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Computer Vision 1. Overview of SLAM

Different Approaches to SLAM:
» Kalman filters
» Particle filters / Monte Carlo methods
» Scan matching of range data
» Set-membership techniques
>

Bundle adjustment
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Computer Vision 2. Camera Models

Types of Cameras

Camera: Mapping from 3D world to 2D image.

finite camera:
» finite camera center
infinite camera:

» camera center at infinity
» generalization of parallel projection
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Computer Vision 2. Camera Models

Pinhole Camera

AN z
principal axis

image plane

< X
VR
DR
~ T
N N
N—

[HZ04, p. 154]
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Computer Vision 2. Camera Models

_ | SR
Pinhole Camera / Homogeneous Coordinates A

inhomogeneous coordinates:

) (57

homogeneous coordinates:

X

Fe f 0 X
Tl | | = foool|”
Z 1 O Z
1 ‘ 1

P = diag(f,f,1)[/ | 0]
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Computer Vision 2. Camera Models = =
Pinhole Camera / Principal Point Offset A

x fx/z + px fx + zpx f px O X
Yl = tx/z+p, | =| fy+zp, | = f p, O y
z 1 z 1 0 i
1 1

f Px

P = f py, |[/]O]
1
—'K

K is called camera calibration matrix.
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Computer Vision 2. Camera Models

Y

Pinhole Camera / Camera Rotation and Translation

c’: coordinates of camera center in world coordinates

R: rotation of world coordinate frame to camera coordinate frame
(around ¢’)

p=R(p —c)
x' x’ X!
Y R 0 Y Yer
7 |7 ( 0 1 ) Z | | z
1 1 1
X/
(R =R y'
a 1 Z
1
P = KR[I | —¢/]

without explicit camera center:
P=K[R|t], t:=-Rc
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Computer Vision 2. Camera Models

Sippe
CCD Cameras A
CCD camera:

> pixels may be no square — different width a, and height o,
(875% X0

K = ay Yo
1

Oy S X0

» s skew
» usually s =0, but rare cases (e.g., photo from photo)
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Computer Vision 2. Camera Models

Finite Projective Camera
» skew s:

O x S X0
K = ay Yo
1

P=K[R|t]

» usually s =0, but in rare cases (e.g., photo from photo)

> left 3 x 3 matrix is non-singular ( det P1.31.3 # 0 )
» 11 parameters:

» 5 for K: ax,ay, X0, ¥0,S
» 3 for R
» 3fort

> any 3 X 4 matrix P with det Py.31.3 # 0 is such a finite projective
camera
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Two Views: Epipolar Geometry

» two 2D views on a 3D scene

» 3D coordinates X in the 3D scene
» 2D coordinates x in the first view

x = PX
» 2D coordinates x’ in the second view
x =P'X

» epipolar geometry: describe relation between the two views

» fundamental matrix F:

XTFx=0<=3X:x=PX,xX' = P'X
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Epipolar Geometry

o X

epipolar plane TT \

A A

C Cc
epipolar line
for x
a b
baseline: line joining the two camera centers
epipole: image of the camera center of the other view

(intersection of baseline and image plane)
epipolar planes: planes containing the baseline
epipolar lines: lines in the image plane through the [E8}foke 240]
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Epipolar Geometry / Example

-

:::
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Fundamental Matrix

» two views can be described by a map
F:x—/t

that maps

» points x in the first view to
» the epipolar line ¢’ of their possible correspondences in the second view.
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Fundamental Matrix (2/2) A
» construct £:
1. possible 3D source points of x = PX:

X=P'x+XC, MR (as PC=0)
2. their 2D images in second view:

x'=P(P"x+\XC)=P P x+ AP'C
esp. xX' =P PTx, forA:=0

e’ = P'C, for \:= oo epipole of second view
3. ¢ is the line through x’ and ¢':
FIX)=¢ xx'=¢ x PPP*x

» F is linear: fundamental matrix F = [¢/] P'PT

0 —as ar
Note: PT pseudoinverse, C camera center 1st view, [a]x = as 0 —a )
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Computer Vision 3. Two Cameras and the Fundamental Matrix

From Two Cameras to the Fundamental Matrix

P = K|l | 0]
P' = K'[R | t]
()8
1. general case:
F =[P'Cl«P'PT = [K't]«K'RK™! = [¢/] « K'RK 1
2. pure translation (R =1, K’ = K):
F =[K't]«K'RK™ = [Kt] = [¢]«

3. pure translation parallel to x-axis (¢/ = (1,0,0)7):

00 0
F=|0 0 -1
01 0
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Y

» The fundamental matrix does determine two cameras only up to a 3D
projectivity.

