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Computer Vision

Syllabus

Mon. 10.4. (1) 0. Introduction
1. Projective Geometry in 2D: a. The Projective Plane

Mon. 17.4. — — Easter Monday —
Mon. 24.4. (2) 1. Projective Geometry in 2D: b. Projective Transformations

Mon. 1.5. — — Labor Day —
Mon. 8.5. (3) 2. Projective Geometry in 3D: a. Projective Space

Mon. 15.5. (4) 2. Projective Geometry in 3D: b. Quadrics, Transformations
Mon. 22.5. (5) 3. Estimating 2D Transformations: a. Direct Linear Transformation
Mon. 29.5. (6) 3. Estimating 2D Transformations: b. Iterative Minimization

Mon. 5.6. — — Pentecoste Day —
Mon. 12.6. (7) 4. Interest Points: a. Edges and Corners
Mon. 19.6. (8) 4. Interest Points: b. Image Patches
Mon. 26.6. ( 9) 5. Simulataneous Localization and Mapping: a. Camera Models

Mon. 3.7. (10) 5. Simulataneous Localization and Mapping: b. Triangulation
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Computer Vision 1. Points, Lines, Planes in Projective Space

Objects in 2D Revisited

type repr. dim dof examples

points P2 0 2 circular points I , J
lines P2 1 2 line at inf. l∞
point conics Sym(P2×2) 1 5
line conics Sym(P2×2) 2 5 dual conic of circ. pts. C ∗∞
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Note: The dimensionality applies to non-degenerate cases only.



Computer Vision 1. Points, Lines, Planes in Projective Space

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

x ∈R3

Homogeneous coordinates:

x ∈P3 := (R4 \ {(0, 0, 0, 0)T})/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R4
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Computer Vision 1. Points, Lines, Planes in Projective Space

Homogeneous Coordinates: Points
Inhomogeneous coordinates:

x ∈R3

Homogeneous coordinates:

x ∈P3 := (R4 \ {(0, 0, 0, 0)T})/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R4

Example:



1
2
3
4


 ≡




4
8

12
16


 represent the same point in P3




1
2
3
5


 represent a different point in P3
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Computer Vision 1. Points, Lines, Planes in Projective Space

Homogeneous Coordinates: Points
Inhomogeneous coordinates:

x ∈R3

Homogeneous coordinates:

x ∈P3 := (R4 \ {(0, 0, 0, 0)T})/ ≡
x ≡ y :⇐⇒ ∃s ∈ R \ {0} : sx = y , x , y ∈ R4

finite points:




x1

x2

x3

1


 =: ι(




x1

x2

x3


)

ideal points:




x1

x2

x3

0



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Computer Vision 1. Points, Lines, Planes in Projective Space

Dual of Points: Planes

Inhomogeneous coordinates:

p ∈ R4 :Pp := {




x1

x2

x3


 | p1x1 + p2x2 + p3x3 + p4 = 0}

Homogeneous coordinates:

p ∈P3 : Pp := {x ∈ P3 | pT x = p1x1 + p2x2 + p3x3 + p4x4 = 0}

I contains all finite points of p′ ∈ κ−1(p): Pκ(p′) % ι(Pp′)
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Note: κ : R4 → P3, a 7→ [a] := {a′ ∈ R4 | a′ ≡ a}.



Computer Vision 1. Points, Lines, Planes in Projective Space

Dual of Points: Planes

Inhomogeneous coordinates:

p ∈ R4 :Pp := {




x1

x2

x3


 | p1x1 + p2x2 + p3x3 + p4 = 0}

Homogeneous coordinates:

p ∈P3 : Pp := {x ∈ P3 | pT x = p1x1 + p2x2 + p3x3 + p4x4 = 0}

I contains all finite points of p′ ∈ κ−1(p): Pκ(p′) % ι(Pp′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 26

Note: κ : R4 → P3, a 7→ [a] := {a′ ∈ R4 | a′ ≡ a}.



