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Computer Vision

Syllabus

Mon. 10.4.

Mon. 17.4.
Mon. 24.4.
Mon. 1.5.
Mon. 8.5.
Mon. 15.5.
Mon. 22.5.
Mon. 29.5.
Mon. 5.6.
Mon. 12.6.
Mon. 19.6.
Mon. 26.6.
Mon. 3.7.

0. Introduction

1. Projective Geometry in 2D: a. The Projective Plane

— Easter Monday —

1. Projective Geometry in 2D: b. Projective Transformations
— Labor Day —

2. Projective Geometry in 3D: a. Projective Space

2. Projective Geometry in 3D: b. Quadrics, Transformations

3. Estimating 2D Transformations: a. Direct Linear Transformation
3. Estimating 2D Transformations: b. Iterative Minimization
— Pentecoste Day —

4. Interest Points: a. Edges and Corners

4. Interest Points: b. Image Patches

5. Simulataneous Localization and Mapping: a. Camera Models
5. Simulataneous Localization and Mapping: b. Triangulation
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Computer Vision

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

3. Transformations
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Computer Vision

1. Points, Lines, Planes in Projective Space
Qutline

1. Points, Lines, Planes in Projective Space
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Computer Vision 1. Points, Lines, Planes in Projective Space

Objects in 2D Revisited

type repr. dim dof examples

points P2 0 2 circular points [/, J

lines P2 1 2 line at inf. [

point conics  Sym(P>*?) 1 5

line conics  Sym(P2%2) 2 5  dual conic of circ. pts. CZ

Note: The dimensionality applies to non-degenerate cases only.
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Computer Vision 1. Points, Lines, Planes in Projective Space

Homogeneous Coordinates: Points

Inhomogeneous coordinates:
x €R3
Homogeneous coordinates:

x €P?:= (R*\ {(0,0,0,0)7})/ =
x=y:<=3scR\{0}:sx=y, x,ycR*
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Computer Vision 1. Points, Lines, Planes in Projective Space
Homogeneous Coordinates: Points
Inhomogeneous coordinates:
x €R3
Homogeneous coordinates:
x €P® := (R*\ {(0,0,0,0)7})/ =
x=y:<=3scR\{0}:sx=y, x,yecR*

Example:
1 4
2 | _ 8 L. o3
3 | = 1 represent the same point in P
4 16
1
2 : .. 3
3 represent a different point in P
5
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Computer Vision 1. Points, Lines, Planes in Projective Space

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

Homogeneous coordinates:

x €R3

x €P?:= (R*\ {(0,0,0,0)7})/ =

x=y: <= 3seR\{0}:sx=y,

finite points:

ideal points:

X1
X2
X3

1

X1
X2
X3

0

x,y € R*
X1
X2 )
X3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26



Computer Vision

1. Points, Lines, Planes in Projective Space

Dual of Points: Planes
Inhomogeneous coordinates:

X1
peR":P,:={| x

| p1x1 + poxo + p3xs + ps = 0}
X3

Note: x:R* — P3,aws [a] := {a’ € R* | a' = a}.
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Computer Vision 1. Points, Lines, Planes in Projective Space

Dual of Points: Planes

Inhomogeneous coordinates:

X1
peR*:Py:={| x2 || pxi+ paxo+ p3xz + pa = 0}
X3
Homogeneous coordinates:

p ep3 - Py = {x € P3 | pTX = p1x1 + pax2 + p3x3 + paxqa = 0}

» contains all finite points of p’ € K™(p): Py(p) 2 (Py)

Note: x:R* — P3,aws [a] := {a’ € R* | a' = a}.
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Computer Vision 1. Points, Lines, Planes in Projective Space

Intersecting Planes

Zeroset / Null space:
Nul(H) :={p € P* | Hp = 0}
All points incident to two planes p,q (p # q):
PP(p,q) :={x € P | x € Ppx € Py} = {x € P3| p'x=q"x =0}
Can be represented as zeroset:

PP(p,q) =Nul(pg” — qp")
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Computer Vision 1. Points, Lines, Planes in Projective Space

