Outline

1. Overview of SLAM

2. Camera Models

3. Two Cameras and the Fundamental Matrix

4. Triangulation
5. Putting it all Together

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision

1. Overview of SLAM

Outline

1. Overview of SLAM

2. Camera Models
3. Two Cameras and the Fundamental Matrix
4. Triangulation
5. Putting it all Together

Different Approaches to SLAM:

- Kalman filters
- Particle filters / Monte Carlo methods
- Scan matching of range data
- Set-membership techniques
- Bundle adjustment

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

1. Overview of SLAM

2. Camera Models
3. Two Cameras and the Fundamental Matrix

4. Triangulation

5. Putting it all Together

Types of Cameras

Camera: Mapping from 3D world to 2D image.
finite camera:

- finite camera center
infinite camera:
- camera center at infinity
- generalization of parallel projection

Pinhole Camera

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \mapsto\binom{f x / z}{f y / z}
$$

Pinhole Camera / Homogeneous Coordinates

inhomogeneous coordinates:

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \mapsto\binom{f x / z}{f y / z}
$$

homogeneous coordinates:

$$
\begin{aligned}
\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right) & \mapsto\left(\begin{array}{c}
f x \\
f y \\
z
\end{array}\right)=\left(\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right) \\
P & =\operatorname{diag}(f, f, 1)[I \mid 0]
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision
2. Camera Models

Pinhole Camera / Principal Point Offset

$$
\left.\begin{array}{rl}
\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) & \mapsto\left(\begin{array}{c}
f x / z+p_{x} \\
f x / z+p_{y} \\
\\
\hline
\end{array}\right)=\left(\begin{array}{c}
f x+z p_{x} \\
f y+z p_{y} \\
z
\end{array}\right)=\left(\begin{array}{ccc}
f & & p_{x} \\
& 0 \\
& f & p_{y} \\
0 \\
& & 1
\end{array}\right)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) .
$$

K is called camera calibration matrix.

Pinhole Camera / Camera Rotation and Translation

c^{\prime} : coordinates of camera center in world coordinates
R : rotation of world coordinate frame to camera coordinate frame (around c^{\prime})

$$
p=R\left(p^{\prime}-c^{\prime}\right)
$$

$$
\begin{aligned}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right) & \mapsto\left(\begin{array}{ll}
R & 0 \\
0 & 1
\end{array}\right)\left(\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)-\left(\begin{array}{c}
x_{c^{\prime}} \\
y_{c^{\prime}} \\
z_{c^{\prime}} \\
1
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
R & -R c^{\prime} \\
1
\end{array}\right)\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right) \\
P & =K R\left[I \mid-c^{\prime}\right]
\end{aligned}
$$

without explicit camera center:

$$
P=K[R \mid t], \quad t:=-R c^{\prime}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 2. Camera Models

CCD Cameras

CCD camera:

- pixels may be no square - different width α_{x} and height α_{y}

$$
K=\left(\begin{array}{ccc}
\alpha_{x} & & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right)
$$

- finite projective camera:

$$
K=\left(\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right)
$$

- s skew
- usually $s=0$, but rare cases (e.g., photo from photo)

Finite Projective Camera

- skew s:

$$
\begin{aligned}
K & =\left(\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right) \\
P & =K[R \mid t]
\end{aligned}
$$

- usually $s=0$, but in rare cases (e.g., photo from photo)
- left 3×3 matrix is non-singular $\left(\operatorname{det} P_{1: 3,1: 3} \neq 0\right)$
- 11 parameters:
- 5 for $K: \alpha_{x}, \alpha_{y}, x_{0}, y_{0}, s$
- 3 for R
- 3 for t
- any 3×4 matrix P with $\operatorname{det} P_{1: 3,1: 3} \neq 0$ is such a finite projective camera

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

1. Overview of SLAM

2. Camera Models
3. Two Cameras and the Fundamental Matrix

4. Triangulation

5. Putting it all Together

Two Views: Epipolar Geometry

- two 2D views on a 3D scene
- 3D coordinates X in the 3D scene
- 2D coordinates x in the first view

$$
x=P X
$$

- 2 D coordinates x^{\prime} in the second view

$$
x^{\prime}=P^{\prime} X
$$

- epipolar geometry: describe relation between the two views
- fundamental matrix F :

$$
x^{\prime T} F x=0 \Longleftrightarrow \exists X: x=P X, x^{\prime}=P^{\prime} X
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 3. Two Cameras and the Fundamental Matrix