Computer Vision 1. Points, Lines, Planes in Projective Space

Intersecting Planes

Zeroset / Null space:

Nul(H) :={p ∈ P3 | Hp = 0}
All points incident to two planes p, q (p 6= q):

PP(p, q) :={x ∈ P3 | x ∈ Pp, x ∈ Pq} = {x ∈ P3 | pT x = qT x = 0}

Can be represented as zeroset:

PP(p, q) =Nul(pqT − qpT )

I idea: represent lines as intersection of planes
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Computer Vision 1. Points, Lines, Planes in Projective Space

All Planes Containing Two Points

All planes containing two points x , y (x 6= y):

PP∗(x , y) :={p ∈ P3 | x , y ∈ Pp} = {p ∈ P3 | pT x = pT y = 0}

Can be represented as zeroset:

PP∗(x , y) =Nul(xyT − yxT )

I this is just the dual of “All points incident to two planes”
I idea: represent lines as intersection of planes

I any two planes containing two points x , y will do
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Computer Vision 1. Points, Lines, Planes in Projective Space

Plücker Matrix

For two points x , y ∈ P3:

Plü(x , y) :=A := xyT − yxT

I skew symmetric: AT = −A
I esp. zero diagonal: Ai,i = 0.

I rank 2 (for x 6= y)
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Computer Vision 1. Points, Lines, Planes in Projective Space

Lines have 4 Degrees of Freedom

68 3 Projective Geometry and Transformations of 3D

Fig. 3.1. A line may be specified by its points of intersection with two orthogonal planes. Each inter-
section point has 2 degrees of freedom, which demonstrates that a line in IP3 has a total of 4 degrees of
freedom.

A direct solution for X, in terms of determinants of 3 × 3 submatrices, is obtained as
an analogue of (3.4), though computationally a numerical solution would be obtained
by algorithm A5.1(p589).
The two following results are direct analogues of their 2D counterparts.

Projective transformation. Under the point transformation X′ = HX, a plane trans-
forms as

π′ = H−Tπ. (3.6)

Parametrized points on a plane. The points X on the plane π may be written as

X = Mx (3.7)

where the columns of the 4×3 matrix M generate the rank 3 null-space of πT, i.e. πTM =
0, and the 3-vector x (which is a point on the projective plane IP2) parametrizes points
on the plane π. M is not unique, of course. Suppose the plane is π = (a, b, c, d)T and a is
non-zero, then MT can be written as MT = [p | I3×3], where p = (−b/a,−c/a,−d/a)T.

This parametrized representation is simply the analogue in 3D of a line l in IP2

defined as a linear combination of its 2D null-space as x = µa + λb, where lTa =
lTb = 0.

3.2.2 Lines

A line is defined by the join of two points or the intersection of two planes. Lines
have 4 degrees of freedom in 3-space. A convincing way to count these degrees of
freedom is to think of a line as defined by its intersection with two orthogonal planes,
as in figure 3.1. The point of intersection on each plane is specified by two parameters,
producing a total of 4 degrees of freedom for the line.

Lines are very awkward to represent in 3-space since a natural representation for an
object with 4 degrees of freedom would be a homogeneous 5-vector. The problem is
that a homogeneous 5 vector cannot easily be used in mathematical expressions to-
gether with the 4-vectors representing points and planes. To overcome this problem

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 1. Points, Lines, Planes in Projective Space

Lines via Dual Plücker Matrices
Lines can be defined easily via spans:

span(x1, x2, . . . , xM) :=
M∑

m=1

Rxm := {z ∈ RM | ∃s ∈ RM : z =
M∑

m=1

smx
m}

l(x , y) :=span(x , y)

Lines can be represented in 3D as zeroset of the dual Plücker matrix:

l(x , y) = Nul(Plü∗(x , y))

with

Plü∗(x , y) :=A∗ :=




0 A3,4 A4,2 A2,3

−A3,4 0 A1,4 A3,1

−A4,2 −A1,4 0 A1,2

−A2,3 −A3,1 −A1,2 0




and Plü(x , y) :=A := xyT − yxT (Plücker-Matrix)
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Computer Vision 1. Points, Lines, Planes in Projective Space

