

Computer Vision 3. Estimating 2D Transformations

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

・ロト 《聞》 《臣》 《臣》 三言 のへの

Syllabus

(1)	0. Introduction
	1. Projective Geometry in 2D: a. The Projective Plane
	— Easter Monday —
(2)	1. Projective Geometry in 2D: b. Projective Transformations
_	— Labor Day —
(3)	2. Projective Geometry in 3D: a. Projective Space
(4)	2. Projective Geometry in 3D: b. Quadrics, Transformations
(5)	3. Estimating 2D Transformations: a. Direct Linear Transformation
(6)	3. Estimating 2D Transformations: b. Iterative Minimization
—	— Pentecoste Day —
(7)	4. Interest Points: a. Edges and Corners
(8)	4. Interest Points: b. Image Patches
(9)	5. Simulataneous Localization and Mapping: a. Camera Models
(10)	5. Simulataneous Localization and Mapping: b. Triangulation
	(1)

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆○

Objects to estimate from data

- ► a 2D projectivity
- ▶ a 3D to 2D projection (camera)
- the Fundamental Matrix
- the Trifocal Tensor

Data:

• N pairs x_n, x'_n of corresponding points in two images (n = 1, ..., N)

Note: The Trifocal Tensor represents a relation between three images and thus requires N triples of corresponding points x_n, x'_n , x''_n in three images $(n = 1, n, r, N) = (\exists r \in N) = (\exists r \in N)$. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

1. The Direct Linear Transformation Algorithm

- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

・ 日 ・ 4 四 ・ 4 回 ト 4 回 ト 4 日 ・ 9 오 오

From Corresponding Points to Linear Equations (1/2) Inhomogeneous coordinates:

$$\begin{aligned} \mathbf{x}_{n}^{\prime} \stackrel{!}{=} \hat{\mathbf{x}}_{n}^{\prime} &:= H \mathbf{x}_{n}, \quad n = 1, \dots, N \\ &= \begin{pmatrix} \mathbf{x}_{n}^{T} & \mathbf{0}^{T} & \mathbf{0}^{T} \\ \mathbf{0}^{T} & \mathbf{x}_{n}^{T} & \mathbf{0}^{T} \\ \mathbf{0}^{T} & \mathbf{0}^{T} & \mathbf{x}_{n}^{T} \end{pmatrix} \mathbf{h}, \quad \mathbf{h} := \mathsf{vect}(H) := \begin{pmatrix} H_{1,1} \\ H_{1,2} \\ H_{1,3} \\ H_{2,1} \\ \vdots \\ H_{3,3} \end{pmatrix} \end{aligned}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト < 団ト < ヨト < ヨト < 国ト < ロト

From Corresponding Points to Linear Equations (1/2)Inhomogeneous coordinates:

$$\begin{aligned} \mathbf{x}'_{n} \stackrel{!}{=} \hat{\mathbf{x}}'_{n} &:= H\mathbf{x}_{n}, \quad n = 1, \dots, N \\ &= \begin{pmatrix} \mathbf{x}_{n}^{T} & \mathbf{0}^{T} & \mathbf{0}^{T} \\ \mathbf{0}^{T} & \mathbf{x}_{n}^{T} & \mathbf{0}^{T} \\ \mathbf{0}^{T} & \mathbf{0}^{T} & \mathbf{x}_{n}^{T} \end{pmatrix} h, \quad h := \operatorname{vect}(H) := \begin{pmatrix} H_{1,1} \\ H_{1,2} \\ H_{1,3} \\ H_{2,1} \\ \vdots \\ H_{3,3} \end{pmatrix} \end{aligned}$$

Homogeneous coordinates:

$$\begin{aligned} x'_{n,i} : x'_{n,j} &= \hat{x}'_{n,i} : \hat{x}'_{n,j}, \quad \forall i, j \in \{1, 2, 3\}, i \neq j \\ x'_{n,i} \hat{x}'_{n,j} - x'_{n,j} \hat{x}'_{n,i} &= 0, \quad \text{and one equation is linear dependent} \\ & \rightsquigarrow 0 \stackrel{!}{=} \underbrace{\begin{pmatrix} 0^T & -x'_{n,3} x_n^T & x'_{n,2} x_n^T \\ x'_{n,3} x_n^T & 0^T & -x'_{n,1} x_n^T \end{pmatrix}}_{=:A(x_n, x'_n)} h \end{aligned}$$

