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Computer Vision 1. Overview of SLAM

Different Approaches to SLAM:

I Kalman filters

I Particle filters / Monte Carlo methods

I Scan matching of range data

I Set-membership techniques

I Bundle adjustment
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Computer Vision 2. Camera Models

Types of Cameras

Camera: Mapping from 3D world to 2D image.

finite camera:

I finite camera center

infinite camera:

I camera center at infinity
I generalization of parallel projection
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Computer Vision 2. Camera Models

Pinhole Camera

154 6 Camera Models
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Fig. 6.1. Pinhole camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

computes that the point (X, Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X, Y, Z)T �→ (fX/Z, fY/Z)T (6.1)

describes the central projection mapping from world to image coordinates. This is a
mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is called the principal point. The plane through the camera
centre parallel to the image plane is called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as




X

Y

Z

1


 �→




fX

fY

Z


 =



f 0

f 0
1 0







X

Y

Z

1


. (6.2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3× 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X, Y, Z, 1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3×4 homogeneous camera projection matrix. Then (6.2) is written
compactly as

x = PX

which defines the camera matrix for the pinhole model of central projection as

P = diag(f, f, 1) [I | 0].




x
y
z


 7→

(
fx/z
fy/z

)
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Computer Vision 2. Camera Models

Pinhole Camera / Homogeneous Coordinates

inhomogeneous coordinates:


x
y
z


 7→

(
fx/z
fy/z

)

homogeneous coordinates:


x
y
z
1


 7→




fx
fy
z
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f 0
f 0

1 0







x
y
z
1




P = diag(f , f , 1)[I | 0]
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Computer Vision 2. Camera Models

Pinhole Camera / Principal Point Offset
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z
1


 7→




fx/z + px
fx/z + py

1


 =




fx + zpx
fy + zpy

z


 =




f px 0
f py 0

1 0
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P =




f px
f py

1




︸ ︷︷ ︸
=:K

[I | 0]

K is called camera calibration matrix.
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Computer Vision 2. Camera Models

Pinhole Camera / Camera Rotation and Translation
c ′: coordinates of camera center in world coordinates
R: rotation of world coordinate frame to camera coordinate frame

(around c ′)
p = R(p′ − c ′)




x ′

y ′

z ′

1


 7→

(
R 0
0 1

)
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y ′

z ′

1


−




xc ′
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1







=

(
R −Rc ′

1

)



x ′

y ′

z ′

1




P = KR[I | −c ′]
without explicit camera center:

P = K [R | t], t := −Rc ′
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Computer Vision 2. Camera Models

CCD Cameras

CCD camera:

I pixels may be no square – different width αx and height αy

K =




αx x0

αy y0

1




I finite projective camera:

K =




αx s x0

αy y0

1




I s skew
I usually s = 0, but rare cases (e.g., photo from photo)
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Computer Vision 2. Camera Models

Finite Projective Camera

I skew s:

K =




αx s x0

αy y0

1




P = K [R | t]

I usually s = 0, but in rare cases (e.g., photo from photo)

I left 3× 3 matrix is non-singular ( detP1:3,1:3 6= 0 )
I 11 parameters:

I 5 for K : αx , αy , x0, y0, s
I 3 for R
I 3 for t

I any 3× 4 matrix P with detP1:3,1:3 6= 0 is such a finite projective
camera
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Two Views: Epipolar Geometry

I two 2D views on a 3D scene
I 3D coordinates X in the 3D scene
I 2D coordinates x in the first view

x = PX

I 2D coordinates x ′ in the second view

x ′ = P ′X

I epipolar geometry: describe relation between the two views

I fundamental matrix F :

x ′TFx = 0⇐⇒ ∃X : x = PX , x ′ = P ′X
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Epipolar Geometry
240 9 Epipolar Geometry and the Fundamental Matrix
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Fig. 9.1. Point correspondence geometry. (a) The two cameras are indicated by their centres C and
C′ and image planes. The camera centres, 3-space point X, and its images x and x′ lie in a common
plane π. (b) An image point x back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line l′ in the second view. The 3-space point X which projects to x must
lie on this ray, so the image of X in the second view must lie on l′.
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Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipoles e
and e′. Any plane π containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar lines l and l′. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.