Lines via Dual Plücker Matrices

PP(x , y) = Nul(A), A = xyT − yxT

l(x , y) = Nul(A∗), A∗ = pqT − qpT , p, q ∈ PP(x , y)

Now

A∗A =(pqT − qpT )(xyT − yxT )

=pqT xyT − pqT yxT − qpT xyT + qpT yxT = 0

therefore for all i , j , i 6= j :

0 = −(A∗A)i ,j =
4∑

k=1

A∗i ,kAj ,k =
∑

k 6∈{i ,j}
A∗i ,kAj ,k as diagonals are zero

i.e., A∗i ,k1
Aj ,k1 + A∗i ,k2

Aj ,k2 = 0, {1, 2, 3, 4} = {i , j , k1, k2}
and thus

A3,4

A∗1,2
=
A4,2

A∗1,3
=

A2,3

A∗1,4
=

A1,2

A∗3,4
=

A1,3

A∗4,2
=

A1,4

A∗2,3
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Computer Vision 1. Points, Lines, Planes in Projective Space

Operations on Points, Lines & Planes

point x on plane p: pT x =0

point x on line A∗: A∗x =0

line A∗ is on plane p: (A∗)∗p =0

plane p joining points x , y , z : (x y z)Tp =0

plane p joining point x and line A∗: p =A∗x

line A∗ joining points x , y : A∗ =Plü∗(x , y)

=(xyT − yxT )∗

line A∗ as intersection of planes p, q: A∗ =pqT − qpT

point x as intersection of plane p and line A∗: x =(A∗)∗p

point x as intersection of planes p, q, r : (p q r)T x =0
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Computer Vision 1. Points, Lines, Planes in Projective Space

Plane at Infinity p∞

I All ideal points (x1, x2, x3, 0)T form a plane,
the plane at infinity p∞ := (0, 0, 0, 1)T .

I

Two parallel planes
A parallel line and plane
Two parallel lines



 intersect in





a line
a point
a point

on p∞

I p∞ is fixed under affine transformations.

Proofs: same as for the line at infinity in P2.
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Computer Vision 2. Quadrics

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

3. Transformations
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Computer Vision 2. Quadrics

Quadrics
Quadratic surfaces:

QQ := {x ∈ P3 | xTQx = 0}, Q ∈ Sym(P4×4)

I 9 degrees of freedom
I 9 points in general position define a quadric
I The intersection of a plane p with a quadric Q is a conic
I A quadric Q transforms as H−TQH−1: H(QQ) = QH−TQH−1

3.3 Twisted cubics 75

Fig. 3.2. Non-ruled quadrics. This shows plots of a sphere, ellipsoid, hyperboloid of two sheets and
paraboloid. They are all projectively equivalent.

Fig. 3.3. Ruled quadrics. Two examples of a hyperboloid of one sheet are given. These surfaces are
given by equations X2 + Y2 = Z2 + 1 and XY = Z respectively, and are projectively equivalent. Note
that these two surfaces are made up of two sets of disjoint straight lines, and that each line from one set
meets each line from the other set. The two quadrics shown here are projectively (though not affinely)
equivalent.

Ruled quadrics. Quadrics fall into two classes – ruled and unruled quadrics. A
ruled quadric is one that contains a straight line. More particularly, as shown in
figure 3.3, the non-degenerate ruled quadric (hyperboloid of one sheet) contains two
families of straight lines called generators. For more properties of ruled quadrics, refer
to [Semple-79].

The most interesting of the quadrics are the two quadrics of rank 4. Note that these
two quadrics differ even in their topological type. The quadric of signature 2 (the
sphere) is (obviously enough) topologically a sphere. On the other hand, the hyper-
boloid of 1 sheet is not topologically equivalent (homeomorphic) to a sphere. In fact,
it is topologically a torus (topologically equivalent to S1 × S1). This gives the clearest
indication that they are not projectively equivalent.