From Corresponding Points to Linear Equations (2/2)

$$A(x_n, x'_n)h \stackrel{!}{=} 0, \quad n = 1, \dots, N$$

$$\underbrace{\begin{pmatrix} A(x_1, x'_1) \\ A(x_2, x'_2) \\ \vdots \\ A(x_N, x'_N) \end{pmatrix}}_{=:A(x_{1:N}, x'_{1:N})}h = 0$$

- to estimate a general projectivity we need 4 points (8 equations, 8 dof)
- we are looking for non-trivial solutions $h \neq 0$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

More than 4 Points & Noise: Overdetermined

- For N > 4 points and exact coordinates, the system Ah = 0 still has rank 8 and a non-trivial solution h ≠ 0.
- ▶ But for N > 4 points and noisy coordinates, the system Ah = 0 is overdetermined and (in general) has only the trivial solution h = 0.

Relax the objective Ah = 0 to (constrained least squares)

$$\begin{aligned} \arg\min_{h:||h||=1} ||Ah|| &= \arg\min_{h} \frac{||Ah||}{||h||} \\ &= (\text{normed}) \text{ eigenvector to smallest eigenvalue} \end{aligned}$$

and solve via SVD:

$$A^T A = USU^T, \quad S = diag(s_1, \dots, s_9), s_i \ge s_{i+1} \forall i, UU^T = I$$

 $h := U_{9,1:9}$

Shiversiter Thildeshelf

Degenerate Configurations: Underdetermined

If three of the four points are collinear (in both images),
 A will have rank < 8 and thus h underdetermined,
 and thus there is no unique solution for h.

Degenerate Configuration:

Corresponding points that do not uniquely determine a transformation (in a particular class of transformations).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

▲ロト ▲冊 ト ▲ ヨ ト ▲ 王 ト ろくつ

Universiter.

Direct Linear Transformation Algorithm (DLT)

1: procedure

EST-2D-PROJECTIVITY-DLT
$$(x_1, x'_1, x_2, x'_2, \dots, x_N, x'_N \in \mathbb{P}^2)$$

2: $A := \begin{pmatrix} A(x_1, x'_1) \\ A(x_2, x'_2) \\ \vdots \\ A(x_N, x'_N) \end{pmatrix} = \begin{pmatrix} 0^T & -x'_{1,3}x_1^T & x'_{1,2}x_1^T \\ x'_{1,3}x_1^T & 0^T & -x'_{1,1}x_1^T \\ 0^T & -x'_{2,3}x_2^T & x'_{2,2}x_2^T \\ x'_{2,3}x_2^T & 0^T & -x'_{2,1}x_2^T \\ \vdots \\ 0^T & -x'_{N,3}x_N^T & x'_{N,2}x_N^T \\ x'_{N,3}x_N^T & 0^T & -x'_{N,1}x_N^T \end{pmatrix}$

3:
$$(U, S) := SVD(A^T A)$$

4:
$$h := U_{9,1:9}$$

5: return $H := \begin{pmatrix} h_{1:3}^T \\ h_{4:6}^T \\ h_{7:0}^T \end{pmatrix}$

Note: Do not use this unnormalized version of DLT, but the one in section 3.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

E = ∽ < @

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

《口》《聞》《臣》《臣》 聖旨 めへぐ

Algebraic Distance

- ▶ the loss minimized by DLT, represented as distance between
 - ► x': point in 2nd image
 - $\hat{x}' := Hx$: estimated position of x' by H

$$\begin{split} \ell_{alg}(H; x, x') &:= ||A(x', x)h||^2 \\ &= || \begin{pmatrix} 0^T & -x'_3 x^T & x'_2 x^T \\ x'_3 x^T & 0^T & -x'_1 x^T \end{pmatrix} h ||^2 \\ &= || \begin{pmatrix} -x'_3 \hat{x}'_2 + x'_2 \hat{x}'_3 \\ x'_3 \hat{x}'_1 - x'_1 \hat{x}'_3 \end{pmatrix} ||^2 \\ &= d_{alg}(x', \hat{x}')^2 \end{split}$$

with

$$d_{\mathsf{alg}}(x,y) := \sqrt{a_1^2 + a_2^2}, \quad (a_1, a_2, a_3)^T = x \times y$$