Supposing now that we know only x, we may ask how the corresponding point x′ is
constrained. The plane π is determined by the baseline and the ray defined by x. From
above we know that the ray corresponding to the (unknown) point x′ lies in π, hence
the point x′ lies on the line of intersection l′ of π with the second image plane. This line
l′ is the image in the second view of the ray back-projected from x. It is the epipolar
line corresponding to x. In terms of a stereo correspondence algorithm the benefit is
that the search for the point corresponding to x need not cover the entire image plane
but can be restricted to the line l′.

The geometric entities involved in epipolar geometry are illustrated in figure 9.2.
The terminology is

• The epipole is the point of intersection of the line joining the camera centres (the
baseline) with the image plane. Equivalently, the epipole is the image in one view

baseline: line joining the two camera centers
epipole: image of the camera center of the other view

(intersection of baseline and image plane)
epipolar planes: planes containing the baseline
epipolar lines: lines in the image plane through the epipole
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Epipolar Geometry / Example
9.2 The fundamental matrix F 241

e /e

a

b c

Fig. 9.3. Converging cameras. (a) Epipolar geometry for converging cameras. (b) and (c) A pair of
images with superimposed corresponding points and their epipolar lines (in white). The motion between
the views is a translation and rotation. In each image, the direction of the other camera may be inferred
from the intersection of the pencil of epipolar lines. In this case, both epipoles lie outside of the visible
image.

of the camera centre of the other view. It is also the vanishing point of the baseline
(translation) direction.

• An epipolar plane is a plane containing the baseline. There is a one-parameter
family (a pencil) of epipolar planes.

• An epipolar line is the intersection of an epipolar plane with the image plane. All
epipolar lines intersect at the epipole. An epipolar plane intersects the left and right
image planes in epipolar lines, and defines the correspondence between the lines.

Examples of epipolar geometry are given in figure 9.3 and figure 9.4. The epipolar
geometry of these image pairs, and indeed all the examples of this chapter, is computed
directly from the images as described in section 11.6(p290).

9.2 The fundamental matrix F

The fundamental matrix is the algebraic representation of epipolar geometry. In the
following we derive the fundamental matrix from the mapping between a point and its
epipolar line, and then specify the properties of the matrix.

Given a pair of images, it was seen in figure 9.1 that to each point x in one image,
there exists a corresponding epipolar line l′ in the other image. Any point x′ in the
second image matching the point x must lie on the epipolar line l′. The epipolar line
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[HZ04, p. 241]

Computer Vision 3. Two Cameras and the Fundamental Matrix

Fundamental Matrix

I two views can be described by a map

F : x 7→ `′

that maps
I points x in the first view to
I the epipolar line `′ of their possible correspondences in the second view.
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Fundamental Matrix (2/2)
I construct `:

1. possible 3D source points of x = PX :

X = P+x + λC , λ ∈ R (as PC = 0)

2. their 2D images in second view:

x ′ = P ′(P+x + λC ) = P ′P+x + λP ′C

esp. x ′ := P ′P+x , for λ := 0

e′ = P ′C , for λ :=∞ epipole of second view

3. `′ is the line through x ′ and e′:

F (X ) = e′ × x ′ = e′ × P ′P+x

I F is linear: fundamental matrix F = [e ′]×P ′P+

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: P+ pseudoinverse, C camera center 1st view, [a]× :=




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

Computer Vision 3. Two Cameras and the Fundamental Matrix

From Two Cameras to the Fundamental Matrix

P = K [I | 0]

P ′ = K ′[R | t]

 P+ =

(
K−1

0T

)
, C =

(
0
1

)

1. general case:

F =[P ′C ]×P ′P+ = [K ′t]×K ′RK−1 = [e ′]×K ′RK−1

2. pure translation (R = I ,K ′ = K ):

F =[K ′t]×K ′RK−1 = [Kt]× = [e ′]×

3. pure translation parallel to x-axis (e ′ = (1, 0, 0)T ):

F =




0 0 0
0 0 −1
0 1 0
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Computer Vision 3. Two Cameras and the Fundamental Matrix

From the Fundamental Matrix to Two Cameras

I The fundamental matrix does determine two cameras only up to a 3D
projectivity.

P̃ = PH, P̃ ′ = P ′H, C̃ = H−1C

 P̃+ = H−1P+

F̃ =[P̃ ′C̃ ]×P̃ ′P̃+

=[P ′HH−1C ]×P ′HH−1P+ = [P ′C ]×P ′P+ = F

I Cameras can be chosen as

P = [I | 0], P ′ = [[e ′]×F | e ′]

 F (P,P ′) = [e ′]×K ′RK−1 = [e ′]×[e ′]×F ∝ F
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15 / 35

Computer Vision 3. Two Cameras and the Fundamental Matrix

Fundamental Matrix / Properties

I F maps points x of the 1st view to the epipolar line `′ := Fx of their
possibly corresponding points in the 2nd view.

