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Computer Vision 1. Smoothing, Image Derivatives, Convolutions
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Smoothing / Blurring / Averaging
I Smoothing: Replace each pixel by the weighted average of its

surrounding patch:

Ismooth(x , y ;w) :=
∑

∆x ,∆y

w(−∆x ,−∆y)I (x + ∆x , y + ∆y)

=
∑

x ′,y ′

w(x − x ′, y − y ′)I (x ′, y ′)

I padding with 0 at the image boundaries.
I example: box kernel

w−2:2,−2:2(∆x ,∆y) :=
1

25




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




I Gaussian smoothing: smoothing with a Gaussian kernel.
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Gaussian Kernels

I Precomputed weights: (clipped) Gaussian density values

w̃(∆x ,∆y) :=

{
N (
√

∆x2 + ∆y2; 0, σ2), if |∆x | ≤ K , |∆y | ≤ K

0, else

w(∆x ,∆y) :=
w̃(∆x ,∆y)∑

∆x ′,∆y ′ w̃(∆x ,∆y)

I clipped: small support, window size K .

I example (K = 2, σ2 = 1):

w−2:2,−2:2 :=




0.003 0.013 0.022 0.013 0.003
0.013 0.060 0.098 0.060 0.013
0.022 0.098 0.162 0.098 0.022
0.013 0.060 0.098 0.060 0.013
0.003 0.013 0.022 0.013 0.003



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Note: N (x ;µ, σ2) := 1√
2πσ2

e
− (x−µ)2

2σ2 .



Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original: blurred by G (K = 5, σ = 1):
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original: blurred by G (K = 5, σ = 10):
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original: blurred by G (K = 50, σ = 1):
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original: blurred by G (K = 50, σ = 10):
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives

I Image Derivative: How does the intensity values change in x or y
direction?

IX (x , y) := I (x , y)− I (x − 1, y)

IY (x , y) := I (x , y)− I (x , y − 1)

or symmetric

IX (x , y) := 2I (x , y)− I (x − 1, y)− I (x + 1, y)

IY (x , y) := 2I (x , y)− I (x , y − 1)− (x , y − 2)
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives / Example

original (grayscale): derivative in x-direction:
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives / Example

original (grayscale): derivative in y-direction:
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions
I Smoothing, Image Derivatives and further operations such as filtering

can be represented by a
I convolution: an image where each pixel (x , y) represents the weighted

sum around (x , y) in image I weighted with w :

(w ∗ I )(x , y) :=
∑

x′,y ′

w(x − x ′, y − y ′)I (x ′, y ′)
I Examples:

Ismooth = w ∗ I
IX (x , y) := I (x , y)− I (x − 1, y) =

(
1 −1

)
∗ I

IY (x , y) := I (x , y)− I (x , y − 1) =

(
1
−1

)
∗ I

or IX (x , y) := 2I (x , y)− I (x − 1, y)− I (x + 1, y) =
(
−1 2 −1

)
∗ I

IY (x , y) := 2I (x , y)− I (x , y − 1)− (x , y + 1) =



−1
2
−1


 ∗ I
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions / Associativity

I Convolutions are associative:

I ∗ (J ∗ K ) = (I ∗ J) ∗ K

I Example:
First smooth an image with Gaussian w from slide 2,
then compute its x-derivative with

(
−1 2 −1

)
:

 just convolve with
(
−1 2 −1

)
∗ w

(
−1 2 −1

)
∗ w =




−0.007 0.002 0.017 0.002 −0.007
−0.033 0.008 0.077 0.008 −0.033
−0.054 0.077 0.128 0.077 −0.054
−0.033 0.008 0.077 0.008 −0.033
−0.007 0.002 0.017 0.002 −0.007



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Computer Vision 2. Edges, Corners, and Interest Points

Outline

1. Smoothing, Image Derivatives, Convolutions

2. Edges, Corners, and Interest Points

3. Image Patch Descriptors

4. Interest Point Matching

5. A Simple Application: Image Stitching
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Computer Vision 2. Edges, Corners, and Interest Points

Edges, Corners, and Interest Points

I good candidates for points that are easy to recognize and match in
two images are

I points on edges
I corners

i.e., points with sudden intensity changes.

I two stage approach: given an image I ∈ RN×M ,

1. compute an interestingness measure i ∈ RN×M for points,
2. select a useful set of points p1, . . . , pK ∈ [N]× [M]

I with high interestingness measure
I not too close to each other.

I many names: corners, interest points, keypoints, salient points, . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: [N] := {1, . . . ,N}.



Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude (Canny Edge Detector)

I Simply use the magnitude of the gradient as interestingness
measure:

i(x , y) =
√

(DX ∗ I )(x , y)2 + (DY ∗ I )(x , y)2

I DX ,DY : differentiation kernels, e.g.,

DX :=
(
−1 2 −1

)
, DY :=



−1
2
−1



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Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude / Example

original (grayscale): gradient magnitude:
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Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude / Example

original (grayscale): overlay with 500 interest points:
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Computer Vision 2. Edges, Corners, and Interest Points

Laplacian of Gaussian and Difference of Gaussian
Further simple interestingness measures:

I Laplacian of Gaussian (LoG):

i(x , y) = (((DX ∗ DX + DY ∗ DY ) ∗ G ) ∗ I )(x , y)

I uses second order information

I Difference of two Gaussians (DoG):

i(x , y) = ((Gσ1 − Gσ2) ∗ I )(x , y), σ1 6= σ2

I uses variations at different scales
I often interpreted as limit of Laplacian of Gaussians

((DX ∗ DX + DY ∗ DY ) ∗ Gσ) ∗ I ≈ σ

∆σ
((Gσ+∆σ − Gσ−∆σ) ∗ I )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

I Represent a corner by its patch surrounding it,
represent such a patch by a weight function

w : [N]× [M]→ R,
i.e.,

w(x , y) :=

{
1, if |x − x0| < 3 and |y − y0| < 3

0, else

for a rectangular patch of size 5 centered around (x0, y0).