もうてい 正則 ふかくえや ふむやふり

Geometric Distances: Transfer Errors Transfer Error in One Image (2nd image):

$$\ell_{trans1}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$d(x,y) := \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

Geometric Distances: Transfer Errors Transfer Error in One Image (2nd image):

$$\ell_{trans1}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$egin{aligned} d(x,y) &:= \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2} \ &= rac{1}{|x_3||y_3|} \, d_{\mathsf{alg}}(x,y) \end{aligned}$$

 ▶ DLT/algebraic error equals geometric error for affine transformations (x₃ = y₃ = 1)

Geometric Distances: Transfer Errors Transfer Error in One Image (2nd image):

$$\ell_{trans1}(H; x, x') := d(x', Hx)^2 = d(x', \hat{x}')^2$$

with Euclidean distance in inhomogeneous coordinates

$$egin{aligned} d(x,y) &:= \sqrt{(x_1/x_3 - y_1/y_3)^2 + (x_2/x_3 - y_2/y_3)^2} \ &= rac{1}{|x_3||y_3|} \, d_{\mathsf{alg}}(x,y) \end{aligned}$$

 ▶ DLT/algebraic error equals geometric error for affine transformations (x₃ = y₃ = 1)

Symmetric Transfer Error:

$$\ell_{\text{strans}}(H; x, x') := d(x, H^{-1}x')^2 + d(x', Hx)^2$$
$$= d(x, \hat{x})^2 + d(x', \hat{x}')^2, \quad \hat{x} := H^{-1}x'$$

もって 正則 ふかとうがく きょう

Transfer Errors: Probabilistic Interpretation

Assume

- measurements x_n in the 1st image are noise-free,
- measurements x'_n in the 2nd image are distributed Gaussian around true values Hx_n:

$$p(x'_n \mid Hx_n, \sigma^2) = \frac{1}{2\pi\sigma^2} e^{-d(x'_n, Hx_n)^2/(2\sigma^2)}$$

log-likelihood for Transfer Error in One Image:

$$p(H \mid x_{1:N}, x'_{1:N}) = \frac{p(x_{1:N}, x'_{1:N} \mid H)p(H)}{p(x_{1:N}, x'_{1:N})}$$
Bayes

$$\propto p(x_{1:N}, x'_{1:N} \mid H)p(H) \propto p(x'_{1:N} \mid H, x_{1:N})p(H)$$

$$= p(H) \prod_{n=1}^{N} p(x'_n \mid H, x_n) \propto \prod_{n=1}^{N} p(x'_n \mid H, x_n)$$

$$\log p(H \mid x_{1:N}, x'_{1:N}) \propto -\sum_{i=1}^{N} d(x'_n, Hx_n)^2 = \operatorname{transfer \ error}_{= x_{i=1}} = \operatorname{transfer}_{= x_{i=1}} = \operatorname{transfer}_{= x_{i=1}} = \operatorname{transfe$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

QR

Reprojection Error

► additionally to projectivity *H*, also find noise-free / perfectly matching pairs x̂, x̂':

minimize
$$\ell_{rep}(H, \hat{x}_1, \hat{x}'_1, \dots, \hat{x}_N, \hat{x}'_N) := \sum_{n=1}^N d(x_n, \hat{x}_n)^2 + d(x'_n, \hat{x}'_n)^2$$

w.r.t.

$$\hat{x}'_n = H\hat{x}_n, \quad n = 1, \dots, N$$

over

$$H, \hat{x}_1, \hat{x}'_1, \ldots, \hat{x}_N, \hat{x}'_N$$

...