3.3 Twisted cubics

The twisted cubic may be considered to be a 3-dimensional analogue of a 2D conic
(although in other ways it is a quadric surface which is the 3-dimensional analogue of
a 2D conic.)

3.3 Twisted cubics 75
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Computer Vision 2. Quadrics

Quadrics / Signature

Q = USUT SVD: S diagonal, UUT = I

= HS ′HT S ′ diagonal with S ′i ,i ∈ {+1,−1, 0}

signature of quadric Q:

σ(Q) := |{i ∈ {1, 2, 3, 4} | S ′i ,i = +1}| − |{i ∈ {1, 2, 3, 4} | S ′i ,i = −1}|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Quadrics

Quadrics / Types

rank σ diagonal equation point set

4 4 (1, 1, 1, 1) x2 + y2 + z2 + 1 = 0 no real points
2 (1, 1, 1, -1) x2 + y2 + z2 − 1 = 0 sphere
0 (1, 1, -1, -1) x2 + y2 − z2 − 1 = 0 hyperboloid of one sheet

3 3 (1, 1, 1, 0) x2 + y2 + z2 = 0 one point (0, 0, 0, 1)T

1 (1, 1, -1, 0) x2 + y2 − z2 = 0 cone at origin

2 2 (1, 1, 0, 0) x2 + y2 = 0 single line (z-axis)
0 (1, -1, 0, 0) x2 − y2 = 0 two planes x = ±y

1 1 (1, 0, 0, 0) x2 = 0 one plane x = 0
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Computer Vision 2. Quadrics

Quadrics / Types
a) rank = 4, σ = 2 : sphere / ellipsoid3.3 Twisted cubics 75

Fig. 3.2. Non-ruled quadrics. This shows plots of a sphere, ellipsoid, hyperboloid of two sheets and
paraboloid. They are all projectively equivalent.

Fig. 3.3. Ruled quadrics. Two examples of a hyperboloid of one sheet are given. These surfaces are
given by equations X2 + Y2 = Z2 + 1 and XY = Z respectively, and are projectively equivalent. Note
that these two surfaces are made up of two sets of disjoint straight lines, and that each line from one set
meets each line from the other set. The two quadrics shown here are projectively (though not affinely)
equivalent.

Ruled quadrics. Quadrics fall into two classes – ruled and unruled quadrics. A
ruled quadric is one that contains a straight line. More particularly, as shown in
figure 3.3, the non-degenerate ruled quadric (hyperboloid of one sheet) contains two
families of straight lines called generators. For more properties of ruled quadrics, refer
to [Semple-79].

The most interesting of the quadrics are the two quadrics of rank 4. Note that these
two quadrics differ even in their topological type. The quadric of signature 2 (the
sphere) is (obviously enough) topologically a sphere. On the other hand, the hyper-
boloid of 1 sheet is not topologically equivalent (homeomorphic) to a sphere. In fact,
it is topologically a torus (topologically equivalent to S1 × S1). This gives the clearest
indication that they are not projectively equivalent.

3.3 Twisted cubics

The twisted cubic may be considered to be a 3-dimensional analogue of a 2D conic
(although in other ways it is a quadric surface which is the 3-dimensional analogue of
a 2D conic.)

b) rank = 4, σ = 0 : hyperboloid
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Fig. 3.2. Non-ruled quadrics. This shows plots of a sphere, ellipsoid, hyperboloid of two sheets and
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that these two surfaces are made up of two sets of disjoint straight lines, and that each line from one set
meets each line from the other set. The two quadrics shown here are projectively (though not affinely)
equivalent.

Ruled quadrics. Quadrics fall into two classes – ruled and unruled quadrics. A
ruled quadric is one that contains a straight line. More particularly, as shown in
figure 3.3, the non-degenerate ruled quadric (hyperboloid of one sheet) contains two
families of straight lines called generators. For more properties of ruled quadrics, refer
to [Semple-79].

