Computer Vision Exercise Sheet 4

Prof. Dr. Dr. Lars Schmidt-Thieme, Hanh Nguyen Information Systems and Machine Learning Lab
University of Hildesheim

May 3, 2017
Submission until May 9, 14.00 via learnweb

Exercise 1: Practice (12 points)

a) Download from http://www.cvlibs.net/datasets/kitti/raw_data.php the smallest dataset 2011_09_26_drive_0048, [synced+rectified data].

- What data are you provided with? What are the data used to localization and mapping? Which one instead are used to verify the goodness of your approach?
(4 points)
- Install the python version of openCV
- Implement a method that reads and stores the images in sequence; give them back in a sort of video. Images collected at the same time showed at the same time.
How can you extract the value of one pixel? Print a pixel value. How can you modify its value? (4 points)
- Using openCV applies to one colored image of the dataset:
(4 points)
- Shifting it in $(x=50, y=50)$
- Rotating it by 180 degrees anticlockwise.
- Scaling the image by half and rotating it by 90 degrees clockwise

Show the original and resulting images at the same time.
Deliver your code without data in a zip file together with your answers to the questions, clearly indicating in which folder to put the data and which file to execute.

Exercise 2: Theory (8 points)

a) What means rectification? What is its purpose? Why is it important for stereo vision and mapping? (4 points)
b) Halve the dimensions of the following curve indicating the correct project transformation:

$$
x^{T}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] x
$$

Which is the curve shape?

