

Computer Vision

2. Projective Geometry in 3D

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 10.4.

(1)

		1. Projective Geometry in 2D: a. The Projective Plane
Mon. 17.4.	_	— Easter Monday —
Mon. 24.4.	(2)	1. Projective Geometry in 2D: b. Projective Transformations
Mon. 1.5.	_	— Labor Day —
Mon. 8.5.	(3)	2. Projective Geometry in 3D: a. Projective Space
Mon. 15.5.	(4)	2. Projective Geometry in 3D: b. Quadrics, Transformations
Mon. 22.5.	(5)	3. Estimating 2D Transformations: a. Direct Linear Transformation
Mon. 29.5.	(6)	3. Estimating 2D Transformations: b. Iterative Minimization
Mon. 5.6.	_	— Pentecoste Day —
Mon. 12.6.	(7)	4. Interest Points: a. Edges and Corners
Mon. 19.6.	(8)	4. Interest Points: b. Image Patches
Mon. 26.6.	(9)	5. Simulataneous Localization and Mapping: a. Camera Models
Mon. 3.7.	(10)	5. Simulataneous Localization and Mapping: b. Triangulation

0. Introduction

Jrivers/to

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

3. Transformations

Outline

1. Points, Lines, Planes in Projective Space

2. Quadrics

3. Transformations

Objects in 2D Revisited

type	repr.	dim	dof	examples
points	\mathbb{P}^2	0	2	circular points I, J
lines	\mathbb{P}^2	1	2	line at inf. I_{∞}
point conics		1	5	
line conics	$Sym(\mathbb{P}^{2 imes 2})$	2	5	dual conic of circ. pts. \mathcal{C}_{∞}^{*}

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^3$$

Homogeneous coordinates:

$$x \in \mathbb{P}^3 := (\mathbb{R}^4 \setminus \{(0,0,0,0)^T\}) / \equiv$$

 $x \equiv y : \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^4$

Jrivers/to

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^3$$

Homogeneous coordinates:

$$x \in \mathbb{P}^{3} := (\mathbb{R}^{4} \setminus \{(0,0,0,0)^{T}\}) / \equiv$$
$$x \equiv y : \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^{4}$$

Example:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \equiv \begin{pmatrix} 4 \\ 8 \\ 12 \\ 16 \end{pmatrix}$$
 represent the same point in \mathbb{P}^3

$$\begin{pmatrix} 1\\2\\3\\5 \end{pmatrix}$$
 represent a different point in \mathbb{P}^3

Jrivers/to

Homogeneous Coordinates: Points

Inhomogeneous coordinates:

$$x \in \mathbb{R}^3$$

Homogeneous coordinates:

$$x \in \mathbb{P}^3 := (\mathbb{R}^4 \setminus \{(0,0,0,0)^T\}) / \equiv$$

 $x \equiv y : \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^4$

finite points:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} =: \iota(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix})$$
ideal points:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Janetsia.

Dual of Points: Planes

Inhomogeneous coordinates:

$$p \in \mathbb{R}^4 : P_p := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 = 0 \right\}$$

Note: $\kappa : \mathbb{R}^4 \to \mathbb{P}^3$, $a \mapsto [a] := \{a' \in \mathbb{R}^4 \mid a' \equiv a\}$.

Dual of Points: Planes

Inhomogeneous coordinates:

$$p \in \mathbb{R}^4 : P_p := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 = 0 \right\}$$

Homogeneous coordinates:

$$p \in \mathbb{P}^3 : P_p := \{ x \in \mathbb{P}^3 \mid p^T x = p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 x_4 = 0 \}$$

▶ contains all finite points of $p' \in \kappa^{-1}(p)$: $P_{\kappa(p')} \supseteq \iota(P_{p'})$

Note: $\kappa : \mathbb{R}^4 \to \mathbb{P}^3$, $a \mapsto [a] := \{a' \in \mathbb{R}^4 \mid a' \equiv a\}$.