I A point is easy to identify, if its minimum in the autocorrelation
surface is pronounced:

E (∆x ,∆y ;w) :=
∑

x ,y

w(x , y)(I (x + ∆x , y + ∆y)− I (x , y))2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector / Autocorrelation Surface

4.1. Points 209

(a)

(b) (c) (d)

Figure 4.5: Three different auto-correlation surfaces EAC(∆u) shown as both grayscale images
and surface plots. (Each grid point in figures b–d is one value of ∆u.) The original image (a)
is marked with three red crosses to denote where these auto-correlation surfaces were computed.
Patch (b) is from the flower bed (good unique minimum), patch (c) is from the roof edge (one-
dimensional aperture problem), and patch (d) is from the cloud (no good peak).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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[Sze11, p. 187]Note: left to right: flower bed, roof edge, cloud.



Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

E (∆x ,∆y ;w) :=
∑

x ,y

w(x , y)(I (x + ∆x , y + ∆y)− I (x , y))2

with Hessian at minimum:

H(0, 0;w) ≈ 2
∑

x ,y

w(x , y)∇I |(x ,y)∇I |T(x ,y), for
∂2I

∂2(x , y)
:= 0

= 2w ∗
(

(IX )2 IX IY
IX IY (IY )2

)
,

IX (x , y) := I (x + 1, y)− I (x , y) ≈ ∂I

∂x
(x , y)

IY (x , y) := I (x , y + 1)− I (x , y) ≈ ∂I

∂y
(x , y)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: I ∗ J(x , y) :=
∑

x′,y′ I (x − x ′, y − y ′)J(x ′, y ′) convolution of two images.



Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

use SVD to assess steepness

H = U

(
σ1 0
0 σ2

)
UT , σ1 ≥ σ2 ≥ 0,UUT = I

and define interestingness measure:

iShi-Tomasi(x , y) := σ2

iHarris(x , y) := σ1σ2 − α(σ1 + σ2)2 = detH − α trace(H)2, α := 0.06

iTriggs(x , y) := σ2 − ασ1, α := 0.05

iBrown(x , y) := σ1σ2/(σ1 + σ2) = detH/trace(H)

I the larger σ1:2, the steeper the autocorrelation surface E .

I Harris and Brown avoid computing σ1, σ2 explicitly
(which requires computing a square root).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector / Algorithm
1: procedure interestpoints-harris(I ∈ RN×M ;w ∈ R−K :K×−L:L, α ∈ R)
2: IX := DX ∗ I
3: IY := DY ∗ I
4: I 2

X := IX · IX
5: I 2

Y := IY · IY
6: IX IY := IX · IY
7: A := w ∗ I 2

X . compute H(x , y) =

(
A(x , y) C (x , y)
C (x , y) B(x , y)

)

8: B := w ∗ I 2
Y

9: C := w ∗ IX IY
10: i := A · B − C · C − α(A + B) · (A + B)
11: return i

I DX ,DY : differentiation kernels, e.g.,

DX :=
(
−1 2 −1

)
,DY :=



−1
2
−1


.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: · denotes the element/pixelwise product.



Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector / Example

4.1. Points 213

(a) (b) (c)

Figure 4.8: Sample image (a) and two different interest operator responses: (b) Harris; (c) DoG.
The circle sizes and colors indicate the scale at which each interest point was detected. Notice how
the two detectors tend to respond at complementary locations.

The steps in the basic auto-correlation-based keypoint detector are summarized in Algorithm 4.1.
Figure 4.8 shows the resulting interest operator responses for the classic Harris detector as well as
the DoG detector discussed below.

Adaptive non-maximal suppression (ANNS). While most feature detectors simply look for
local maxima in the interest function, this can lead to an uneven distribution of feature points
across the image, e.g., points will be denser in regions of higher contrast. To mitigate this problem,
Brown et al. (2005) only detect features that are both local maxima and whose response value is
significantly (10%) greater than than of all of its neighbors within a radius r (Figure 4.9c–d). They
devise an efficient way to associate suppression radii with all local maxima by first sorting them
by their response strength, and then creating a second list sorted by decreasing suppression radius
(see (Brown et al. 2005) for details). A qualitative comparison of selecting the top n features vs.
ANMS is shown in Figure 4.9.

Measuring repeatability. Given the large number of feature detectors that have been developed
in computer vision, how can we decide which ones to use? Schmid et al. (2000) were the first to
propose measuring the repeatability of feature detectors, which they define as the frequency with
which keypoints detected in one image are found within ε (say ε = 1.5) pixels of the corresponding
location in a transformed image. In their paper, they transform their planar images by applying
rotations, scale changes, illumination changes, viewpoint changes, and adding noise. They also
measure the information content available at each detected feature point, which they define as the
entropy of a set of rotationally invariant local grayscale descriptors. Among the techniques they
survey, they find that the improved (Gaussian derivative) version of the Harris operator with σd = 1

(scale of the derivative Gaussian) and σi = 2 (scale of the integration Gaussian) works best.

a) original, b) Harris corners, c) DoG interest points

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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[Sze11, p. 213]



Computer Vision 2. Edges, Corners, and Interest Points

Interest Points at Different Scales (SIFT Detector)

I Interest points also can be identified at different scales in parallel:

i(p, s) :=(Gσs+1 ∗ I − Gσs ∗ I ), s ∈ [S ]

where

σ1 > σ2 > · · · > σS

where S ∈ N is the number of scale levels

I Often scale levels are grouped by octaves:
I each octave is represented by a downsampling by a factor 2
I scales within an octave are σs := 2s/Soσ

(with So the number of scale levels within an ocatve)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Interest Points at Different Scales (SIFT Detector)
216 Computer Vision: Algorithms and Applications (February 27, 2010 draft)

 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

√
2.