Epipolar Geometry

a

b
baseline: epipole:
line joining the two camera centers image of the camera center of the other view (intersection of baseline and image plane)
epipolar planes: planes containing the baseline epipolar lines: lines in the image plane through the [elyrapote 240]

Epipolar Geometry / Example

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3. Two Cameras and the Fundamental Matrix

Fundamental Matrix

- two views can be described by a map

$$
F: x \mapsto \ell^{\prime}
$$

that maps

- points x in the first view to
- the epipolar line ℓ^{\prime} of their possible correspondences in the second view.

Fundamental Matrix (2/2)

- construct ℓ :

1. possible 3D source points of $x=P X$:

$$
X=P^{+} x+\lambda C, \quad \lambda \in \mathbb{R} \quad(\text { as } P C=0)
$$

2. their 2 D images in second view:

$$
\begin{array}{ll}
& x^{\prime}=P^{\prime}\left(P^{+} x+\lambda C\right)=P^{\prime} P^{+} x+\lambda P^{\prime} C \\
\text { esp. } & x^{\prime}:=P^{\prime} P^{+} x, \quad \text { for } \lambda:=0 \\
& e^{\prime}=P^{\prime} C, \quad \text { for } \lambda:=\infty \text { epipole of second view }
\end{array}
$$

3. ℓ^{\prime} is the line through x^{\prime} and e^{\prime} :

$$
F(X)=e^{\prime} \times x^{\prime}=e^{\prime} \times P^{\prime} P^{+} x
$$

- F is linear: fundamental matrix $F=\left[e^{\prime}\right]_{\times} P^{\prime} P^{+}$

Note: P^{+}pseudoinverse, C camera center 1st view, $[a]_{\times}:=\left(\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ \text { Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), }\end{array}\right)$.

From Two Cameras to the Fundamental Matrix

$$
\begin{aligned}
P & =K[I \mid 0] \\
P^{\prime} & =K^{\prime}[R \mid t] \\
\rightsquigarrow \quad P^{+} & =\binom{K^{-1}}{0^{T}}, \quad C=\binom{0}{1}
\end{aligned}
$$

1. general case:

$$
F=\left[P^{\prime} C\right]_{\times} P^{\prime} P^{+}=\left[K^{\prime} t\right]_{\times} K^{\prime} R K^{-1}=\left[e^{\prime}\right]_{\times} K^{\prime} R K^{-1}
$$

2. pure translation $\left(R=I, K^{\prime}=K\right)$:

$$
F=\left[K^{\prime} t\right]_{\times} K^{\prime} R K^{-1}=[K t]_{\times}=\left[e^{\prime}\right]_{\times}
$$

3. pure translation parallel to x-axis $\left(e^{\prime}=(1,0,0)^{T}\right)$:

$$
F=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

From the Fundamental Matrix to Two Cameras

- The fundamental matrix does determine two cameras only up to a 3D projectivity.

$$
\begin{aligned}
& \tilde{P}=P H, \quad \tilde{P}^{\prime}=P^{\prime} H, \quad \tilde{C}=H^{-1} C \\
\rightsquigarrow & \tilde{P}^{+}=H^{-1} P^{+} \\
\tilde{F}= & {\left[\tilde{P}^{\prime} \tilde{C}\right]_{\times} \tilde{P}^{\prime} \tilde{P}^{+} } \\
& =\left[P^{\prime} H H^{-1} C\right]_{\times} P^{\prime} H H^{-1} P^{+}=\left[P^{\prime} C\right]_{\times} P^{\prime} P^{+}=F
\end{aligned}
$$

- Cameras can be chosen as

$$
\begin{gathered}
P=[I \mid 0], \quad P^{\prime}=\left[\left[e^{\prime}\right]_{\times} F \mid e^{\prime}\right] \\
\rightsquigarrow F\left(P, P^{\prime}\right)=\left[e^{\prime}\right]_{\times} K^{\prime} R K^{-1}=\left[e^{\prime}\right]_{\times}\left[e^{\prime}\right]_{\times} F \propto F
\end{gathered}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Fundamental Matrix / Properties