Intersecting Planes

Zeroset / **Null space**:

$$\mathsf{Nul}(H) := \{ p \in \mathbb{P}^3 \mid Hp = 0 \}$$

All points incident to two planes $p, q \ (p \neq q)$:

$$PP(p,q) := \{ x \in \mathbb{P}^3 \mid x \in P_p, x \in P_q \} = \{ x \in \mathbb{P}^3 \mid p^T x = q^T x = 0 \}$$

Can be represented as zeroset:

$$PP(p,q) = \text{Nul}(pq^T - qp^T)$$

Intersecting Planes

Zeroset / **Null space**:

$$Nul(H) := \{ p \in \mathbb{P}^3 \mid Hp = 0 \}$$

All points incident to two planes $p, q \ (p \neq q)$:

$$PP(p,q) := \{ x \in \mathbb{P}^3 \mid x \in P_p, x \in P_q \} = \{ x \in \mathbb{P}^3 \mid p^T x = q^T x = 0 \}$$

Can be represented as zeroset:

$$PP(p,q) = Nul(pq^T - qp^T)$$

▶ idea: represent lines as intersection of planes

All Planes Containing Two Points

All planes containing two points $x, y \ (x \neq y)$:

$$\mathsf{PP}^*(x,y) := \{ p \in \mathbb{P}^3 \mid x, y \in P_p \} = \{ p \in \mathbb{P}^3 \mid p^T x = p^T y = 0 \}$$

Can be represented as zeroset:

$$\mathsf{PP}^*(x,y) = \mathsf{Nul}(xy^T - yx^T)$$

- ▶ this is just the dual of "All points incident to two planes"
- ▶ idea: represent lines as intersection of planes
 - ▶ any two planes containing two points x, y will do

Plücker Matrix

For two points $x, y \in \mathbb{P}^3$:

$$Pl\ddot{u}(x,y) := A := xy^T - yx^T$$

- skew symmetric: $A^T = -A$
 - esp. zero diagonal: $A_{i,i} = 0$.
- ▶ rank 2 (for $x \neq y$)

Still deship

Lines have 4 Degrees of Freedom

Lines via Dual Plücker Matrices

Lines can be defined easily via spans:

$$span(x^{1}, x^{2}, ..., x^{M}) := \sum_{m=1}^{M} \mathbb{R}x^{m} := \{ z \in \mathbb{R}^{M} \mid \exists s \in \mathbb{R}^{M} : z = \sum_{m=1}^{M} s_{m}x^{m} \}$$

$$I(x, y) := span(x, y)$$

Shivers/tag

Lines via Dual Plücker Matrices

Lines can be defined easily via spans:

$$span(x^{1}, x^{2}, ..., x^{M}) := \sum_{m=1}^{M} \mathbb{R}x^{m} := \{ z \in \mathbb{R}^{M} \mid \exists s \in \mathbb{R}^{M} : z = \sum_{m=1}^{M} s_{m}x^{m} \}$$

$$I(x, y) := span(x, y)$$

Lines can be represented in 3D as zeroset of the dual Plücker matrix:

$$I(x,y) = \text{Nul}(\text{Pl\"u}^*(x,y))$$

with

$$PI\ddot{u}^*(x,y) := A^* := \begin{pmatrix} 0 & A_{3,4} & A_{4,2} & A_{2,3} \\ -A_{3,4} & 0 & A_{1,4} & A_{3,1} \\ -A_{4,2} & -A_{1,4} & 0 & A_{1,2} \\ -A_{2,3} & -A_{3,1} & -A_{1,2} & 0 \end{pmatrix}$$

and
$$Pl\ddot{u}(x, y) := A := xy^T - yx^T$$
 (Plücker-Matrix)

Lines via Dual Plücker Matrices

$$PP(x, y) = Nul(A), \quad A = xy^{T} - yx^{T}$$

$$I(x, y) = Nul(A^{*}), \quad A^{*} = pq^{T} - qp^{T}, \quad p, q \in PP(x, y)$$

Now

$$A^*A = (pq^T - qp^T)(xy^T - yx^T) = pq^Txy^T - pq^Tyx^T - qp^Txy^T + qp^Tyx^T = 0$$

therefore for all $i, j, i \neq j$:

$$0 = -(A^*A)_{i,j} = \sum_{k=1}^4 A_{i,k}^* A_{j,k} = \sum_{k \notin \{i,j\}} A_{i,k}^* A_{j,k}$$
 as diagonals are zero

i.e.,
$$A_{i,k_1}^* A_{j,k_1} + A_{i,k_2}^* A_{j,k_2} = 0$$
, $\{1,2,3,4\} = \{i,j,k_1,k_2\}$

and thus

$$\frac{A_{3,4}}{A_{1,2}^*} = \frac{A_{4,2}}{A_{1,3}^*} = \frac{A_{2,3}}{A_{1,4}^*} = \frac{A_{1,2}}{A_{3,4}^*} = \frac{A_{1,3}}{A_{4,2}^*} = \frac{A_{1,4}}{A_{2,3}^*}$$

