairs
estimate a similarity transform between each two such images
transform all images to joint coordinates
average overlapping image regions

oo~

» also called panography
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Computer Vision

5. A Simple Application: Image Stitching

Image Stitching / Example

[m]

[Sz§11, p. 31
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Different Transforms

(a) translation [2 dof]

(b) affine [6 dof]

(c) perspective [8 dof] (d) 3D rotation [3+ d

[m]

[Szell, p. 42
5 = =

5]
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Example




Computer Vision 5. A Simple Application: Image Stitching

NN
Summary “

» Small intensity fluctuations can be damped by smoothing,

intensity changes can be captured by image derivatives,
both being convolutions.

» Interest points are found as maxima of an interestingness measure,

» gradient magnitude, Laplacian of Gaussian (LoG),
Different of two Gaussians (DoG)
» Harris corners:
> large eigenvalues of the Hessian
» can be approximated efficiently: det H — a(traceH)?
» SIFT:

» detected interest points at different scale
» several further tweaks

» non-maximum suppressions:
ignore large values in the vicinity of a maximum

[m] = = =
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Computer Vision 5. A Simple Application: Image Stitching

P2
Summary (2/3) i
» Interest points are characterized by local image information
(descriptors)
» Descriptors often describe several patches (blocks/cells)
» Patches are described by histograms
» Histograms usually do not count pixel intensities,
but gradient directions
» Descriptors sometimes

» align patches with the orientation of the gradient at the interest point
» weight gradient directions by their

» gradient magnitude and/or

» distance of the location to the interest point

» Common descriptors:
» SIFT descriptors , Histogram of Gradients (HeG)
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Computer Vision 5. A Simple Application: Image Stitching

Summary (3/3) YA

» Whole images can be described two ways:
» by the descriptors on a fixed grid of “interest points”
» by the cluster frequencies of descriptors of variably located interest
points
Both is useful, e.g. for image classification.

» Interest points are matched by their descriptors
» for geometric tasks: also by their positons

» To match interest points, nearest neighbors are used
» with a maximal distance threshold to avoid wrong matches
e.g. of points occluded in one view
» Nearest Neighbor Distance Ratio
» mutual nearest neighbors, closed chains in multiple views.

» Corresponding points can be used for
» image stitching
» SLAM, camera auto-calibration, ...
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Computer Vision

B
Further Readings “

» Interest points and patch descriptors: [Pril2, ch. 13], [Szell, ch. 4].
» Image stitching: [Szell, ch. 9].
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