Reprojection Error:

$$\ell_{\mathsf{rep}}(H, \hat{x}, \hat{x}'; x, x') := d(x, \hat{x})^2 + d(x', \hat{x}')^2, \text{ with } \hat{x}' = H\hat{x}$$

- analogue probabilistic interpretation:
 - measurements x, x' are Gaussian around true values $\hat{x}, \hat{x}'_{+} \in \mathbb{R}$

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions

3. Transformation Invariance and Normalization

- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

・ロト・四ト・王・・王・ 四日 ろくの

Are Solutions Invariant under Transformations?

► Given corresponding points x_n, x'_n, a method such as DLT will find a projectivity H.

Are Solutions Invariant under Transformations?

- ► Given corresponding points x_n, x'_n, a method such as DLT will find a projectivity H.
- ► Now assume
 - \blacktriangleright the first image is transformed by projectivity T,
 - ► the second image is transformed by projectivity T' before we apply the estimation method.
 - Corresponding points now will be $\tilde{x}_n := Tx_n, \tilde{x}'_n := T'x'_n$
- Let \tilde{H} be the projectivity estimated by the method applied to $\tilde{x}_n, \tilde{x}'_n$.
- ▶ Is it guaranteed that H and \tilde{H} are "the same" (equivalent) ?

$$\tilde{H} \stackrel{?}{=} T' H T^{-1}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Are Solutions Invariant under Transformations?

- ► Given corresponding points x_n, x'_n, a method such as DLT will find a projectivity H.
- ► Now assume
 - \blacktriangleright the first image is transformed by projectivity T,
 - ► the second image is transformed by projectivity T' before we apply the estimation method.
 - Corresponding points now will be $\tilde{x}_n := Tx_n, \tilde{x}'_n := T'x'_n$
- Let \tilde{H} be the projectivity estimated by the method applied to $\tilde{x}_n, \tilde{x}'_n$.
- ▶ Is it guaranteed that H and \tilde{H} are "the same" (equivalent) ?

$$\tilde{H}\stackrel{?}{=}T'HT^{-1}$$

- This may depend on the class of projectivities allowed for T, T'.
 - ▶ at least invariance under similarities would be useful !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト・4日ト・4日ト・4日ト・4日ト

DLT is not Invariant under Similarities

 If T' is a similarity transformation with scale factor s and T any projectivity, then one can show

 $||\tilde{A}\tilde{h}|| = s||Ah||$

Note: $\tilde{A} := A(\tilde{x}, \tilde{x}'), \tilde{h} := \operatorname{vect}(\tilde{H})$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・ロト・4日×・4日×・4日× 900

DLT is not Invariant under Similarities

► If T' is a similarity transformation with scale factor s and T any projectivity, then one can show

 $||\tilde{A}\tilde{h}|| = s||Ah||$

- ► But solutions H and H̃ will not be equivalent nevertheless, as DLT minimizes under constraint ||h|| = 1 and this constraint is not scaled with s !
- ► So DLT is not invariant under similarity transforms.

Note: $\tilde{A} := A(\tilde{x}, \tilde{x}'), \tilde{h} := \operatorname{vect}(\tilde{H})$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Transfer/Reprojection Errors are Invariant under Similarities

► If *T*′ is Euclidean:

$$d(\tilde{x}'_{n}, \tilde{H}\tilde{x}_{n})^{2} = d(T'x'_{n}, T'HT^{-1}Tx_{n})^{2}$$

= $x'_{n}^{T}T'^{T}T'HT^{-1}Tx_{n} = x'_{n}Hx_{n} = d(x'_{n}, Hx_{n})^{2}$

• If T' is a similarity with scale factor s:

$$d(\tilde{x}'_{n}, \tilde{H}\tilde{x}_{n})^{2} = d(T'x'_{n}, T'HT^{-1}Tx_{n})^{2}$$