The most interesting of the quadrics are the two quadrics of rank 4. Note that these
two quadrics differ even in their topological type. The quadric of signature 2 (the
sphere) is (obviously enough) topologically a sphere. On the other hand, the hyper-
boloid of 1 sheet is not topologically equivalent (homeomorphic) to a sphere. In fact,
it is topologically a torus (topologically equivalent to S1 × S1). This gives the clearest
indication that they are not projectively equivalent.

3.3 Twisted cubics

The twisted cubic may be considered to be a 3-dimensional analogue of a 2D conic
(although in other ways it is a quadric surface which is the 3-dimensional analogue of
a 2D conic.)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 26

[HZ04, p. 75]



Computer Vision 2. Quadrics

Quadrics / Types (2/2)

c) rank = 3, σ = 1 : cone d) rank = 2, σ = 0 : two planes
76 3 Projective Geometry and Transformations of 3D

Fig. 3.4. Degenerate quadrics. The two most important degenerate quadrics are shown, the cone and
two planes. Both these quadrics are ruled. The matrix representing the cone has rank 3, and the null-
vector represents the nodal point of the cone. The matrix representing the two (non-coincident) planes
has rank 2, and the two generators of the rank 2 null-space are two points on the intersection line of the
planes.

A conic in the 2-dimensional projective plane may be described as a parametrized
curve given by the equation




x1

x2

x3


 = A




1
θ
θ2


 =




a11 + a12θ + a13θ
2

a21 + a22θ + a23θ
2

a31 + a32θ + a33θ
2


 (3.18)

where A is a non-singular 3× 3 matrix.
In an analogous manner, a twisted cubic is defined to be a curve in IP3 given in

parametric form as



X1

X2

X3

X4


 = A




1
θ
θ2

θ3


 =




a11 + a12θ + a13θ
2 + a14θ

3

a21 + a22θ + a23θ
2 + a24θ

3

a31 + a32θ + a33θ
2 + a34θ

3

a41 + a42θ + a43θ
2 + a44θ

3


 (3.19)

where A is a non-singular 4× 4 matrix.

Since a twisted cubic is perhaps an unfamiliar object, various views of the curve are
shown in figure 3.5. In fact, a twisted cubic is a quite benign space curve.

Properties of a twisted cubic. Let c be a non-singular twisted cubic. Then c is not
contained within any plane of IP3; it intersects a general plane at three distinct points. A
twisted cubic has 12 degrees of freedom (counted as 15 for the matrix A, less 3 for a 1D
projectivity on the parametrization θ, which leaves the curve unaltered). Requiring the
curve to pass through a point X places two constraints on c, since X = A(1, θ, θ2, θ3)T

is three independent ratios, but only two constraints once θ is eliminated. Thus, there
is a unique c through six points in general position. Finally, all non-degenerate twisted
cubics are projectively equivalent. This is clear from the definition (3.19): a projective
transformation A−1 maps c to the standard form c(θ′) = (1, θ′, θ′2, θ′3)T, and since
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Computer Vision 2. Quadrics

Absolute Dual Quadric Q∗∞

Plane/dual quadrics:

Q∗Q∗ := {p ∈ P3 | pTQ∗p = 0}, Q∗ ∈ Sym(P4×4)

Absolute dual quadric:

Q∗∞ :=

(
I 0

0T 0

)
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



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Computer Vision 2. Quadrics

Absolute Dual Quadric Q∗∞ Invariant under Similarity

The absolute dual quadric Q∗∞ is invariant under projectivity H
⇔

H is a similarity.

proof:

H =

(
A t
vT v4

)
,

HQ∗∞HT =

(
A t
vT v4

) (
I 0

0T 0

)(
AT v
tT v4

)

=

(
AAT Av
vTAT vT v

)
!

= Q∗∞

⇔v = 0,AAT = I , i.e., H is a similarity
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Computer Vision 2. Quadrics

Absolute Dual Quadric Q∗∞

I p∞ is the nullvector of Q∗∞.