Intersecting Planes

Zeroset / Null space:
Nul(H) :={p € P* | Hp = 0}
All points incident to two planes p,q (p # q):
PP(p,q) :={x € P | x € Ppx € Py} = {x € P3| p'x=q"x =0}
Can be represented as zeroset:

PP(p,q) =Nul(pg" —qp”)
» idea: represent lines as intersection of planes
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Computer Vision 1. Points, Lines, Planes in Projective Space

All Planes Containing Two Points

All planes containing two points x,y (x # y):
PP*(x,y) :={pe P’ |x,y € P} ={pe P’ | p'x=pTy =0}

Can be represented as zeroset:

PP*(x,y) :Nul(xyT — yxT)

» this is just the dual of "All points incident to two planes”
» idea: represent lines as intersection of planes
» any two planes containing two points x, y will do
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Computer Vision

1. Points, Lines, Planes in Projective Space

Plucker Matrix

For two points x, y € P3:

Plii(x,y) :=A = xy| —

T
> skew symmetric: AT =

A
> esp. zero diagonal: A;; =0.

» rank 2 (for x # y)
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Computer Vision

1. Points, Lines, Planes in Projective Space

Lines have 4 Degrees of Freedom

N\

[HZ04, p. 68]
& = =
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Computer Vision 1. Points, Lines, Planes in Projective Space

Lines via Dual Plucker Matrices v

Lines can be defined easily via spans:

M M
span(x, x2,..., xM) ::ZRX’" ={zecRM|3secRM .z = Zsmxm}

m=1

m=1
I(x,y) :=span(x, y)
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Computer Vision 1. Points, Lines, Planes in Projective Space

Lines via Dual Pliicker Matrices
Lines can be defined easily via spans:

M M
span(x,x?,...,xM) = Z Rx™:={zeRM|3secRM: 7z = Z Smx™}
m=1 m=1

I(x,y) :=span(x, y)

Lines can be represented in 3D as zeroset of the dual Pliicker matrix:

I(x,y) = Nul(Pli*(x, y))
with
0 Asq  Agp Axs
oy | —Asa 0 Ara  Asn
Pli*(x,y) :=A" = A —Ara 0 Ars

Az —A31 —Aip O
and Plii(x,y) :=A:=xy” —yx" (Pliicker-Matrix)
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Computer Vision 1. Points, Lines, Planes in Projective Space

Lines via Dual Plucker Matrices v

PP(x,y) = Nul(A), A=xy’ —yx'
I(x,y) = Nul(A*), A*=pq" —qp", p,qecPP(x,y)
Now
A*A=(pq" —ap")(xyT — yxT)
=pq xy" —pqTyx" —qp"xy" + gpTyx" =0
therefore for all i, j, i # j:

4
0=—(A%A)i; = ZAT,kAJ',k = Z AP Ak as diagonals are zero
k=1 ke{ij}
ie., AL Ak + AL Ak = 0, {1,2,3,4} = {i,j, ki, ko}
and thus
Aza  Asp Az A Az Aug
Al Al Al Azp App o Arg
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Computer Vision 1. Points, Lines, Planes in Projective Space

Operations on Points, Lines & Planes

point x on plane p: p'x =

point x on line A™: A*x =

line A* is on plane p: (A")*p =0

plane p joining points x, y, z: (xy z)Tp=0

plane p joining point x and line A*: p =A*x

line A* joining points x, y: A* =Pli*(x, y)
(T =)

line A* as intersection of planes p, g: A" =pqT —qgp’

point x as intersection of plane p and line A*: x =(A")"p

point x as intersection of planes p, g, r: (pqgr) Tx =0
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Computer Vision 1. Points, Lines, Planes in Projective Space

Plane at Infinity p

» All ideal points (x1,X2,x3,0)7 form a plane,
the plane at infinity p,, := (0,0,0,1)".

>
Two parallel planes a line
A parallel line and plane  intersect in a point on py
Two parallel lines a point

> poo is fixed under affine transformations.

