Computer Vision Exercise Sheet 6

Prof. Dr. Dr. Lars Schmidt-Thieme, Hanh Nguyen Information Systems and Machine Learning Lab
University of Hildesheim

May 17, 2017
Submission until May 23, 14.00 via learnweb

Exercise 1: Projective Transformation in 2D (10 points)

a) Given two pairs of lines that are parallel to each other.

$$
x_{1}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \quad, \quad x_{2}=\left(\begin{array}{l}
6 \\
4 \\
1
\end{array}\right) \quad \text { and } \quad y_{1}=\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right) \quad, \quad y_{2}=\left(\begin{array}{c}
4 \\
10 \\
1
\end{array}\right)
$$

Compute the transform matrix that would rectify the image containing them.
Hint: Do you know RECTIFY-AFFINE-TWO-PARALLEL algorithm?
b) Given two pairs of lines that are orthogonal in the origin.

$$
x_{1}=\left(\begin{array}{l}
2 \\
4 \\
0
\end{array}\right) \quad, \quad x_{2}=\left(\begin{array}{l}
5 \\
2 \\
0
\end{array}\right) \quad \text { and } \quad y_{1}=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right) \quad, \quad y_{2}=\left(\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right)
$$

Compute the transform matrix that would rectify the image containing them.
Hint: Do you know RECTIFY-METRIC-TWO-ORTHOGONALS algorithm? You can use numpy.linalg.cholesky function to find the Cholesky factor of S. You can also find the tutorial about Cholesky factorization in the presentation
http://www.cs.utexas.edu/~pingali/CS378/2011sp/lectures/chol4.pdf
(6 points)

Exercise 2: Projective Transformation in 3D (10 points)

a) Find the plane through the three following points

$$
X_{1}=\left(\begin{array}{l}
5 \\
4 \\
2 \\
1
\end{array}\right) \quad X_{2}=\left(\begin{array}{c}
-1 \\
7 \\
3 \\
1
\end{array}\right) \quad X_{3}=\left(\begin{array}{c}
2 \\
-2 \\
9 \\
1
\end{array}\right)
$$

Hint: Chapter 3-Projective Geometry and Transformation of 3D (Multiple view geometry in computer vision, Cambridge university press, 2004), page 66-67. You can also find the information from the presentation
b) Find the point of intersection of the three following planes

$$
3 x+5 y+z=2 \quad 7 x+2 y-4 z=-1 \quad 2 y+5 z=-8
$$

Hint: Chapter 3 - Projective Geometry and Transformation of 3D (Multiple view geometry in computer vision, Cambridge university press, 2004), page 66-68. You can also find the information from the presentation

```
http://www.csc.kth.se/~madry/courses/mvg10/Attachments/02_Presentation01_
Ch3_Marianna.pdf
    (4 points)
```

c) Show that a 3D affine transformation makes points at infinity stay at infinity.

Hint: The point transformation is defined as $\mathrm{X}^{\prime}=\mathrm{HX}$. The ideal points are defined as $\left(X_{1}, X_{2}, X_{3}, 0\right)^{T}$.
(2 points)