Operations on Points, Lines & Planes

point x on plane p: $p^T x = 0$ point x on line A^* : $A^* x = 0$ line A^* is on plane p: $(A^*)^* p = 0$

plane p joining points x, y, z: $(x \ y \ z)^T p = 0$ plane p joining point x and line A^* : $p = A^*x$

line A^* joining points x, y:

$$A^* = Pl\ddot{u}^*(x, y)$$
$$= (xy^T - yx^T)^*$$
$$A^* = pa^T - ap^T$$

line A^* as intersection of planes p, q:

$$x = (A^*)^* p$$

point x as intersection of planes p, q, r:

point x as intersection of plane p and line A^* :

$$(pqr)^Tx = 0$$

Plane at Infinity p_{∞}

► All ideal points $(x_1, x_2, x_3, 0)^T$ form a plane, the plane at infinity $p_{\infty} := (0, 0, 0, 1)^T$.

•

$$\left. \begin{array}{l} \text{Two parallel planes} \\ \text{A parallel line and plane} \\ \text{Two parallel lines} \end{array} \right\} \text{intersect in} \ \left\{ \begin{array}{l} \text{a line} \\ \text{a point} \end{array} \right. \text{on } p_{\infty} \\ \text{a point} \end{array}$$

▶ p_{∞} is fixed under affine transformations.

Proofs: same as for the line at infinity in \mathbb{P}^2 .

Outline

2. Quadrics

Jeiners/

Quadrics

Quadratic surfaces:

$$\mathbf{Q}_Q := \{ x \in \mathbb{P}^3 \mid x^T Q x = 0 \}, \quad Q \in \mathsf{Sym}(\mathbb{P}^{4 \times 4})$$

- ▶ 9 degrees of freedom
- ▶ 9 points in general position define a quadric
- ▶ The intersection of a plane p with a quadric Q is a conic
- ▶ A quadric Q transforms as $H^{-T}QH^{-1}$: $H(\mathbf{Q}_Q) = \mathbf{Q}_{H^{-T}QH^{-1}}$

[HZ04, p. 75]

Jrivers/Fath

Quadrics / Signature

$$Q = USU^T$$
 SVD: S diagonal, $UU^T = I$ $= HS'H^T$ S' diagonal with $S'_{i,i} \in \{+1, -1, 0\}$

signature of quadric Q:

$$\sigma(Q) := |\{i \in \{1, 2, 3, 4\} \mid S'_{i,i} = +1\}| - |\{i \in \{1, 2, 3, 4\} \mid S'_{i,i} = -1\}|$$

Stivers/Ida

Quadrics / Types

rank	σ	diagonal	equation	point set
4	4	(1, 1, 1, 1)	$x^2 + y^2 + z^2 + 1 = 0$	no real points
	2	(1, 1, 1, -1)	$x^2 + y^2 + z^2 - 1 = 0$	sphere
	0	(1, 1, -1, -1)	$x^2 + y^2 - z^2 - 1 = 0$	hyperboloid of one shee
3	3	(1, 1, 1, 0)	$x^2 + y^2 + z^2 = 0$	one point $(0,0,0,1)^T$
	1	(1, 1, -1, 0)	$x^2 + y^2 - z^2 = 0$	cone at origin
2	2	(1, 1, 0, 0)	$x^2 + y^2 = 0$	single line (z-axis)
	0	(1, -1, 0, 0)	$x^2 - y^2 = 0$	two planes $x = \pm y$
1	1	(1, 0, 0, 0)	$x^2 = 0$	one plane $x = 0$

Stildeshell

Quadrics / Types

a) rank = $4, \sigma = 2$: sphere / ellipsoid

b) rank = $4, \sigma = 0$: hyperboloid

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Quadrics / Types (2/2)

c) rank = 3,
$$\sigma$$
 = 1 : cone

d) rank =
$$2, \sigma = 0$$
: two planes

Still deshibit

Absolute Dual Quadric Q_{∞}^*

Plane/dual quadrics:

$$\mathbf{Q}_{Q*}^* := \{ p \in \mathbb{P}^3 \mid p^T Q^* p = 0 \}, \quad Q^* \in \operatorname{\mathsf{Sym}}(\mathbb{P}^{4 \times 4})$$