I For corresponding points x , x ′:

x ′TFx = 0

I e ′ is the left nullvector of F : e ′TF = 0 (as e ′ is on all lines Fx)
e is the right nullvector of F : Fe = 0

I F has 7 degrees of freedom.
I 8 ratios of a 3× 3 matrix
I -1 for detF = 0
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Computing the Fundamental Matrix

Different methods:

1. Linear Method I: The 8-Point Algorithm

2. Linear Method II: The 7-Point Algorithm

3. Iterative Minimization of the Reconstruction Error

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Linear System of Equations

I every pair ((x , y), (x ′, y ′)) of corresponding points fullfills

(x ′, y ′)F (x , y)T = 0

 
(
x ′x x ′y x ′ y ′x y ′y y ′ x y 1

)
vect(F ) = 0

I for N such pairs ((x1, y1), (x ′1, y
′
1)), . . . , ((xN , yN), (x ′N , y

′
N)):




x ′1x1 x ′1y1 x ′1 y ′1x1 y ′1y1 y ′1 x1 y1 1
x ′2x2 x ′2y2 x ′2 y ′2x2 y ′2y2 y ′2 x2 y2 1

...
x ′NxN x ′NyN x ′N y ′NxN y ′NyN y ′N xN yN 1


 vect(F ) = 0

I linear system of equations: Af = 0 for f = vect(F )
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Note: vect(A) := (a1,1, a1,2, . . . , a1,M , a2,1, . . . , a2,M , . . . , aN,1, . . . , aN.M)T vectorization.



Computer Vision 3. Two Cameras and the Fundamental Matrix

8-Point Algorithm
1. Solve linear system of equations for 8 corresponding points.
2. Ensure detF = 0:

F = USUT , S = diag(s1, . . . , s9), s1 ≥ s2 ≥ · · · ≥ s9 SVD

F ′ := US ′UT , S ′ := diag(s1, . . . , s8, 0)
280 11 Computation of the Fundamental Matrix F

a b

Fig. 11.1. Epipolar lines. (a) the effect of a non-singular fundamental matrix. Epipolar lines computed
as l′ = Fx for varying x do not meet in a common epipole. (b) the effect of enforcing singularity using
the SVD method described here.

This is a homogeneous set of equations, and f can only be determined up to scale. For
a solution to exist, matrix A must have rank at most 8, and if the rank is exactly 8, then
the solution is unique (up to scale), and can be found by linear methods – the solution
is the generator of the right null-space of A.

If the data is not exact, because of noise in the point coordinates, then the rank of
A may be greater than 8 (in fact equal to 9, since A has 9 columns). In this case, one
finds a least-squares solution. Apart from the specific form of the equations (compare
(11.3) with (4.3–p89)) the problem is essentially the same as the estimation problem
considered in section 4.1.1(p90). Refer to the algorithm 4.1(p91). The least-squares
solution for f is the singular vector corresponding to the smallest singular value of
A, that is, the last column of V in the SVD A = UDVT. The solution vector f found
in this way minimizes ‖Af‖ subject to the condition ‖f‖ = 1. The algorithm just
described is the essence of a method called the 8-point algorithm for computation of
the fundamental matrix.

11.1.1 The singularity constraint

An important property of the fundamental matrix is that it is singular, in fact of rank
2. Furthermore, the left and right null-spaces of F are generated by the vectors rep-
resenting (in homogeneous coordinates) the two epipoles in the two images. Most
applications of the fundamental matrix rely on the fact that it has rank 2. For instance,
if the fundamental matrix is not singular then computed epipolar lines are not coinci-
dent, as is demonstrated by figure 11.1. The matrix F found by solving the set of linear
equations (11.3) will not in general have rank 2, and we should take steps to enforce
this constraint. The most convenient way to do this is to correct the matrix F found
by the SVD solution from A. Matrix F is replaced by the matrix F′ that minimizes the
Frobenius norm ‖F− F′‖ subject to the condition det F′ = 0. A convenient method of

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Two Cameras and the Fundamental Matrix

7-Point Algorithm

1. Solve linear system of equations for 7 corresponding points,
yielding λF1 + (1− λ)F2

2. Ensure detF = 0:

det(λF1 + (1− λ)F2)
!