Proofs: same as for the line at infinity in P?.
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Computer Vision

2. Quadrics

Outline

2. Quadrics
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Computer Vision 2. Quadrics

Quadrics
Quadratic surfaces:

Qo :={xeP?[x"Qx=0}, Qe Sym([P***)

9 degrees of freedom

9 points in general position define a quadric

The intersection of a plane p with a quadric Q is a conic

A quadric Q transforms as H=TQH™: H(Qgq) = Qy-ron-1

vvyYyvyy

[HZ04, p. 75]
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Computer Vision 2. Quadrics

Quadrics / Signature

Q=uUsu’ SVD: S diagonal, UUT = |
= HS'HT S’ diagonal with S}, € {+1,-1,0}

signature of quadric Q:

J(Q) = ‘{I S {17273¢4} ‘ SI{,i = +1}‘ - ’{I S {1727374} ‘ 51{,/' = _1}|

[m] = = =
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Computer Vision 2. Quadrics

Quadrics / Types

rank o diagonal equation point set
4 4 (1, 1, 1, 1) x®>+y?>+22+1=0 no real points
2 (1, 1, 1,-1) x2+y2+2z2—-1=0 sphere
0 (1, 1,-1,-1) x2+y?—-22—-1=0 hyperboloid of one shee
3 3 (1, 1, 1, 0) x>+y>+2z> =0 one point (0,0,0,1)7
1 (1, 1,-1, 0) x?+y?>—2z> =0 cone at origin
2 2 (1, 1, 0, 0) x>+y? = single line (z-axis)
0 (1,-1, 0, 0) x%—y? = two planes x = +y
1 1 (1, 0, 0, 0) x° =0 oneplane x =0
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Computer Vision 2. Quadrics

. NS
Quadrics / Types d
a) rank = 4,0 = 2 : sphere / ellipsoid

b) rank = 4,0 = 0 : hyperboloid




Computer Vision

2. Quadrics

Quadrics / Types (2/2)

c) rank =3,0 = 1: cone

d) rank = 2,0 = 0 : two planes

[m]

[HZ04, p. 76]
= = =
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Computer Vision 2. Quadrics

N
Absolute Dual Quadric Q% v

Plane/dual quadrics:
o ={peP|pT @ p=0}, Q" eSym(P**

Absolute dual quadric:

1000
o (L 0y_|o1oo0
>=\0o" o0/ |o0oo010
0000

Or «Fr <> «2)r E[= DAC
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Computer Vision 2. Quadrics

Absolute Dual Quadric Q% Invariant under Similarity

The absolute dual quadric Q% is invariant under projectivity H
=
H is a similarity.

proof:
A t I 0 AT v
* T _
HQOOH_(VT V4><OTO><tT V4>
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Computer Vision 2. Quadrics

Absolute Dual Quadric Q% Invariant under Similarity

The absolute dual quadric Q% is invariant under projectivity H
=
H is a similarity.

proof:
A t
=)
A t AT v
* T _
wanr= (50 ) (o 1)
A

v =0,AAT =1 ie., His a similarity
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Computer Vision 2. Quadrics

P2
Absolute Dual Quadric Q% v

> pPoo is the nullvector of Q%.

» The angle between two planes is given by

__ pTQq
VPTQiLpaT Qg

cos(p.q)

» esp. two planes p, g are orthogonal iff p” Q% g = 0.

proofs: as in P2,
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Computer Vision

2. Quadrics

Absolute Conic €2,

CQOO :QngmPoo
={x P3| x4+ x5 +x3 =0,x =0}

» H is a similarity transform < Q. is invariant under H
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Computer Vision 2. Quadrics

Objects in 3D “
type repr. dim dof examples
points P3 0 3
lines Skew(P#*4) 1 5
planes P3 2 3 plane at inf. ps
point quadrics Sym(P**) 2 9
plane quadrics  Sym(P**%) 3 9  absolute dual quadric @,
conic pNQ 1 8 absolute conic Q4

Note: The dimensionality applies to non-degenerate cases only.
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Computer Vision

3. Transformations

Outline

3. Transformations
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Computer Vision

3. Transformations

Hierarchy of Transformations

Group Matrix Distortion
Projective At
15 dof vl v
Affine
12 dof

Similarity
7 dof

Euclidean

R t
6 dof 0" 1

Volume,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Invariant properties

Intersection and tangency of sur-
facesin contact. Sign of Gaussian
curvature.

