Computer Vision Exercise Sheet 9

Prof. Dr. Dr. Lars Schmidt-Thieme, Hanh Nguyen
Information Systems and Machine Learning Lab
University of Hildesheim

June 14, 2017
Submission until June 20, 14.00 via learnweb

Exercise 1: Convolution (6 Points)

a) What is a convolution? What operations can be represented in this format?
(2 points)
b) What is a kernel? Make an example of a squared one.
(1 points)
c) Can you think of operations that cannot be represented as a convolution? Why?
(3 points)

Exercise 2: Edge Detection (14 Points)

a) Explain, considering the given code sample, each step of the Sobel-Algorithm. What is it used for? What are the two mathematical concepts behind this algorithm? Individuate their implementation in the code.

```
function sobel(Image image) {
    int[][] Sx = { {-1,0,1}, {-2,0,2}, {-1,0,1} };
    int[][] Sy = { {-1,-2,-1}, {0,0,0}, {1,2,1} };
    for (int x=1;x<image.getWidth()-1;x++) {
        for (int y=1;y<image.getHeight()-1;y++) {
            int intensity_sum_x=0, intensity_sum_y=0;
            for (int i=-1;i<=1;i++) {
                for (int j=-1;j<=1;j++) {
                        int intensity = image.getintensity(x+i, y+j);
                        intensity_sum_x+=(intensity*Sx[1-j][1-i]);
                        intensity_sum_y+=(intensity*Sy[1-j][1-i]);
                }
            }
                int new_intensity = sqrt((intensity_sum_x)*(intensity_sum_x)
                        +(intensity_sum_y)*(intensity_sum_y));
            edges_image.setIntensityPixel(x, y, new_intensity);
        }
    }
    return edges_image;
}
```

b) Compute the LoG matrix given the (1) Laplacian

$$
L=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and (2) the Gaussian

$$
G=\left[\begin{array}{ccc}
0.0625 & 0.125 & 0.0625 \\
0.125 & 0.25 & 0.125 \\
0.0625 & 0.125 & 0.0625
\end{array}\right]
$$

and (3) the discrete convolution defined as follows:

$$
\begin{equation*}
y(m, n)=x(m, n) \otimes h(m, n)=\sum_{i=-1}^{1} \sum_{j=-1}^{1} x(i, j) h(m-i, n-j) \tag{1}
\end{equation*}
$$

Keep the axis as follows: m and i increasing moving to the right and n and j increasing moving downward in the image.
(8 points)

Exercise 3: Harris Corners and SIFT (10 Points)

a) What is a point of interest in an image? How is it defined? Which image properties can be used to find such points?
b) Explain the Harris-Corner pseudo code (4 points)
c) What are the differences between Harris Corners and SIFT features?
(3 points)