An efficient approach to construction of D(x, y, σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima of D(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11: Scale-space feature detection using a sub-octave Difference of Gaussian pyramid
(Lowe 2004). (a) Adjacent levels of a sub-octave Gaussian pyramid are subtracted to produce
Difference of Gaussian images. (b) Extrema (maxima and minima) in the resulting 3D volume are
detected by comparing a pixel to its 26 neighbors.

and then rejecting keypoints for which

Tr(H)2

Det(H)
> 10. (4.13)

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced by
such techniques and can therefore be used in conjunction with these other approaches.) In order
to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and Schmid (2004)
evaluate the Laplacian of a Gaussian function at each detected Harris point (in a multi-scale pyra-
mid) and keep only those points for which the Laplacian is extremal (larger or smaller than both
its coarser and finer-level values). An optional iterative refinement for both scale and position is
also proposed and evaluated. Additional examples of scale invariant region detectors can be found
in (Mikolajczyk et al. 2005, Tuytelaars and Mikolajczyk 2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algorithms
need to deal with (at least) in-plane image rotation. One way to deal with this problem is to design

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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[Sze11, p. 216]



Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression

I Often neighbors of interest points have similar high interestingness,
yielding redundant close-by interest points.

I Keep only interest points that are local maxima in their
neighborhood:

i ′(p) :=

{
i(p), if i(p) > i(p′) ∀p′ ∈ N(p)

0, else
, p ∈ [N]× [M]

with neighborhood

NK (p) :={p′ ∈ [N]× [M] | |px − p′x | ≤ K , |py − p′y | ≤ K , p′ 6= p} rectangular

NK (p) :={p′ ∈ [N]× [M] | ||p − p′|| ≤ K , p′ 6= p} circular

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression / Example
214 Computer Vision: Algorithms and Applications (February 27, 2010 draft)

(a) Strongest 250 (b) Strongest 500

(c) ANMS 250, r = 24 (d) ANMS 500, r = 16

Figure 4.9: Adaptive non-maximal suppression (ANMS) (Brown et al. 2005). The two upper
images show the strongest 250 and 500 interest points, while the lower two images show the interest
points selected with adaptive non-maximal suppression, along with the corresponding suppression
radius r. Note how the latter features have a much more uniform spatial distribution across the
image.

Scale invariance

In many situations, detecting features at the finest stable scale possible may not be appropriate. For
example, when matching images with little high frequency (e.g., clouds), fine-scale features may
not exist.

One solution to the problem is to extract features at a variety of scales, e.g., by performing
the same operations at multiple resolutions in a pyramid and then matching features at the same
level. This kind of approach is suitable when the images being matched do not undergo large
scale changes, e.g., when matching successive aerial images taken from an airplane, or stitching
panoramas taken with a fixed focal length camera. Figure 4.10 shows the output of one such
approach, the multi-scale oriented patch detector of Brown et al. (2005), for which responses at 5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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[Sze11, p. 214]Note: ANMS = adaptive non-maximum suppression; see the book for details.



Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression / At Different Scale

I Non-Maximum Suppression also can be extended to work on interest
points at different scale:

NK (p, s) :={(p′, s ′) ∈ [N]× [M]× [S ] | |px − p′x | ≤ K , |py − p′y | ≤ K ,

|s − s ′| ≤ 1, p′ 6= p}

216 Computer Vision: Algorithms and Applications (February 27, 2010 draft)

 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

√
2.

An efficient approach to construction of D(x, y, σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima of D(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11: Scale-space feature detection using a sub-octave Difference of Gaussian pyramid
(Lowe 2004). (a) Adjacent levels of a sub-octave Gaussian pyramid are subtracted to produce
Difference of Gaussian images. (b) Extrema (maxima and minima) in the resulting 3D volume are
detected by comparing a pixel to its 26 neighbors.

and then rejecting keypoints for which

Tr(H)2

Det(H)
> 10. (4.13)

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced by
such techniques and can therefore be used in conjunction with these other approaches.) In order
to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and Schmid (2004)
evaluate the Laplacian of a Gaussian function at each detected Harris point (in a multi-scale pyra-
mid) and keep only those points for which the Laplacian is extremal (larger or smaller than both
its coarser and finer-level values). An optional iterative refinement for both scale and position is
also proposed and evaluated. Additional examples of scale invariant region detectors can be found
in (Mikolajczyk et al. 2005, Tuytelaars and Mikolajczyk 2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algorithms
need to deal with (at least) in-plane image rotation. One way to deal with this problem is to design
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Computer Vision 2. Edges, Corners, and Interest Points

SIFT Interest Points

SIFT refines interest points by further steps:

I non-maximum suppression at different scale

I localization of interest points at sub-pixel granularity

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 47



Computer Vision 3. Image Patch Descriptors

Outline

1. Smoothing, Image Derivatives, Convolutions

2. Edges, Corners, and Interest Points

3. Image Patch Descriptors

4. Interest Point Matching

5. A Simple Application: Image Stitching
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Computer Vision 3. Image Patch Descriptors

Image Patch Descriptors

I Which properties from a patch to extract?
I grayscale intensities, color intensities, gradient directions

I Which patches to extract?
I orientation of the patch w.r.t. the image frame
I offset of the patch w.r.t. the interest point (cells)
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Computer Vision 3. Image Patch Descriptors

Histograms

I the most simple patch:
I a square centered on the interest point

I properties:
I most simple: grayscale intensities of the pixels

I is affected by global intensity fluctuations

I gradient directions

I how to represent?
I as a matrix or a vector

I is affected by rotations

I by some scalar properties (mean, standard deviation)

I represents only little information

I by its histogram
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Computer Vision 3. Image Patch Descriptors

Histograms / Intensities

I represent interest point (x , y) by its B-dimensional intensity
histogram features φ(x , y):