From the Fundamental Matrix to Two Cameras

=PH, P =PH, C=H'C
~ Pt = H71pt
F =[P’ Cl«P' P
=[P'"HH 'C]xP’'HH 'Pt = [P'C]«P'PT =F

+ O

» Cameras can be chosen as

P=1110, P'=[]F|e]

v F(P,P') =[] K'RK™ = [¢]«[¢]F o F
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Fundamental Matrix / Properties

» F maps points x of the 1st view to the epipolar line ¢/ := Fx of their
possibly corresponding points in the 2nd view.

» For corresponding points x, x’:
xXTFx=0

» ¢ is the left nullvector of F: e'TF =0 (as €’ is on all lines Fx)
e is the right nullvector of F: Fe =0
» F has 7 degrees of freedom.

» 8 ratios of a 3 x 3 matrix
» -1 fordetF =0
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Computing the Fundamental Matrix

Different methods:
1. Linear Method I: The 8-Point Algorithm
2. Linear Method Il: The 7-Point Algorithm

3. lterative Minimization of the Reconstruction Error
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Computer Vision 3. Two Cameras and the Fundamental Matrix

Linear System of Equations

» every pair ((x,y),(x’,y’)) of corresponding points fullfills

(X', ¥y )F(x,y)T =0
w(x'x Xy X' y'x yy y x y 1)vect(F)=0

» for N such Pail’S ((X17y1)7 (Xiay{))a sy ((XN,)/N)7 (XI/V7y//V)):

/ / / / / /
x1x1 Xy1 X3 oyix1to oyiyioy; o x1oyn 1
/ / / / / /
XpXa  XpYo  Xp  YoXa  Yoy2 Yo x2 Y2 1

vect(F) =0
xXhxn X X Y ! loX 1
NXN  XNYN S Xy YNXN O YNYN S YN XN YN
> linear system of equations: Af =0 for f = vect(F)
Note: vect(A) := (a1,1,31,2,---,31,M>32,1,---,32,M>---3aN,1s-- > an.m) T vectorization.
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Computer Vision 3. Two Cameras and the Fundamental Matrix
: . N»
8-Point Algorithm A

1. Solve linear system of equations for 8 corresponding points.
2. Ensure det F = 0:

F — USUT, S = diag(s1,...,59),51 > s > -+ > 59 SVD
F':=US'U", S :=diag(si,...,ss,0)

“ ) | \\\\ [_ 84, p. 280]

i \ : Bl A
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Computer Vision 3. Two Cameras and the Fundamental Matrix i

N DB
7-Point Algorithm A

1. Solve linear system of equations for 7 corresponding points,
yielding AF1 4+ (1 — A\)F
2. Ensure det F = 0:

detVFL + (1 = \)F) =0
Find root A\* of this polynomial of degree 3, then

F = )\*Fl + (1 — )\*)FQ

» all linear methods should be used with normalization !

» both, esp. 7-point algorithm often used in RANSAC wrappers.
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Computer Vision 3. Two Cameras and the Fundamental Matrix

lterative Minimization of the Reconstruction Error

11

N
minimize Z d(xn, Xn)? + d(x}, %)?

n=1

Ry = PX, = X, for P =[I | 0]

Xl = P'X,, for general P’

3N + 12 parameters (for general P’)
as in chapter 3:

vV v v VY

» initialize with linear method: 8-point algorithm
» initial estimate of X, by triangulation (see next section)
> iteratively minimize using Levenberg-Marquardt
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Computer Vision 4. Triangulation

Outline A

4. Triangulation
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Computer Vision 4. Triangulation

Triangulation A

Different methods:
1. Linear triangulation
2. lterative Minimization of the Reconstruction Error

3. Minimizing Reconstruction Error via Root Finding
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Computer Vision 4. Triangulation

Linear Triangulation %
» Each 3D point X satisfies:
x=%:=PX, X =% :=PX
yielding

X3P1; — XTP3,1
X3P2_ —XTP3,2 X
X3P3T. — XTP3,3

1
o

of which 2 rows are independent,
and the same for x’ and P’.
Solve AX = 0 for

X3P1T. —XTP3,1

X3P27L_ —XTP3,2

! D/ ’T /T p/
X3'D1,.T — X TP3,1
! D/ / !
X3'D2,. — X P3,2

Alx,P,x'", P") =
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Computer Vision 4. Triangulation

Linear Triangulation (2/2) A

» Exact solutions to
AX =0, X#0

for a 4 X 4 matrix A may not exist if noise is involved.

» Solve approximately via SVD:

A= USVT7 S= diag(51752753754)751 > Sp) > S3 > 54, SVD
X~ Vy
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Computer Vision 4. Triangulation

lterative Minimization of the Reconstruction Error

» solve N separate problems, one for each point X, (n=1,...,N):

minimize d(x,, 8,)* + d(x}, 8/)?

with X, = PX,=X,, n=1,...,N, for P:=[l|0]
R:=PX, n=1,...,N,

over X,

» 3 parameters each (P’ is fixed)
» as in chapter 3:
> iteratively minimize using Levenberg-Marquardt
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Computer Vision 5. Putting it all Together
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Computer Vision 5. Putting it all Together

. B
Monocular Visual SLAM A
Calibrated camera K with known start pose Q)
Do forever (time t):

1.
2.
3.