I The angle between two planes is given by

cos θ(p, q) :=
pTQ∗∞q√

pTQ∗∞p qTQ∗∞q

I esp. two planes p, q are orthogonal iff pTQ∗∞q = 0.

proofs: as in P2.
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Computer Vision 2. Quadrics

Absolute Conic Ω∞

CΩ∞ :=QQ∗∞ ∩ Pp∞

={x ∈ P3 | x2
1 + x2

2 + x2
3 = 0, x4 = 0}

I H is a similarity transform ⇔ Ω∞ is invariant under H
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Computer Vision 2. Quadrics

Objects in 3D

type repr. dim dof examples

points P3 0 3
lines Skew(P4×4) 1 5
planes P3 2 3 plane at inf. p∞
point quadrics Sym(P4×4) 2 9
plane quadrics Sym(P4×4) 3 9 absolute dual quadric Q∗∞
conic p ∩ Q 1 8 absolute conic Ω∞
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Computer Vision 3. Transformations

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

3. Transformations
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Computer Vision 3. Transformations

Hierarchy of Transformations78 3 Projective Geometry and Transformations of 3D

Group Matrix Distortion Invariant properties

Projective
15 dof

[
A t
vT v

] Intersection and tangency of sur-
faces in contact. Sign of Gaussian
curvature.

Affine
12 dof

[
A t
0T 1

] Parallelism of planes, volume ra-
tios, centroids. The plane at infin-
ity, π∞, (see section 3.5).

Similarity
7 dof

[
sR t
0T 1

]
The absolute conic, Ω∞,
(see section 3.6).

Euclidean
6 dof

[
R t
0T 1

]
Volume.

Table 3.2. Geometric properties invariant to commonly occurring transformations of 3-space. The
matrix A is an invertible 3 × 3 matrix, R is a 3D rotation matrix, t = (tX, tY, tZ)

T a 3D translation, v
a general 3-vector, v a scalar, and 0 = (0, 0, 0)T a null 3-vector. The distortion column shows typical
effects of the transformations on a cube. Transformations higher in the table can produce all the actions
of the ones below. These range from Euclidean, where only translations and rotations occur, to projective
where five points can be transformed to any other five points (provided no three points are collinear, or
four coplanar).

action (a rotation composed with a translation) to be reduced to a situation almost as
simple as the 2D case. The screw decomposition is that

Result 3.6. Any particular translation and rotation is equivalent to a rotation about a
screw axis together with a translation along the screw axis. The screw axis is parallel
to the rotation axis.

In the case of a translation and an orthogonal rotation axis (termed planar motion), the
motion is equivalent to a rotation alone about the screw axis.

Proof. We will sketch a constructive geometric proof that can easily be visualized.
Consider first the 2D case – a Euclidean transformation on the plane. It is evident
from figure 3.6 that a screw axis exists for such 2D transformations. For the 3D case,
decompose the translation t into two components t = t‖ + t⊥, parallel and orthogonal
respectively to the rotation axis direction (t‖ = (t.a)a, t⊥ = t− (t.a)a).
Then the Euclidean motion is partitioned into two parts: first a rotation about the screw
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Computer Vision 3. Transformations

Rotations in 3D
Rotations in 3D can be described by a rotation axis and a rotation angle.

Pure rotations (rotations along an axis through the origin) can be
described by

1. a rotation axis direction (an axis through the origin) and
a rotation angle, or

2. Euler-Tait-Bryan angles:

R = Rz(γ)Ry (β)Rx(α),

Rx(α) :=




1 0 0
0 cosα − sinα
0 sinα cosα


 , Ry (β) :=




cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ


 , Rz(γ) :=




cos γ − sin γ 0
sin γ cos γ 0

0 0 1




3. a proper orthogonal matrix:

R ∈ R3×3 : RRT = RTR = I , detR = 1

Pure rotations have 3 dof.
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Computer Vision 3. Transformations