φ(x , y)b :=|{(x ′, y ′) ∈ N (x , y) | I (x ′, y ′) ∈ binb}|, b = 0, . . . ,B − 1

binb :=[
b

B
Imax,

b + 1

B
Imax[

N (x , y) :={(x ′, y ′) ∈ [N]× [M] | |x ′ − x | < K , |y ′ − y | < K}

for intensities I (x , y) in range [0, Imax].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 47



Computer Vision 3. Image Patch Descriptors

Histograms / Smoothed Counting

I To avoid non-continuous changes if a value crosses bin boundaries,
values can be counted

I in both closest bins,
I antiproportional to their distance from the bin center

bincb :=
b + 0.5

B
Imax

binb :=
∑

(x ′,y ′)∈N (x ,y)

max(0, 1− |I (x
′, y ′)− bincb|
Imax/B

)

I sometimes called trilinear counting.
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Computer Vision 3. Image Patch Descriptors

Histograms / Gradient Directions

I represent interest point (x , y) by its B-dimensional gradient
directions histogram features φ(x , y):

φ(x , y)b :=|{(x ′, y ′) ∈ N (x , y) | d(x ′, y ′) ∈ binb}|, b = 0, . . . ,B − 1

d(x , y) := tan−1((DY ∗ I )(x , y)/(DX ∗ I )(x , y))

binb :=[
b

B
2π,

b + 1

B
2π[

I variant: weight gradients by their magnitude:

φ(x , y)b :=
∑

(x ′,y ′)∈N (x ,y),d(x ′,y ′)∈binb

(DX ∗ I )(x ′, y ′)2 + (DY ∗ I )(x ′, y ′)2
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Computer Vision 3. Image Patch Descriptors

Histograms / Gradients / Example

4.1. Points 217

Figure 4.12: A dominant orientation estimate can be computed by creating a histogram of all the
gradient orientations (weighted by their magnitudes and/or after thresholding out small gradients),
and then finding the significant peaks in this distribution (Lowe 2004).

descriptors that are rotationally invariant (Schmid and Mohr 1997), but such descriptors have poor
discriminability, i.e. they map different looking patches to the same descriptor.

A better method is to estimate a dominant orientation at each detected keypoint. Once the
local orientation and scale of a keypoint have been estimated, a scaled and oriented patch around
the detected point can be extracted and used to form a feature descriptor (Figures 4.10 and 4.17).

The simplest possible orientation estimate is the average gradient within a region around the
keypoint. If a Gaussian weighting function is used (Brown et al. 2005), this average gradient is
equivalent to a first order steerable filter §3.2.1, i.e., it can be computed using an image convolution
with the horizontal and vertical derivatives of Gaussian filter (Freeman and Adelson 1991). In order
to make this estimate more reliable, it is usually preferable to use a larger aggregation window
(Gaussian kernel size) than the detection window size (Brown et al. 2005). The orientations of the
square boxes shown in Figure 4.10 were computed using this technique.

Sometimes, however, the averaged (signed) gradient in a region can be small and therefore
an unreliable indicator of orientation. A more reliable technique is to look at the histogram of
orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram of edge
orientations weighted by both gradient magnitude and Gaussian distance to the center, finds all
peaks within 80% of the global maximum, and then computes a more accurate orientation estimate
using a 3-bin parabolic fit (Figure 4.12).
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Computer Vision 3. Image Patch Descriptors

Block Descriptors

I Describe an interest point not just by features of the surrounding
patch,
but by the features of several neighboring patches (blocks, cells):

φ(x , y) :=
⊕

(x ′,y ′)∈C(x ,y)

φ′(x ′, y ′)

C(x , y) :={x + c∆X , y + d∆Y | c , d ∈ {−C , . . . ,C}}

I Often a simple partition of a large
(2C + 1)(2K + 1)× (2C + 1)(2K + 1) patch is used
(∆X = ∆Y = 2K + 1).

I Features have dimensions (2C + 1)2B.
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Computer Vision 3. Image Patch Descriptors

Block Descriptors

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computingthe gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computedfrom an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function withσ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although,of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of1 − d for each dimension, whered is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15
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Computer Vision 3. Image Patch Descriptors

Align Patches by the Gradient Direction of the Interest
Point
I Extract features from the image rotated by

I the negative gradient direction at the interest point
I around the interest point

(afterwards the gradient at the interest point (x , y) points towards
positive x-direction):

ψ :=− d(x , y)

Rψ(x ′, y ′) :=

(
x
y

)
+

(
cosψ − sinψ
sinψ cosψ

)((
x ′

y ′

)
−
(

x
y

))

Ibi(x , y) :=(1− (x − bxc))(1− (y − byc)) I (bxc, byc)
+ (x − bxc)(1− (y − byc)) I (dxe, byc)
+ (1− (x − bxc))(y − byc) I (bxc, dye)
+ (x − bxc)(y − byc) I (dxe, dye)
(bilinear interpolation)
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Computer Vision 3. Image Patch Descriptors

SIFT descriptors

I patches:
I extract from the scaled image the interest point has been detected on
I align patch by the gradient direction of the interest point
I 16× 16, partitioned into 16 blocks a 4× 4

I block features:
I gradient directions
I weighted by a Gaussian of the distance to the interest point

I block feature aggregation:
I smoothly counted histograms
I 8 bins

I  feature vector φ ∈ R128

I normalization in 3 steps:

φ′i :=φi/||φ||2, φ′′i := min(0.2, φ′i ), φ′′′i :=φ′′i /||φ′′||2
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Computer Vision 3. Image Patch Descriptors

Image Descriptors

To describe a whole image (not just a patch),
two main approaches are used:

1. Concatenate patch descriptors of equally spaced “interest points”

1.1 e.g., used in Histograms of Oriented Gradients (HoG)

2. Bag of words descriptors:

2.1 compute interest points and their descriptors for a set of images
2.2 discretize the descriptors

I e.g., clustering in K clusters using k-means

2.3 represent each image by the K cluster frequencies of their interest
point descriptors
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Computer Vision 3. Image Patch Descriptors

Histograms of Oriented Gradients (HoG)
13.3 Descriptors 343

a) b) c) d) e)

Figure 13.17 HOG descriptor. a) Original image. b) Gradient orientation,
quantized into nine bins from 0 to 180o. c) Gradient magnitude. d) Cell
descriptors are 9D orientation histograms that are computed within 6 × 6
pixel regions. e) Block descriptors are computed by concatenating 3 × 3
blocks of cell descriptors. The block descriptors are normalized. The final
HOG descriptor consists of the concatenated block descriptors.