Get image /(t) from the camera

Find interesting points in 1(t) and their descriptors

Match interesting points of two consecutive images 1(t=1) (1) pased
on their descriptors to get corresponding points

Minimize reconstruction loss for all corresponding points in the two
images to get new camera pose Q(Y) and 3D points X(t)

localization:

Q(t) describes the trajectory of the camera
(and thus the vehicle)

mapping:

X(t) describes the scene

Many detail problems still to discuss. Many variants exist.
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Computer Vision 5. Putting it all Together

Stereo Visual SLAM %
Calibrated cameras K, K’ with known start poses Q(©), Q/(0)
Do forever (time t):
1. Get two images /(t), ['(t) from the two cameras
2. Find interesting points in both /(t) ['(t) and their descriptors
3. Match interesting points of all four images [(t=1)_/(t=1) j(t) j/(t)
based on their descriptors to get corresponding points
4. Minimize reconstruction loss for all corresponding points in the four
images to get new camera poses Q(Y), Q'(t) and 3D points Xt

» localization:
Q) Q'(t) describes the trajectory of the cameras
(and thus the vehicle)

» mapping:
X() describes the scene

Many detail problems still to discuss. Many variants exist.
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Computer Vision 5. Putting it all Together

Example / Projective Reconstruction

Note: Additional knowledge: none. [HZ04, p. 267]
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Computer Vision 5. Putting it all Together

Example / Affine Reconstruction

Note: Additional knowledge: three sets of parallel lines. [HZ04, p. 270]
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Computer Vision 5. Putting it all Together

Example / Metric Reconstruction

\

b
Note: Additional knowledge: additionally lines in different sets are orthogo“ﬂzo‘lv p. 274]
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Computer Vision 5. Putting it all Together

Outlook A

» methods applicable in two settings:

» two cameras, single shot: stereo vision
» one camera, sequence of shots: structure from motion,
monocular visual SLAM

» structure from motion:
» do not compute everything from scratch for every frame

» tracking (computer vision terminology)
» online updates (machine learning terminology)

» methods to combine stereo vision and structure from motion

» two cameras, sequence of shots
» the very same methods, just for 4 views instead of 2.
» some new concepts (e.g., trifocal tensor for 3 views)
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Computer Vision 5. Putting it all Together

Summary (1/4) %

» There exist several methods for simultaneous localization and
mapping (SLAM)

» We discussed: bundle adjustment: minimize a loss between

> in two views observed and
» from two unknown 2D-projections of unknown 3D points reconstructed

corresponding points.

» Cameras are described by linear projective maps P : P3 — P? (=
4 x 3 matrices)
usually structured as P = K[R | t]:
» camera calibration matrix K (5 intrinsic parameters)
» camera pose [R | t] (6 external parameters)
» finite vs infinte (esp. affine) cameras; pinhole camera
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Computer Vision 5. Putting it all Together

Summary (2/4) %

» The geometric relation between two 2D views on a 3D scene can be
represented by the 3 x 3 fundamental matrix F:
» maps points in 1st view to epipolar line of all possible corresponding
points in 2nd view.
» x'Fx = 0 for corresponding points x, x’
» For two cameras P, P’ their fundamental matrix can be computed as:

F = [e']«P'P", with epipole in 2nd view e’

» For a fundamental matrix F, several pairs of cameras are possible.
Two canonical cameras P, P’ can be computed as:

P=1110l, P =[e]F|e]
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Computer Vision 5. Putting it all Together -

Summary (3/4) %

» To compute the fundamental matrix from point correspondences
several methods exist.
» Problem has 7 degrees of freedom (8 ratios; singular)
» Linear methods

> 8-point algorithm: solve a linear system of equations / SVD
» 7-point algorithm: solve a linear system of equations / SVD
» enforce singularity

» |terative minimization of the reconstruction error

» To estimate 3D point positions from their observed images under
known 2D projection(s):
triangulation. Several methods exist:
» Linear methods
» individually for each 3D point

> solve a 4 x 4 linear system of equations / SVD
> Iterative minimization of the reconstruction error
» Minimizing Reconstruction Error via Root Finding
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Computer Vision 5. Putting it all Together

Summary (4/4) %

» Metric reconstruction:

» With just multiple 2D views of a scene, it can only be reconstructed up
to a projectivity.

» requires either background knowledge or

» camera calibration: estimate the intrinsic parameters of the camera
calibration matrix from a known scene.
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Computer Vision

Further Readings

» Reconstruction ambiguity: [HZ04, ch. 10].

» Computing the Fundamental Matrix: [HZ04, ch. 11].
» Triangulation: [HZ04, ch. 12].

Camera models: [HZ04, ch. 6].

The Fundamental Matrix: [HZ04, ch. 9].

v

v
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Computer Vision
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