= 0

Find root λ∗ of this polynomial of degree 3, then

F := λ∗F1 + (1− λ∗)F2

I all linear methods should be used with normalization !

I both, esp. 7-point algorithm often used in RANSAC wrappers.
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Iterative Minimization of the Reconstruction Error

minimize
N∑

n=1

d(xn, x̂n)2 + d(x ′n, x̂
′
n)2

I x̂n = PXn = Xn, for P = [I | 0]

I x̂ ′n = P ′Xn, for general P ′

I 3N + 12 parameters (for general P ′)
I as in chapter 3:

I initialize with linear method: 8-point algorithm
I initial estimate of Xn by triangulation (see next section)
I iteratively minimize using Levenberg-Marquardt
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Computer Vision 4. Triangulation
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Computer Vision 4. Triangulation

Triangulation

Different methods:

1. Linear triangulation

2. Iterative Minimization of the Reconstruction Error

3. Minimizing Reconstruction Error via Root Finding
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Computer Vision 4. Triangulation

Linear Triangulation
I Each 3D point X satisfies:

x
!

= x̂ := PX , x ′
!

= x̂ ′ := P ′X

yielding



x3P
T
1,. − xTP3,1

x3P
T
2,. − xTP3,2

x3P
T
3,. − xTP3,3


X = 0

of which 2 rows are independent,
and the same for x ′ and P ′.
Solve AX = 0 for

A(x ,P, x ′,P ′) :=




x3P
T
1,. − xTP3,1

x3P
T
2,. − xTP3,2

x ′3P
′
1,.

T − x ′TP ′3,1
x ′3P

′
2,.

T − x ′TP ′3,2
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Computer Vision 4. Triangulation

Linear Triangulation (2/2)

I Exact solutions to

AX = 0, X 6= 0

for a 4× 4 matrix A may not exist if noise is involved.

I Solve approximately via SVD:

A = USV T , S = diag(s1, s2, s3, s4), s1 ≥ s2 ≥ s3 ≥ s4, SVD

X ≈ V.,4
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Computer Vision 4. Triangulation

Iterative Minimization of the Reconstruction Error

I solve N separate problems, one for each point Xn (n = 1, . . . ,N):

minimize d(xn, x̂n)2 + d(x ′n, x̂
′
n)2

with x̂n := PXn = Xn, n = 1, . . . ,N, for P := [I | 0]

x̂ ′n := P ′Xn, n = 1, . . . ,N,

over Xn

I 3 parameters each (P ′ is fixed)
I as in chapter 3:

I iteratively minimize using Levenberg-Marquardt
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Computer Vision 5. Putting it all Together

Outline

1. Overview of SLAM

2. Camera Models

3. Two Cameras and the Fundamental Matrix

4. Triangulation

5. Putting it all Together

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 35

Computer Vision 5. Putting it all Together

Monocular Visual SLAM
Calibrated camera K with known start pose Q(0)

Do forever (time t):

1. Get image I (t) from the camera

2. Find interesting points in I (t) and their descriptors

3. Match interesting points of two consecutive images I (t−1), I (t) based
on their descriptors to get corresponding points

4. Minimize reconstruction loss for all corresponding points in the two
images to get new camera pose Q(t) and 3D points X (t)

I localization:
Q(t) describes the trajectory of the camera
(and thus the vehicle)

I mapping:
X (t) describes the scene

Many detail problems still to discuss. Many variants exist.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 5. Putting it all Together

Stereo Visual SLAM
Calibrated cameras K ,K ′ with known start poses Q(0),Q ′(0)

Do forever (time t):

1. Get two images I (t), I ′(t) from the two cameras

2. Find interesting points in both I (t), I ′(t) and their descriptors

3. Match interesting points of all four images I (t−1), I ′(t−1), I (t), I ′(t)

based on their descriptors to get corresponding points

4. Minimize reconstruction loss for all corresponding points in the four
images to get new camera poses Q(t),Q ′(t) and 3D points X (t)

I localization:
Q(t),Q ′(t) describes the trajectory of the cameras
(and thus the vehicle)

I mapping:
X (t) describes the scene

Many detail problems still to discuss. Many variants exist.
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Computer Vision 5. Putting it all Together

Example / Projective Reconstruction

10.4 Stratified reconstruction 267

a

b

Fig. 10.3. Projective reconstruction. (a) Original image pair. (b) 2 views of a 3D projective re-
construction of the scene. The reconstruction requires no information about the camera matrices, or
information about the scene geometry. The fundamental matrix F is computed from point correspon-
dences between the images, camera matrices are retrieved from F, and then 3D points are computed by
triangulation from the correspondences. The lines of the wireframe link the computed 3D points.

