Computer Vision Exercise Sheet 8

Prof. Dr. Dr. Lars Schmidt-Thieme, Hanh Nguyen
Information Systems and Machine Learning Lab
University of Hildesheim

May 31, 2017
Submission until June 13, 14.00 via learnweb

Exercise 1: Jacobian (10 Points)

Given the minimization objectives (a) transfer distance in one image and (b) symmetric transfer distance, compute the Jacobians.
(10 points)

Exercise 2: Iterative Minimization (10 points)

Apply gradient descent on the function $f(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}-\frac{1}{2} x^{2}$ with following configurations:

- Use step length $a=0.3$ and starting point $x_{0}=-1$ and show the first four iterations. What is your minimum?
(2 points)
- Use step length $a=2$ and starting point $x_{0}=-1$ and show the first four iterations. What has happened and why?
(2 points)
- Use step length $a=0.3$ and starting point $x_{0}=0$ and show the first two iterations. What has happened and why? Do the same again with $a=0.8$ and starting point $x_{0}=0.5$ and show the first four iterations. Where is your minimum now?
(4 points)

Exercise 3: Levenberg-Marquardt (10 Points)

You are provided with four generic measurements of a process $\left(t_{i}, y_{i}\right)$ with $i=1,2,3,4$. Given t_{i}, the y_{i} values can be approximated with the equation $m\left(x_{i}, t_{i}\right)=e^{t_{i} x_{1}}+e^{t_{i} x_{2}}$.

Your goal is, with this information, to approximate x_{1} and x_{2} parameters with the Levenberg-Marquardt algorithm. Describe in detail the pseudo code you would use to indicate the equation and dimensions of the matrices/vectors J, J^{T}, g, H and d for the given example. You don't need to compute inverse matrices. If you want to indicate that the matrix should be inverted, you can indicate it as follows: A matrix you computed, A^{-1} inverse of A.

Hint: Write at least a sentence for each step of the algorithm giving the requested additional information and explain input and output parameters e, x_{0} and ϵ as well.