- F maps points x of the 1 st view to the epipolar line $\ell^{\prime}:=F_{x}$ of their possibly corresponding points in the 2 nd view.
- For corresponding points x, x^{\prime} :

$$
x^{\prime T} F x=0
$$

- e^{\prime} is the left nullvector of $F: e^{\prime T} F=0$ (as e^{\prime} is on all lines $F x$) e is the right nullvector of $F: F e=0$
- F has 7 degrees of freedom.
- 8 ratios of a 3×3 matrix
- -1 for $\operatorname{det} F=0$

Computing the Fundamental Matrix

Different methods:

1. Linear Method I: The 8-Point Algorithm
2. Linear Method II: The 7-Point Algorithm
3. Iterative Minimization of the Reconstruction Error

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Linear System of Equations

- every pair $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ of corresponding points fullfills

$$
\begin{aligned}
\left(x^{\prime}, y^{\prime}\right) F(x, y)^{T} & =0 \\
& \rightsquigarrow\left(\begin{array}{lllllllll}
x^{\prime} x & x^{\prime} y & x^{\prime} & y^{\prime} x & y^{\prime} y & y^{\prime} & x & y & 1
\end{array}\right) \operatorname{vect}(F)=0
\end{aligned}
$$

- for N such pairs $\left(\left(x_{1}, y_{1}\right),\left(x_{1}^{\prime}, y_{1}^{\prime}\right)\right), \ldots,\left(\left(x_{N}, y_{N}\right),\left(x_{N}^{\prime}, y_{N}^{\prime}\right)\right)$:

$$
\left(\begin{array}{ccccccccc}
x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\
x_{2}^{\prime} x_{2} & x_{2}^{\prime} y_{2} & x_{2}^{\prime} & y_{2}^{\prime} x_{2} & y_{2}^{\prime} y_{2} & y_{2}^{\prime} & x_{2} & y_{2} & 1 \\
\vdots & & & & & & & & \\
x_{N}^{\prime} x_{N} & x_{N}^{\prime} y_{N} & x_{N}^{\prime} & y_{N}^{\prime} x_{N} & y_{N}^{\prime} y_{N} & y_{N}^{\prime} & x_{N} & y_{N} & 1
\end{array}\right) \operatorname{vect}(F)=0
$$

- linear system of equations: $A f=0$ for $f=\operatorname{vect}(F)$

Note: vect $(A):=\left(a_{1,1}, a_{1,2}, \ldots, a_{1, M}, a_{2,1}, \ldots, a_{2}, M, \ldots, a_{N, 1}, \ldots, a_{N . M}\right)^{T}$ vectorization.

8-Point Algorithm

1. Solve linear system of equations for 8 corresponding points.
2. Ensure $\operatorname{det} F=0$:

$$
\begin{aligned}
& F=U S U^{T}, \quad S=\operatorname{diag}\left(s_{1}, \ldots, s_{9}\right), s_{1} \geq s_{2} \geq \cdots \geq s_{9} \text { SVD } \\
& F^{\prime}:=U S^{\prime} U^{T}, \quad S^{\prime}:=\operatorname{diag}\left(s_{1}, \ldots, s_{8}, 0\right)
\end{aligned}
$$

Computer Vision 3. Two Cameras and the Fundamental Matrix

7-Point Algorithm

1. Solve linear system of equations for 7 corresponding points, yielding $\lambda F_{1}+(1-\lambda) F_{2}$
2. Ensure $\operatorname{det} F=0$:

$$
\operatorname{det}\left(\lambda F_{1}+(1-\lambda) F_{2}\right) \stackrel{!}{=} 0
$$

Find root λ^{*} of this polynomial of degree 3 , then

$$
F:=\lambda^{*} F_{1}+\left(1-\lambda^{*}\right) F_{2}
$$

- all linear methods should be used with normalization!
- both, esp. 7-point algorithm often used in RANSAC wrappers.