This is an enormously significant result, since it implies that one may compute a
projective reconstruction of a scene from two views based on image correspondences
alone, without knowing anything about the calibration or pose of the two cameras in-
volved. In particular the true reconstruction is within a projective transformation of the
projective reconstruction. Figure 10.3 shows an example of 3D structure computed as
part of a projective reconstruction from two images.

In more detail suppose the true Euclidean reconstruction is (PE, P
′
E, {XEi}) and the

projective reconstruction is (P, P′, {Xi}), then the reconstructions are related by a non-
singular matrix H such that

PE = PH−1, P′E = P′H−1, and XEi = HXi (10.1)

where H is a 4× 4 homography matrix which is unknown but the same for all points.
For some applications projective reconstruction is all that is required. For example,

questions such as “at what point does a line intersect a plane?”, “what is the mapping
between two views induced by particular surfaces, such as a plane or quadric?” can be
dealt with directly from the projective reconstruction. Furthermore it will be seen in
the sequel that obtaining a projective reconstruction of a scene is the first step towards
affine or metric reconstruction.

10.4 Stratified reconstruction

The “stratified” approach to reconstruction is to begin with a projective reconstruction
and then to refine it progressively to an affine and finally a metric reconstruction, if
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Example / Affine Reconstruction

270 10 3D Reconstruction of Cameras and Structure

a

b

Fig. 10.4. Affine reconstruction. The projective reconstruction of figure 10.3 may be upgraded to affine
using parallel scene lines. (a) There are 3 sets of parallel lines in the scene, each set with a different
direction. These 3 sets enable the position of the plane at infinity, π∞, to be computed in the projective
reconstruction. The wireframe projective reconstruction of figure 10.3 is then affinely rectified using the
homography (10.2). (b) Shows two orthographic views of the wireframe affine reconstruction. Note that
parallel scene lines are parallel in the reconstruction, but lines that are perpendicular in the scene are
not perpendicular in the reconstruction.

3-space point X can be neatly expressed algebraically as the solution of the equations
([v]×P)X = 0 and (l′TP′)X = 0. These equations expresses the fact that X maps to v
in the first image, and to a point on l′ in the second image.

Distance ratios on a line. An alternative to computing vanishing points as the in-
tersection of imaged parallel scene lines is to use knowledge of affine length ratios in
the scene. For example, given two intervals on a line with a known length ratio, the
point at infinity on the line may be determined. This means that from an image of a
line on which a world distance ratio is known, for example that three points are equally
spaced, the vanishing point may be determined. This computation, and other means of
computing vanishing points and vanishing lines, are described in section 2.7(p47).

The infinite homography

Once the plane at infinity has been located, so that we have an affine reconstruction,
then we also have an image-to-image map called the “infinite homography”. This map,
which is a 2D homography , is described in greater detail in chapter 13. Briefly, it is
the map that transfers points from the P image to the P′ image via the plane at infinity
as follows: the ray corresponding to a point x is extended to meet the plane at infinity
in a point X; this point is projected to a point x′ in the other image. The homography
from x to x′ is written as x′ = H∞x.

Having an affine reconstruction is equivalent to knowing the infinite homography as
will now be shown. Given two cameras P = [M | m] and P′ = [M′ | m′] of an affine
reconstruction, the infinite homography is given by H∞ = M′M−1. This is because a
point X = (X̃

T
, 0)T on the plane at infinity maps to x = MX̃ in one image and x′ = M′X̃

in the other, so x′ = M′M−1x for points on π∞. Furthermore, it may be verified that
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[HZ04, p. 270]Note: Additional knowledge: three sets of parallel lines.