The goal is to characterize the image region in a way that is partially invariant to
intensity and contrast changes and small geometric deformations.

To compute the SIFT descriptor, we first compute gradient orientation and
amplitude maps (equation 13.13) as for the Canny edge detector over a 16 × 16
pixel region around the interest point. The resulting orientation is quantized into
eight bins spread over the range 0 − 360o. Then the 16 × 16 detector region is
divided into a regular grid of non-overlapping 4 × 4 cells. Within each of these
cells an eight dimensional histogram of the image orientations is computed. Each
contribution to the histogram is weighted by the associated gradient amplitude and
by distance so that positions further from the interest point contribute less. The
4 × 4 = 16 histograms are concatenated to make a single 128 × 1 vector, which is
then normalized.

The descriptor is invariant to constant intensity changes as it is based on gra-
dients. The final normalization provides some invariance to contrast. Small defor-
mations do not affect the descriptor too much as it pools information within each
cell. However, by keeping the information from each cell separate, some spatial
information is retained.

13.3.3 Histogram of oriented gradients

The Histogram of Oriented Gradients (HOG) descriptor attempts to construct a
more detailed characterization of the spatial structure with a small image win-
dow. It is a useful preprocessing step for algorithms that detect objects with
quasi-regular structure such as pedestrians. Like the SIFT descriptor, the HOG

Copyright c©2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.
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Computer Vision 4. Interest Point Matching

Outline

1. Smoothing, Image Derivatives, Convolutions

2. Edges, Corners, and Interest Points

3. Image Patch Descriptors

4. Interest Point Matching

5. A Simple Application: Image Stitching
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Computer Vision 4. Interest Point Matching

Settings, Assumptions, Distances
Two settings:
I match interest points in different scenes

I goal: detect similar objects
(object identification)

I coordinates of the points do not matter

d(

(
x1

y1

)
,

(
x2

y2

)
) := d ′(φ(x1, y1), φ(x2, y2)) = ||φ(x1, y1)− φ(x2, y2)||2

I match interest points in two views of the same scene
I goal: detect corresponding points in different views of the same scene

(required for SLAM)
I coordinates of corresponding points also should be close, e.g.,

d(

(
x1

y1

)
,

(
x2

y2

)
) :=αd ′(

(
x1

y1

)
,

(
x2

y2

)
) + βd ′(φ(x1, y1), φ(x2, y2))

=α||
(

x1

y1

)
−
(

x2

y2

)
||2 + β||φ(x1, y1)− φ(x2, y2)||2
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Computer Vision 4. Interest Point Matching

Simple methods

To match two sets P and Q of interest points:

I match interest points by distance threshold

p ∼ q :⇔ d(p, q) < dmax, p ∈ P, q ∈ Q

I distance threshold dmax can be estimated from known matches and
non-matches

I match interest points by nearest neighbor

p ∼ q :⇔ q = arg min
q∈Q

d(p, q)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 47



Computer Vision 4. Interest Point Matching

Simple methods

To match two sets P and Q of interest points:

I match interest points by distance threshold

p ∼ q :⇔ d(p, q) < dmax, p ∈ P, q ∈ Q

I distance threshold dmax can be estimated from known matches and
non-matches

I match interest points by nearest neighbor

p ∼ q :⇔ q = arg min
q∈Q

d(p, q)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 47



Computer Vision 4. Interest Point Matching

Nearest Neighbor Distance Ratio

I match interest points by nearest neighbor distance ratio (NNDR)

p ∼ q :⇔ i) q = arg min
q∈Q

d(p, q) and

ii) NNDR(p, q) :=
d(p, q)

d(p, q′)
< NNDRmin, q′ := arg min

q′∈Q\{q}
d(p, q′)

228 Computer Vision: Algorithms and Applications (February 27, 2010 draft)
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Figure 4.24: Fixed threshold, nearest neighbor, and nearest neighbor distance ratio matching. At
a fixed distance threshold (dashed circles), descriptor DA fails to match DB, and DD incorrectly
matches DC and DE . If we pick the nearest neighbor, DA correctly matches DB, but DD incor-
rectly matches DC . Using nearest neighbor distance ratio (NNDR) matching, the small NNDR
d1/d2 correctly matches DA with DB, and the large NNDR d′1/d

′
2 correctly rejects matches for

DD.

from an image that is known not to match the target (e.g., a different object in the database) (Brown
and Lowe 2002, Lowe 2004). We can define this nearest neighbor distance ratio (Mikolajczyk and
Schmid 2005) as

NNDR =
d1

d2

=
‖DA −DB|
‖DA −DC |

, (4.18)

where d1 and d2 are the nearest and second nearest neighbor distances, DA is the target descriptor,
and DB and DC are its closest two neighbors (Figure 4.24).

The effects of using these three different matching strategies for the feature descriptors eval-
uated by Mikolajczyk and Schmid (2005) are shown in Figure 4.25. As you can see, the nearest
neighbor and NNDR strategies produce improved ROC curves.

Efficient matching

Once we have decided on a matching strategy, we still need to efficiently search for potential can-
didates. The simplest way to find all corresponding feature points is to compare all features against
all other features in each pair of potentially matching images. Unfortunately, this is quadratic in
the number of extracted features, which makes it impractical for most applications.