Absolute dual quadric:

$$Q_{\infty}^* := \left(egin{array}{ccc} I & 0 \ 0^T & 0 \end{array}
ight) = \left(egin{array}{ccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight)$$

Stildeshaft

Absolute Dual Quadric Q_{∞}^* Invariant under Similarity

The absolute dual quadric Q_{∞}^* is invariant under projectivity H \Leftrightarrow H is a similarity.

proof:

$$H = \begin{pmatrix} A & t \\ v^T & v_4 \end{pmatrix},$$

$$HQ_{\infty}^*H^T = \begin{pmatrix} A & t \\ v^T & v_4 \end{pmatrix} \begin{pmatrix} I & 0 \\ 0^T & 0 \end{pmatrix} \begin{pmatrix} A^T & v \\ t^T & v_4 \end{pmatrix}$$

Shivers/total

Absolute Dual Quadric Q_{∞}^* Invariant under Similarity

The absolute dual quadric Q_{∞}^* is invariant under projectivity H \Leftrightarrow H is a similarity.

proof:

$$H = \begin{pmatrix} A & t \\ v^T & v_4 \end{pmatrix},$$

$$HQ_{\infty}^*H^T = \begin{pmatrix} A & t \\ v^T & v_4 \end{pmatrix} \begin{pmatrix} A^T & v \\ 0^T & 0 \end{pmatrix}$$

$$= \begin{pmatrix} AA^T & Av \\ v^TA^T & v^Tv \end{pmatrix} \stackrel{!}{=} Q_{\infty}^*$$

$$\Leftrightarrow v = 0, AA^T = I, \text{i.e., } H \text{ is a similarity}$$

Absolute Dual Quadric Q_{∞}^*

- ▶ p_{∞} is the nullvector of Q_{∞}^* .
- ► The angle between two planes is given by

$$\cos\theta(p,q) := \frac{p^T Q_{\infty}^* q}{\sqrt{p^T Q_{\infty}^* p \, q^T Q_{\infty}^* q}}$$

▶ esp. two planes p, q are orthogonal iff $p^T Q_{\infty}^* q = 0$. proofs: as in \mathbb{P}^2 .

Still double

Absolute Conic Ω_{∞}

$$\mathbf{C}_{\Omega_{\infty}} := \mathbf{Q}_{Q_{\infty}^{*}} \cap P_{p_{\infty}}$$

= $\{x \in \mathbb{P}^{3} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 0, x_{4} = 0\}$

▶ H is a similarity transform $\Leftrightarrow \Omega_{\infty}$ is invariant under H

Still ersiter

Objects in 3D

type	repr.	dim	dof	examples
points	\mathbb{P}^3	0	3	
lines	$Skew(\mathbb{P}^{4 imes 4})$	1	5	
planes	\mathbb{P}^3	2	3	plane at inf. p_{∞}
point quadrics		2	9	
plane quadrics	$Sym(\mathbb{P}^{4 imes 4})$	3	9	absolute dual quadric Q_{∞}^{*}
conic	$p\cap Q$	1	8	absolute conic Ω_{∞}

1. Points, Lines, Planes in Projective Space

2. Quadrics

3. Transformations

Stivers/

Hierarchy of Transformations

areny er	Transfermations			
Group	Matrix	Distortion	Invariant properties	
Projective 15 dof	$\left[\begin{array}{cc}\mathbf{A} & \mathbf{t} \\ \mathbf{v}^T & v\end{array}\right]$		Intersection and tangency of surfaces in contact. Sign of Gaussian curvature.	
Affine 12 dof	$\left[\begin{array}{cc} \mathbf{A} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		Parallelism of planes, volume ratios, centroids. The plane at infinity, π_{∞} , (see section 3.5).	
Similarity 7 dof	$\left[\begin{array}{cc} s\mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		The absolute conic, Ω_{∞} , (see section 3.6).	
Euclidean 6 dof	$\left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		Volume.	

[HZ04, p. 78] ← □ → ← □ → ← □ → ← □ → □ | □ ← ◇ ○ ○

Stilldeshelf

Rotations in 3D

Rotations in 3D can be described by a rotation axis and a rotation angle.