Parallelism of planes, volume ra-

tios, centroids. The plane at infin-
ity, o, (See section 3.5)

The absolute conic, 2,
(see section 3.6).

[HZ04, p. 78]
& = =
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Computer Vision

3. Transformations

Rotations in 3D

Rotations in 3D can be described by a rotation axis and a rotation angle.
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Computer Vision 3. Transformations

NN
Rotations in 3D v

Rotations in 3D can be described by a rotation axis and a rotation angle.

Pure rotations (rotations along an axis through the origin) can be
described by

1. a rotation axis direction (an axis through the origin) and
a rotation angle, or

Pure rotations have 3 dof. ar <

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 /26



Computer Vision 3. Transformations

. . N
Rotations in 3D “
Rotations in 3D can be described by a rotation axis and a rotation angle

Pure rotations (rotations along an axis through the origin) can be
described by

1. a rotation axis direction (an axis through the origin) and
a rotation angle, or

2. Euler-Tait-Bryan angles:
R = R:(7)Ry(B)Rx(),

1 0 0 cos 0 —sinf
Ra):=|[ 0 cosa —sina |, R/(B): 0 1 0 . R(v):
sinB 0 cosf

0 sina cosa

cosy —siny 0
siny cosy O
0 0 1

Pure rotations have 3 dof.

[m] = = =
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Computer Vision 3. Transformations

. . N
Rotations in 3D “
Rotations in 3D can be described by a rotation axis and a rotation angle

Pure rotations (rotations along an axis through the origin) can be
described by

1. a rotation axis direction (an axis through the origin) and
a rotation angle, or
2. Euler-Tait-Bryan angles:

R = R:(v)Ry(B)Rx(a),

1 0 0 cos 0 —sinf
Ra):=|[ 0 cosa —sina |, R/(B): 0 1 0 . R(v):
sinB 0 cosf

0 sina cosa
ReR¥>3:RRT =RTR=1/,detR=1

cosy —siny 0
siny cosy O
0 0 1

3. a proper orthogonal matrix:

Pure rotations have 3 dof.

[m] = = =
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Computer Vision 3. Transformations

The Screw Decomposition

Any Euclidean transformation, i.e., a 3D rotation R followed by a
translation t, can be represented as

» a rotation followed by

» a translation along the same axis (called skrew axis)

[HZ04, p. 79]
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Computer Vision 3. Transformations

The Screw Decomposition

Any Euclidean transformation, i.e., a 3D rotation R followed by a
translation t, can be represented as

» a rotation followed by

» a translation along the same axis (called skrew axis)
Proof:

1. if t is orthogonal to the rotation axis of R: planar transformation.

2. generally: decompose t into torthogonal aNd tparallel- [HZ04, p. 79]
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Computer Vision 3. Transformations

Summary (1/2) YA

» The projective space P2 is an extension of the Euclidean space R3
with ideal points.

» Points and planes in P3 are parametrized by homogenuous
coordinates,
planes by homogeneous skew-symmetric matrices.

» Each two parallel lines intersect in an ideal point,
each two parallel planes intersect in a line of ideal points,
all ideal points form the plane at infinity p..

» Quadrics are surfaces of order 2 (hyperboloid, paraboloid, ellipsoid),
parametrized by a symmetric matrix @ containing all points x with
xTQx = 0.
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Computer Vision 3. Transformations

Summary (2/2)

» Projectivities H are invertibles mappings of P2 onto IP? that preserve
lines.

» Lines a transform via H™ " a, quadrics Q via H-TQH L.

» There exist several subgroups of the group of projectivities:
» Isometries rotate and translate figures.
> preserving lengths
» Similarities additionally (isotropic) scale figures.
> preserving ratio of lengths, angles, the plane at infinity poo
» Affine transforms additionally non-isotropic scale figures.
» preserving ratio of lengths on parallel lines, parallel lines, the absolute
conic Qo
» Projectivities additionally move the plane at infinity.
> preserving cross ratios

» Any projectivity can be decomposed into a chain of
an pure projective, a pure affine transform and a similarity.
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Computer Vision

Further Readings

» [HZ04, ch. 3].

» for the derivation of the dual Pliicker coordinates [Cox98, p. 88f]
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Computer Vision
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