A better approach is to devise an indexing structure, such as a multi-dimensional search tree or
a hash table, to rapidly search for features near a given feature. Such indexing structures can either
be built for each image independently (which is useful if we want to only consider certain potential
matches, e.g., searching for a particular object), or globally for all the images in a given database,
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Computer Vision 4. Interest Point Matching

Comparison of Different Descriptors & Matchings
a) fixed threshold:

4.1. Points 229

4.1.1 Matching Strategies

The definition of a match depends on the matching strategy.
We compare three of them. In the case of threshold-based
matching, two regions are matched if the distance between
their descriptors is below a threshold. A descriptor can have
several matches and severalof them maybecorrect. In thecase
of nearest neighbor-based matching, two regionsA andB are
matched if the descriptorDB is thenearest neighbor toDA and
if the distance between them is below a threshold. With this
approach, a descriptor has only one match. The third
matching strategy is similar to nearest neighbor matching,
except that the thresholding is applied to the distance ratio
between the first and the second nearest neighbor. Thus, the
regions are matched if jjDA �DBjj=jjDA �DCjj < t, where
DB is the first andDC is the second nearest neighbor toDA. All
matching strategies compare each descriptor of the reference
image with each descriptor of the transformed image.

Figs. 4a, 4b, and 4c show the results for the three matching
strategies. The descriptors are computed on Hessian-Affine
regions. The ranking of the descriptors is similar for all
matching strategies. There are some small changes between
nearest neighbor matching (NN) and matching based on the
nearest neighbor distance ratio (NNDR). In Fig. 4c, which

shows the results for NNDR, SIFT is significantly better than
PCA-SIFT, whereas GLOH obtains a score similar to SIFT.
Cross correlation and complex filters obtain slightly better
scores than for threshold based and nearest neighbor
matching. Moments perform as well as cross correlation
and PCA-SIFT in the NNDR matching (cf., Fig. 4c).

The precision is higher for the nearest neighbor-based
matching (cf., Figs. 4b and 4c) than for the threshold-based
approach (cf., Fig. 4a). This is because the nearest neighbor
is mostly correct, although the distance between similar
descriptors varies significantly due to image transforma-
tions. Nearest neighbor matching selects only the best
match below the threshold and rejects all others; therefore,
there are less false matches and the precision is high.
Matching based on nearest neighbor distance ratio is similar
but additionally penalizes the descriptors which have many
similar matches, i.e., the distance to the nearest neighbor is
comparable to the distances to other descriptors. This
further improves the precision. The nearest neighbor-based
techniques can be used in the context of matching; however,
they are difficult to apply when descriptors are searched in
a large database. The distance between descriptors is then
the main similarity criterion. The results for distance
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Fig. 4. Comparison of different matching strategies. Descriptors computed on Hessian-Affine regions for images from Fig. 3e. (a) Threshold-based

matching. (b) Nearest neighbor matching. (c) Nearest neighbor distance ratio matching. hes-lap gloh is the GLOH descriptor computed for

Hessian-Laplace regions (cf., Section 4.1.4).

Figure 4.25: Performance of the feature descriptors evaluated by Mikolajczyk and Schmid (2005),
shown for three different matching strategies: (a) fixed threshold; (b) nearest neighbor; (c) nearest
neighbor distance ratio (NNDR). Note how the ordering of the algorithms does not change that
much, but the overall performance varies significantly between the different matching strategies.
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Computer Vision 4. Interest Point Matching

Comparison of Different Descriptors & Matchings
b) nearest neighbor:

4.1. Points 229

4.1.1 Matching Strategies

The definition of a match depends on the matching strategy.
We compare three of them. In the case of threshold-based
matching, two regions are matched if the distance between
their descriptors is below a threshold. A descriptor can have
several matches and severalof them maybecorrect. In thecase
of nearest neighbor-based matching, two regionsA andB are
matched if the descriptorDB is thenearest neighbor toDA and
if the distance between them is below a threshold. With this
approach, a descriptor has only one match. The third
matching strategy is similar to nearest neighbor matching,
except that the thresholding is applied to the distance ratio
between the first and the second nearest neighbor. Thus, the
regions are matched if jjDA �DBjj=jjDA �DCjj < t, where
DB is the first andDC is the second nearest neighbor toDA. All
matching strategies compare each descriptor of the reference
image with each descriptor of the transformed image.

Figs. 4a, 4b, and 4c show the results for the three matching
strategies. The descriptors are computed on Hessian-Affine
regions. The ranking of the descriptors is similar for all
matching strategies. There are some small changes between
nearest neighbor matching (NN) and matching based on the
nearest neighbor distance ratio (NNDR). In Fig. 4c, which

shows the results for NNDR, SIFT is significantly better than
PCA-SIFT, whereas GLOH obtains a score similar to SIFT.
Cross correlation and complex filters obtain slightly better
scores than for threshold based and nearest neighbor
matching. Moments perform as well as cross correlation
and PCA-SIFT in the NNDR matching (cf., Fig. 4c).

The precision is higher for the nearest neighbor-based
matching (cf., Figs. 4b and 4c) than for the threshold-based
approach (cf., Fig. 4a). This is because the nearest neighbor
is mostly correct, although the distance between similar
descriptors varies significantly due to image transforma-
tions. Nearest neighbor matching selects only the best
match below the threshold and rejects all others; therefore,
there are less false matches and the precision is high.
Matching based on nearest neighbor distance ratio is similar
but additionally penalizes the descriptors which have many
similar matches, i.e., the distance to the nearest neighbor is
comparable to the distances to other descriptors. This
further improves the precision. The nearest neighbor-based
techniques can be used in the context of matching; however,
they are difficult to apply when descriptors are searched in
a large database. The distance between descriptors is then
the main similarity criterion. The results for distance
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Fig. 4. Comparison of different matching strategies. Descriptors computed on Hessian-Affine regions for images from Fig. 3e. (a) Threshold-based

matching. (b) Nearest neighbor matching. (c) Nearest neighbor distance ratio matching. hes-lap gloh is the GLOH descriptor computed for

Hessian-Laplace regions (cf., Section 4.1.4).