Iterative Minimization of the Reconstruction Error

$$
\operatorname{minimize} \sum_{n=1}^{N} d\left(x_{n}, \hat{x}_{n}\right)^{2}+d\left(x_{n}^{\prime}, \hat{x}_{n}^{\prime}\right)^{2}
$$

- $\hat{x}_{n}=P X_{n}=X_{n}$, for $P=[I \mid 0]$
- $\hat{x}_{n}^{\prime}=P^{\prime} X_{n}$, for general P^{\prime}
- $3 N+12$ parameters (for general P^{\prime})
- as in chapter 3 :
- initialize with linear method: 8-point algorithm
- initial estimate of X_{n} by triangulation (see next section)
- iteratively minimize using Levenberg-Marquardt

Outline

1. Overview of SLAM

2. Camera Models
3. Two Cameras and the Fundamental Matrix
4. Triangulation
5. Putting it all Together

Triangulation

Different methods:

1. Linear triangulation
2. Iterative Minimization of the Reconstruction Error
3. Minimizing Reconstruction Error via Root Finding

Linear Triangulation

- Each 3D point X satisfies:

$$
x \stackrel{!}{=} \hat{x}:=P X, \quad x^{\prime} \stackrel{!}{=} \hat{x}^{\prime}:=P^{\prime} X
$$

yielding

$$
\left(\begin{array}{l}
x_{3} P_{1,1}^{T}-x^{\top} P_{3,1} \\
x_{3} P_{2,1}^{T}-x^{\top} P_{3,2} \\
x_{3} P_{3, .}^{T}-x^{T} P_{3,3}
\end{array}\right) x=0
$$

of which 2 rows are independent, and the same for x^{\prime} and P^{\prime}.
Solve $A X=0$ for

$$
A\left(x, P, x^{\prime}, P^{\prime}\right):=\left(\begin{array}{c}
x_{3} P_{1,1}^{T}-x^{\top} P_{3,1} \\
x_{3} P_{2,-}^{T}-x^{\top} P_{3,2} \\
x_{3}^{\prime} P_{1, .}^{\prime}-x^{\prime} T P_{3,1}^{\prime} \\
x_{3}^{\prime} P_{2, .}^{\prime,}-x^{\prime} T P_{3,2}^{\prime}
\end{array}\right)
$$

Linear Triangulation (2/2)

- Exact solutions to

$$
A X=0, \quad X \neq 0
$$

for a 4×4 matrix A may not exist if noise is involved.

- Solve approximately via SVD:

$$
\begin{aligned}
& A=U S V^{T}, \quad S=\operatorname{diag}\left(s_{1}, s_{2}, s_{3}, s_{4}\right), s_{1} \geq s_{2} \geq s_{3} \geq s_{4}, \mathrm{SVD} \\
& X \approx V_{\cdot, 4}
\end{aligned}
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Iterative Minimization of the Reconstruction Error

- solve N separate problems, one for each point $X_{n}(n=1, \ldots, N)$:

$$
\begin{aligned}
& \operatorname{minimize} d\left(x_{n}, \hat{x}_{n}\right)^{2}+d\left(x_{n}^{\prime}, \hat{x}_{n}^{\prime}\right)^{2} \\
& \qquad \begin{aligned}
& \text { with } \hat{x}_{n}:=P X_{n}=X_{n}, \quad n=1, \ldots, N, \quad \text { for } P:=[I \mid 0] \\
& \quad \hat{x}_{n}^{\prime}:=P^{\prime} X_{n}, \quad n=1, \ldots, N, \\
& \text { over } X_{n}
\end{aligned}
\end{aligned}
$$

- 3 parameters each (P^{\prime} is fixed)
- as in chapter 3:
- iteratively minimize using Levenberg-Marquardt

Outline

1. Overview of SLAM

2. Camera Models
3. Two Cameras and the Fundamental Matrix
4. Triangulation
5. Putting it all Together

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Monocular Visual SLAM

Calibrated camera K with known start pose $Q^{(0)}$
Do forever (time t):

1. Get image $I^{(t)}$ from the camera
2. Find interesting points in $I^{(t)}$ and their descriptors
3. Match interesting points of two consecutive images $I^{(t-1)}, I^{(t)}$ based on their descriptors to get corresponding points
4. Minimize reconstruction loss for all corresponding points in the two images to get new camera pose $Q^{(t)}$ and 3D points $X^{(t)}$

- localization:
$Q^{(t)}$ describes the trajectory of the camera (and thus the vehicle)

- mapping:

$X^{(t)}$ describes the scene
Many detail problems still to discuss. Many variants exist.