Rotations in 3D

Rotations in 3D can be described by a **rotation axis** and a **rotation angle**.

Pure rotations (rotations along an axis through the origin) can be described by

 a rotation axis direction (an axis through the origin) and a rotation angle, or

Rotations in 3D

Rotations in 3D can be described by a **rotation axis** and a **rotation angle**.

Pure rotations (rotations along an axis through the origin) can be described by

- a rotation axis direction (an axis through the origin) and a rotation angle, or
- 2. Euler-Tait-Bryan angles:

$$R = R_z(\gamma)R_y(\beta)R_x(\alpha),$$

$$R_{\mathbf{x}}(\alpha) := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha \\ 0 & \sin\alpha & \cos\alpha \end{array} \right), \quad R_{\mathbf{y}}(\beta) := \left(\begin{array}{ccc} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta \end{array} \right), \quad R_{\mathbf{z}}(\gamma) := \left(\begin{array}{ccc} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Pure rotations have 3 dof.

Rotations in 3D

Rotations in 3D can be described by a **rotation axis** and a **rotation angle**.

Pure rotations (rotations along an axis through the origin) can be described by

- a rotation axis direction (an axis through the origin) and a rotation angle, or
- 2. Euler-Tait-Bryan angles:

$$R = R_z(\gamma)R_y(\beta)R_x(\alpha),$$

$$R_{\mathbf{x}}(\alpha) := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{array}\right), \quad R_{\mathbf{y}}(\beta) := \left(\begin{array}{ccc} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{array}\right), \quad R_{\mathbf{z}}(\gamma) := \left(\begin{array}{ccc} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{array}\right)$$

3. a proper orthogonal matrix:

$$R \in \mathbb{R}^{3 \times 3}$$
: $RR^T = R^T R = I$, $\det R = 1$

Pure rotations have 3 dof.

The Screw Decomposition

Any Euclidean transformation, i.e., a 3D rotation R followed by a translation t, can be represented as

- ► a rotation followed by
- ► a translation along the same axis (called **skrew axis**)

The Screw Decomposition

Any Euclidean transformation, i.e., a 3D rotation R followed by a translation t, can be represented as

- ► a rotation followed by
- ▶ a translation along the same axis (called skrew axis)

Proof:

1. if t is orthogonal to the rotation axis of R: planar transformation.

2. generally: decompose t into $t_{\text{orthogonal}}$ and t_{parallel} . [HZ04, p. 79]

Summary (1/2)

- ▶ The projective space \mathbb{P}^3 is an extension of the Euclidean space \mathbb{R}^3 with ideal points.
- Points and planes in P³ are parametrized by homogenuous coordinates, planes by homogeneous skew-symmetric matrices.
- ▶ Each two parallel lines intersect in an ideal point, each two parallel planes intersect in a line of ideal points, all ideal points form the plane at infinity p_{∞} .
- ▶ Quadrics are surfaces of order 2 (hyperboloid, paraboloid, ellipsoid), parametrized by a symmetric matrix Q containing all points x with $x^TQx = 0$.

Jnivers/idy

Summary (2/2)

- ▶ Projectivities H are invertibles mappings of \mathbb{P}^3 onto \mathbb{P}^3 that preserve lines.
- ► Lines a transform via $H^{-T}a$, quadrics Q via $H^{-T}QH^{-1}$.
- ► There exist several subgroups of the group of projectivities:
 - ► **Isometries rotate** and **translate** figures.
 - preserving lengths
 - Similarities additionally (isotropic) scale figures.
 - lacktriangleright preserving ratio of lengths, angles, the plane at infinity p_{∞}
 - ► Affine transforms additionally non-isotropic scale figures.
 - preserving ratio of lengths on parallel lines, parallel lines, the absolute conic Ω_{∞}
 - Projectivities additionally move the plane at infinity.
 - preserving cross ratios
- Any projectivity can be decomposed into a chain of an pure projective, a pure affine transform and a similarity.

Shiversite.

Further Readings

- ► [HZ04, ch. 3].
- ► for the derivation of the dual Plücker coordinates [Cox98, p. 88f]

Shivers/to

References

Harold Scott Macdonald Coxeter.

Non-euclidean geometry. Cambridge University Press, 1998.

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision. Cambridge university press, 2004.