Figure 4.25: Performance of the feature descriptors evaluated by Mikolajczyk and Schmid (2005),
shown for three different matching strategies: (a) fixed threshold; (b) nearest neighbor; (c) nearest
neighbor distance ratio (NNDR). Note how the ordering of the algorithms does not change that
much, but the overall performance varies significantly between the different matching strategies.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 47

[Sze11, p. 229]



Computer Vision 4. Interest Point Matching

Comparison of Different Descriptors & Matchings
c) nearest neighbor distance ratio:

4.1. Points 229

4.1.1 Matching Strategies

The definition of a match depends on the matching strategy.
We compare three of them. In the case of threshold-based
matching, two regions are matched if the distance between
their descriptors is below a threshold. A descriptor can have
severalmatchesand severalof them maybecorrect. In thecase
of nearest neighbor-based matching, two regionsA andB are
matched if the descriptorDB is thenearest neighbor toDA and
if the distance between them is below a threshold. With this
approach, a descriptor has only one match. The third
matching strategy is similar to nearest neighbor matching,
except that the thresholding is applied to the distance ratio
between the first and the second nearest neighbor. Thus, the
regions are matched if jjDA �DBjj=jjDA �DCjj < t, where
DB is the first andDC is the second nearest neighbor toDA. All
matching strategies compare each descriptor of the reference
image with each descriptor of the transformed image.

Figs. 4a, 4b, and 4c show the results for the three matching
strategies. The descriptors are computed on Hessian-Affine
regions. The ranking of the descriptors is similar for all
matching strategies. There are some small changes between
nearest neighbor matching (NN) and matching based on the
nearest neighbor distance ratio (NNDR). In Fig. 4c, which

shows the results for NNDR, SIFT is significantly better than
PCA-SIFT, whereas GLOH obtains a score similar to SIFT.
Cross correlation and complex filters obtain slightly better
scores than for threshold based and nearest neighbor
matching. Moments perform as well as cross correlation
and PCA-SIFT in the NNDR matching (cf., Fig. 4c).

The precision is higher for the nearest neighbor-based
matching (cf., Figs. 4b and 4c) than for the threshold-based
approach (cf., Fig. 4a). This is because the nearest neighbor
is mostly correct, although the distance between similar
descriptors varies significantly due to image transforma-
tions. Nearest neighbor matching selects only the best
match below the threshold and rejects all others; therefore,
there are less false matches and the precision is high.
Matching based on nearest neighbor distance ratio is similar
but additionally penalizes the descriptors which have many
similar matches, i.e., the distance to the nearest neighbor is
comparable to the distances to other descriptors. This
further improves the precision. The nearest neighbor-based
techniques can be used in the context of matching; however,
they are difficult to apply when descriptors are searched in
a large database. The distance between descriptors is then
the main similarity criterion. The results for distance
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Fig. 4. Comparison of different matching strategies. Descriptors computed on Hessian-Affine regions for images from Fig. 3e. (a) Threshold-based

matching. (b) Nearest neighbor matching. (c) Nearest neighbor distance ratio matching. hes-lap gloh is the GLOH descriptor computed for

Hessian-Laplace regions (cf., Section 4.1.4).

Figure 4.25: Performance of the feature descriptors evaluated by Mikolajczyk and Schmid (2005),
shown for three different matching strategies: (a) fixed threshold; (b) nearest neighbor; (c) nearest
neighbor distance ratio (NNDR). Note how the ordering of the algorithms does not change that
much, but the overall performance varies significantly between the different matching strategies.
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Computer Vision 4. Interest Point Matching

Mutual Nearest Neighbors

I match interest points if they mutually are nearest neighbors

p ∼ q :⇔ i) q = arg min
q∈Q

d(p, q) and

ii) p = arg min
p∈P

d(p, q)

I also for more than two views P1,P2, . . . ,PV

(called closed chains)

(p1, p2, . . . , pV ) corresponding tuple

:⇔ i) pv+1 = arg min
q∈Pv+1

d(pv , q), v = 1, . . . ,V − 1 and

ii) p1 = arg min
q∈PV

d(p1, q)
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Computer Vision 5. A Simple Application: Image Stitching

Outline

1. Smoothing, Image Derivatives, Convolutions

2. Edges, Corners, and Interest Points

3. Image Patch Descriptors

4. Interest Point Matching

5. A Simple Application: Image Stitching
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching

I join several images depicting overlapping parts of the same real scene
to one large image

I algorithm:

1. detect interest points in all images and extract their descriptors
2. match interest points between every two images
3. form a tree linking the best matching image pairs
4. estimate a similarity transform between each two such images
5. transform all images to joint coordinates
6. average overlapping image regions

I also called panography
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Example
312 Computer Vision: Algorithms and Applications (February 27, 2010 draft)

Figure 6.3: A simple panograph consisting of 3 images automatically aligned with a translational
model and then averaged together.

6.1.2 Application: Panography

One of the simplest (and most fun) applications of image alignment is a special form of image
stitching called panography. In a panograph, images are translated and optionally rotated and
scaled before being blended with simple averaging (Figure 6.3). This process mimics the photo-
graphic collages created by artist David Hockney, although his compositions use an opaque overlay
model, being created out of regular photographs.

In most of the examples seen on the Web, the images are aligned by hand for best artistic
effect.3 However, it is also possible to use feature matching and alignment techniques to perform
the registration automatically (Nomura et al. 2007, Zelnik-Manor and Perona 2007).

Consider a simple translational model. We want all the corresponding features in different
images to line up as best as possible. Let tj be the location of the jth image coordinate frame in
the global composite frame, and xij be the location of the ith matched feature in the jth image. In
order to align the images, we wish to minimized the least squares error

EPLS =
∑

ij

‖(tj + xij)− xi‖2, (6.12)

where xi is the consensus (average) position of feature i in the global coordinate frame. (An
alternative approach is to register each pair of overlapping images separately, and to then compute
a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the frame
and point locations tj and xi). To fix this, either pick one frame as being at the origin, or add an
additional constraint to make the average frame offsets be 0.