Stereo Visual SLAM

Calibrated cameras K, K^{\prime} with known start poses $Q^{(0)}, Q^{\prime(0)}$
Do forever (time t):

1. Get two images $I^{(t)}, I^{\prime(t)}$ from the two cameras
2. Find interesting points in both $I^{(t)}, I^{\prime(t)}$ and their descriptors
3. Match interesting points of all four images $I^{(t-1)}, I^{\prime(t-1)}, I^{(t)}, I^{\prime(t)}$ based on their descriptors to get corresponding points
4. Minimize reconstruction loss for all corresponding points in the four images to get new camera poses $Q^{(t)}, Q^{\prime(t)}$ and 3D points $X^{(t)}$

- localization:
$Q^{(t)}, Q^{\prime(t)}$ describes the trajectory of the cameras (and thus the vehicle)

- mapping:

$X^{(t)}$ describes the scene
Many detail problems still to discuss. Many variants exist.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Computer Vision 5. Putting it all Together

Example / Projective Reconstruction

Note: Additional knowledge: none.
a

[HZ04, p. 267]

Example / Affine Reconstruction

Note: Additional knowledge: three sets of parallel lines.
[HZ04, p. 270]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Putting it all Together

Example / Metric Reconstruction

a

b
Note: Additional knowledge: additionally lines in different sets are orthogo[HZRO4, p. 274]

Outlook

- methods applicable in two settings:
- two cameras, single shot: stereo vision
- one camera, sequence of shots: structure from motion, monocular visual SLAM
- structure from motion:
- do not compute everything from scratch for every frame
- tracking (computer vision terminology)
- online updates (machine learning terminology)
- methods to combine stereo vision and structure from motion
- two cameras, sequence of shots
- the very same methods, just for 4 views instead of 2.
- some new concepts (e.g., trifocal tensor for 3 views)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Putting it all Together

Summary (1/4)

- There exist several methods for simultaneous localization and mapping (SLAM)
- We discussed: bundle adjustment: minimize a loss between
- in two views observed and
- from two unknown 2D-projections of unknown 3D points reconstructed corresponding points.
- Cameras are described by linear projective maps $P: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}(=$ 4×3 matrices) usually structured as $P=K[R \mid t]$:
- camera calibration matrix K (5 intrinsic parameters)
- camera pose $[R \mid t]$ (6 external parameters)
- finite vs infinte (esp. affine) cameras; pinhole camera

Summary (2/4)

- The geometric relation between two 2D views on a 3D scene can be represented by the 3×3 fundamental matrix F :
- maps points in 1st view to epipolar line of all possible corresponding points in 2nd view.
- $x^{\prime} F x=0$ for corresponding points x, x^{\prime}
- For two cameras P, P^{\prime} their fundamental matrix can be computed as:

$$
F=\left[e^{\prime}\right]_{\times} P^{\prime} P^{+}, \quad \text { with epipole in } 2 \text { nd view } e^{\prime}
$$

- For a fundamental matrix F, several pairs of cameras are possible. Two canonical cameras P, P^{\prime} can be computed as:

$$
P=[I \mid 0], \quad P^{\prime}=\left[\left[e^{\prime}\right]_{\times} F \mid e^{\prime}\right]
$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Computer Vision 5. Putting it all Together

Summary (3/4)

- To compute the fundamental matrix from point correspondences several methods exist.
- Problem has 7 degrees of freedom (8 ratios; singular)
- Linear methods
- 8-point algorithm: solve a linear system of equations / SVD
- 7-point algorithm: solve a linear system of equations / SVD
- enforce singularity
- Iterative minimization of the reconstruction error
- To estimate 3D point positions from their observed images under known 2D projection(s): triangulation. Several methods exist:
- Linear methods
- individually for each 3D point
- solve a 4×4 linear system of equations / SVD
- Iterative minimization of the reconstruction error
- Minimizing Reconstruction Error via Root Finding

Summary (4/4)

- Metric reconstruction:
- With just multiple 2D views of a scene, it can only be reconstructed up to a projectivity.
- requires either background knowledge or
- camera calibration: estimate the intrinsic parameters of the camera calibration matrix from a known scene.

Further Readings

- Reconstruction ambiguity: [HZ04, ch. 10].
- Computing the Fundamental Matrix: [HZO4, ch. 11].
- Triangulation: [HZO4, ch. 12].
- Camera models: [HZO4, ch. 6].
- The Fundamental Matrix: [HZ04, ch. 9].

References

Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.
Cambridge university press, 2004.