Computer Vision 5. Putting it all Together

Example / Metric Reconstruction

274 10 3D Reconstruction of Cameras and Structure

a

b

Fig. 10.5. Metric reconstruction. The affine reconstruction of figure 10.4 is upgraded to metric by
computing the image of the absolute conic. The information used is the orthogonality of the directions
of the parallel line sets shown in figure 10.4, together with the constraint that both images have square
pixels. The square pixel constraint is transferred from one image to the other using H∞. (a) Two
views of the metric reconstruction. Lines which are perpendicular in the scene are perpendicular in the
reconstruction and also the aspect ratio of the sides of the house is veridical. (b) Two views of a texture
mapped piecewise planar model built from the wireframes.

sufficiently many images, one may use this property to obtain a metric reconstruction
from an affine reconstruction. This method of metric reconstruction, and its use for
self-calibration of a camera, will be treated in greater detail in chapter 19. For now, we
give just the general principle.

Since the absolute conic lies on the plane at infinity, its image may be transferred
from one view to the other via the infinite homography. This implies an equation (see
result 2.13(p37))

ω′ = H−T
∞ ωH−1

∞ (10.3)

where ω and ω′ are images of Ω∞ in the two views. In forming these equations it is
necessary to have an affine reconstruction already, since the infinite homography must
be known. If ω = ω′, then (10.3) gives a set of linear equations in the entries of ω. In
general this set of linear equations places four constraints on ω, and since ω has 5 de-
grees of freedom it is not completely determined. However, by combining these linear
equations with those above provided by scene orthogonality or known internal param-
eters, ω may be determined uniquely. Indeed (10.3) may be used to transfer constraints
on ω to constraints on ω′. Figure 10.5 shows an example of a metric reconstruction
computed by combining constraints in this manner.
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[HZ04, p. 274]Note: Additional knowledge: additionally lines in different sets are orthogonal.
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Outlook

I methods applicable in two settings:
I two cameras, single shot: stereo vision
I one camera, sequence of shots: structure from motion,

monocular visual SLAM

I structure from motion:
I do not compute everything from scratch for every frame

I tracking (computer vision terminology)
I online updates (machine learning terminology)

I methods to combine stereo vision and structure from motion
I two cameras, sequence of shots
I the very same methods, just for 4 views instead of 2.
I some new concepts (e.g., trifocal tensor for 3 views)
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Summary (1/4)

I There exist several methods for simultaneous localization and
mapping (SLAM)

I We discussed: bundle adjustment: minimize a loss between
I in two views observed and
I from two unknown 2D-projections of unknown 3D points reconstructed

corresponding points.

I Cameras are described by linear projective maps P : P3 → P2 (=
4× 3 matrices)
usually structured as P = K [R | t]:

I camera calibration matrix K (5 intrinsic parameters)
I camera pose [R | t] (6 external parameters)
I finite vs infinte (esp. affine) cameras; pinhole camera
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Summary (2/4)

I The geometric relation between two 2D views on a 3D scene can be
represented by the 3× 3 fundamental matrix F :

I maps points in 1st view to epipolar line of all possible corresponding
points in 2nd view.

I x ′Fx = 0 for corresponding points x , x ′

I For two cameras P, P ′ their fundamental matrix can be computed as:

F = [e′]×P
′P+, with epipole in 2nd view e′

I For a fundamental matrix F , several pairs of cameras are possible.
Two canonical cameras P, P ′ can be computed as:

P = [I | 0], P ′ = [[e′]×F | e′]
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Summary (3/4)
I To compute the fundamental matrix from point correspondences

several methods exist.
I Problem has 7 degrees of freedom (8 ratios; singular)
I Linear methods

I 8-point algorithm: solve a linear system of equations / SVD
I 7-point algorithm: solve a linear system of equations / SVD
I enforce singularity

I Iterative minimization of the reconstruction error

I To estimate 3D point positions from their observed images under
known 2D projection(s):
triangulation. Several methods exist:

I Linear methods
I individually for each 3D point
I solve a 4× 4 linear system of equations / SVD

I Iterative minimization of the reconstruction error
I Minimizing Reconstruction Error via Root Finding
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Computer Vision 5. Putting it all Together

Summary (4/4)

I Metric reconstruction:
I With just multiple 2D views of a scene, it can only be reconstructed up

to a projectivity.
I requires either background knowledge or
I camera calibration: estimate the intrinsic parameters of the camera

calibration matrix from a known scene.
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Further Readings

I Reconstruction ambiguity: [HZ04, ch. 10].

I Computing the Fundamental Matrix: [HZ04, ch. 11].

I Triangulation: [HZ04, ch. 12].

I Camera models: [HZ04, ch. 6].

I The Fundamental Matrix: [HZ04, ch. 9].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 35



Computer Vision

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision.
Cambridge university press, 2004.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 35