3 http://www.flickr.com/groups/panography/
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Different Transforms

9.1. Motion models 425

(a) translation [2 dof] (b) affine [6 dof] (c) perspective [8 dof] (d) 3D rotation [3+ dof]

Figure 9.2: Two-dimensional motion models and how they can be used for image stitching.

overlapping photographic prints. It is also the kind of technique favored by David Hockney to
create the collages that he calls joiners (Zelnik-Manor and Perona 2007, Nomura et al. 2007).
Creating such collages, which show visible seams and inconsistencies that add to the artistic effect,
is popular on Web sites such as Flickr, where they more commonly go under the name panography
§6.1.2. Translation and rotation are also usually adequate motion models to compensate for small
camera motions in applications such as photo and video stabilization and merging (Exercise 6.1
and §8.2.1).

In §6.1.3, we saw how the mapping between two cameras viewing a common plane can be
described using a 3× 3 homography (2.71). In particular, this matrix arises when mapping a pixel
in one image to a 3D point and then back onto a second image,

x̃1 ∼ P̃ 1P̃
−1

0 x̃0 = M 10x̃0. (9.1)

When the last row of the P 0 matrix is replaced with a plane equation n̂0 · p + c0 and points are
assumed to lie on this plane, i.e., their disparity is d0 = 0, we can ignore the last column of M 10

and also its last row, since we do not care about the final z-buffer depth. The resulting homography
matrix H̃10 (the upper left 3× 3 sub-matrix ofM 10) describes the mapping between pixels in the
two images,

x̃1 ∼ H̃10x̃0. (9.2)

This observation formed the basis of some of the earliest automated image stitching algorithms
(Mann and Picard 1994, Szeliski 1994, Szeliski 1996). Because reliable feature matching tech-
niques had not yet been developed, these algorithms used direct pixel value matching, i.e., para-
metric motion estimation, as described in §8.2 and (6.19–6.20), to perform the image alignment.

More recent stitching algorithms first extract features and then match them up, often using
robust techniques such as RANSAC §6.1.4 to compute a good set of inliers. The final computa-
tion of the homography (9.2), i.e., the solution of the least squares fitting problem given pairs of
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Example
330 Computer Vision: Algorithms and Applications (February 27, 2010 draft)

Figure 6.11: Four images taken with a hand-held camera registered using a 3D rotation motion
model (Szeliski and Shum 1997). Notice how the homographies, rather than being arbitrary, have
a well defined keystone shape whose width increases away from the origin, which is due to the
interaction of the rotation matrix and the finite focal length in the calibration matrix.
[ Note: This same figure is used in Figure 9.4. Do I need to remove this redundancy? ]

(2.59), where we assume that the pixels are square and the optical center lies at the center of the
image, i.e., Kk = diag(fk, fk, 1). (We number the pixel coordinates accordingly, i.e., place pixel
(x, y) = (0, 0) at the center of the image.) We can then rewrite (6.51) as

R10 ∼K−1
1 H̃10K0 ∼




h00 h01 f−1
0 h02

h10 h11 f−1
0 h12

f1h20 f1h21 f−1
0 f1h22


 , (6.52)

where the hij are the elements of H̃10.
Using the orthonormality properties of the rotation matrix R10 and the fact that the right hand

side of (6.52) is known only up to a scale, we obtain

h2
00 + h2

01 + f−2
0 h2

02 = h2
10 + h2

11 + f−2
0 h2

12 (6.53)

and
h00h10 + h01h11 + f−2

0 h02h12 = 0. (6.54)

From this, we can compute estimates for f0 of

f 2
0 =

h2
12 − h2

02

h2
00 + h2

01 − h2
10 − h2

11

if h2
00 + h2

01 6= h2
10 + h2

11 (6.55)
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Computer Vision 5. A Simple Application: Image Stitching

Summary

I Small intensity fluctuations can be damped by smoothing,
intensity changes can be captured by image derivatives,
both being convolutions.

I Interest points are found as maxima of an interestingness measure,
I gradient magnitude, Laplacian of Gaussian (LoG),

Different of two Gaussians (DoG)
I Harris corners:

I large eigenvalues of the Hessian
I can be approximated efficiently: detH − α(traceH)2

I SIFT:
I detected interest points at different scale
I several further tweaks

I non-maximum suppressions:
ignore large values in the vicinity of a maximum
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Computer Vision 5. A Simple Application: Image Stitching

Summary (2/3)
I Interest points are characterized by local image information

(descriptors)

I Descriptors often describe several patches (blocks/cells)

I Patches are described by histograms

I Histograms usually do not count pixel intensities,
but gradient directions

I Descriptors sometimes
I align patches with the orientation of the gradient at the interest point
I weight gradient directions by their

I gradient magnitude and/or
I distance of the location to the interest point

I Common descriptors:
I SIFT descriptors , Histogram of Gradients (HoG)
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Computer Vision 5. A Simple Application: Image Stitching

Summary (3/3)
I Whole images can be described two ways:

I by the descriptors on a fixed grid of “interest points”
I by the cluster frequencies of descriptors of variably located interest

points

Both is useful, e.g. for image classification.

I Interest points are matched by their descriptors
I for geometric tasks: also by their positons

I To match interest points, nearest neighbors are used
I with a maximal distance threshold to avoid wrong matches

e.g. of points occluded in one view
I Nearest Neighbor Distance Ratio
I mutual nearest neighbors, closed chains in multiple views.

I Corresponding points can be used for
I image stitching
I SLAM, camera auto-calibration, . . .
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Further Readings

I Interest points and patch descriptors: [Pri12, ch. 13], [Sze11, ch. 4].

I Image stitching: [Sze11, ch. 9].
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