The Screw Decomposition
Any Euclidean transformation, i.e., a 3D rotation R followed by a
translation t, can be represented as

I a rotation followed by

I a translation along the same axis (called skrew axis)

Proof:
1. if t is orthogonal to the rotation axis of R: planar transformation.3.5 The plane at infinity 79

t

y

x

y
O /

/

/

S

y

x

y
O /

/

/

R(   )θ

θ

O Ox x
a b

Fig. 3.6. 2D Euclidean motion and a “screw” axis. (a) The frame {x, y} undergoes a translation t⊥
and a rotation by θ to reach the frame {x′, y′}. The motion is in the plane orthogonal to the rotation
axis. (b) This motion is equivalent to a single rotation about the screw axis S. The screw axis lies on the
perpendicular bisector of the line joining corresponding points, such that the angle between the lines
joining S to the corresponding points is θ. In the figure the corresponding points are the two frame
origins and θ has the value 90◦.

tO

θ

O /

S

a

screw
axis

t

O O /

S

O/

a

screw
axis S /

a b

Fig. 3.7. 3D Euclidean motion and the screw decomposition. Any Euclidean rotation R and trans-
lation t may be achieved by (a) a rotation about the screw axis, followed by (b) a translation along the
screw axis by t‖. Here a is the (unit) direction of the rotation axis (so that Ra = a), and t is decomposed
as t = t‖ + t⊥, which are vector components parallel and orthogonal respectively to the rotation axis
direction The point S is closest to O on the screw axis (so that the line from S to O is perpendicular to
the direction of a). Similarly S′ is the point on the screw axis closest to O′.

axis, which covers the rotation and t⊥; second a translation by t‖ along the screw axis.
The complete motion is illustrated in figure 3.7.

The screw decomposition can be determined from the fixed points of the 4×4 matrix
representing the Euclidean transformation. This idea is examined in the exercises at the
end of the chapter.

3.5 The plane at infinity

In planar projective geometry identifying the line at infinity, l∞, allowed affine prop-
erties of the plane to be measured. Identifying the circular points on l∞ then allowed

2. generally: decompose t into torthogonal and tparallel.
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Computer Vision 3. Transformations

Summary (1/2)

I The projective space P3 is an extension of the Euclidean space R3

with ideal points.

I Points and planes in P3 are parametrized by homogenuous
coordinates,
planes by homogeneous skew-symmetric matrices.

I Each two parallel lines intersect in an ideal point,
each two parallel planes intersect in a line of ideal points,
all ideal points form the plane at infinity p∞.

I Quadrics are surfaces of order 2 (hyperboloid, paraboloid, ellipsoid),
parametrized by a symmetric matrix Q containing all points x with
xTQx = 0.
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Computer Vision 3. Transformations

Summary (2/2)

I Projectivities H are invertibles mappings of P3 onto P3 that preserve
lines.

I Lines a transform via H–Ta, quadrics Q via H−TQH−1.

I There exist several subgroups of the group of projectivities:
I Isometries rotate and translate figures.

I preserving lengths
I Similarities additionally (isotropic) scale figures.

I preserving ratio of lengths, angles, the plane at infinity p∞
I Affine transforms additionally non-isotropic scale figures.

I preserving ratio of lengths on parallel lines, parallel lines, the absolute
conic Ω∞

I Projectivities additionally move the plane at infinity.
I preserving cross ratios

I Any projectivity can be decomposed into a chain of
an pure projective, a pure affine transform and a similarity.
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Computer Vision

Further Readings

I [HZ04, ch. 3].

I for the derivation of the dual Plücker coordinates [Cox98, p. 88f]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 26



Computer Vision

References

Harold Scott Macdonald Coxeter.

Non-euclidean geometry.
Cambridge University Press, 1998.

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision.
Cambridge university press, 2004.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 26


	1. Points, Lines, Planes in Projective Space
	2. Quadrics
	3. Transformations
	Appendix