= $x'_{n}T'^{T}T'HT^{-1}Tx_{n} = x'_{n}s^{2}Hx_{n} = s^{2}d(x'_{n}, Hx_{n})^{2}$

DLT with Normalization

- ► Image coordinates of corresponding points are usually finite: x = (x₁, x₂, 1)^T, thus have different scale (100, 100, 1) when measured in pixels.
- Therefore, entries in A(x, x') will have largely different scale:

$$A(x,x') = \begin{pmatrix} 0^T & -x_3'x^T & x_2'x^T \\ x_3'x^T & 0^T & -x_1'x^T \end{pmatrix} = \begin{pmatrix} 0^T & -x^T & x_2'x^T \\ x^T & 0^T & -x_1'x^T \end{pmatrix}$$

► some in 100s (x^T), some in 10.000s (x'_2x^T , $-x'_1x^T$)

うせん 正正 スポッスポッス型 うくり

. .

DLT with Normalization

► normalize *x*_{1:*N*}:

$$\tilde{x}_{1:N} :=$$
normalize $(x_{1:N}) := (\frac{x_n - \mu(x_{1:N})}{\tau(x_{1:N})/\sqrt{2}})_{n=1,...,N}$

with

$$\mu(x_{1:N}) := \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \text{centroid/mean}$$

$$\tau(x_{1:N}) := \frac{1}{N} \sum_{n=1}^{N} d(x_n, \mu(x_{1:N})) \qquad \text{avg. distance to centroid}$$

► afterwards:

$$\mu(\tilde{x}_{1:N}) = 0, \quad \tau(\tilde{x}_{1:N}) = \sqrt{2}$$

DLT with Normalization / Algorithm

1: procedure

EST-2D-PROJECTIVITY-DLTN $(x_1, x'_1, x_2, x'_2, \ldots, x_N, x'_N \in \mathbb{P}^2)$ $T := T_{\text{norm}}(x_{1:N}) := \begin{pmatrix} \sqrt{2}/\tau(x_{1:N})I & -\mu(x_{1:N})\sqrt{2}/\tau(x_{1:N}) \\ 0 & 1 \end{pmatrix}$ 2: $T' := T_{\text{norm}}(x'_{1:N}) := \begin{pmatrix} \sqrt{2}/\tau(x'_{1:N})I & -\mu(x'_{1:N})\sqrt{2}/\tau(x'_{1:N}) \\ 0 & 1 \end{pmatrix}$ 3: $\tilde{x}_n := Tx_n \quad \forall n = 1, \dots, N$ 4: \triangleright normalize x_n $\tilde{x}'_n := T'x'_n \quad \forall n = 1, \dots, N$ \triangleright normalize x'_n 5: $H := \text{est-2d-projectivity-dlt}(\tilde{x}_1, \tilde{x}'_1, \tilde{x}_2, \tilde{x}'_2, \dots, \tilde{x}_N, \tilde{x}'_N)$ 6: $H := T'^{-1} \tilde{H} T$ \triangleright unnormalize \tilde{H} 7: return H 8.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Types of Problems

- ► The transformation estimation problem for the
 - algebraic distance/loss can be cast into a single
 - Inear system of equations (DLTn).
- ► The transformation estimation problem for the
 - transfer distance/loss as well as for the
 - reconstruction loss is more complicated and has to be handled by an explicit
 - iterative minimization procedure.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少へつ

Minimization **Objectives** $f : \mathbb{R}^M \to \mathbb{R}$

a) transfer distance in one image:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2$$

b) symmetric transfer distance:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2 + d(x_n, H^{-1}x'_n)^2$$

c) reconstruction loss:

minimize
$$f(H, \hat{x}_{1:N}) := \sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x'_n, H\hat{x}_n)^2$$

N

- x_n, x'_n are constants, $H, \hat{x}_{1:N}$ variables
- ► a), b) have M := 9 parameters / variables
 - ► as *H* as only 8 dof, the objective is slightly **overparametrized**
- c) has M := 2N + 9 parameters / variables
 - allowing only finite points for \hat{x}_n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Objectives of type $f = e^T e (1/3)$

All three objectives f are L_2 norms of (parametrized) vectors, i.e. can be written as

$$f(x) = e(x)^T e(x), \quad h: \mathbb{R}^M \to \mathbb{R}^N$$

a) transfer distance in one image:

m

$$\begin{array}{l} \text{inimize } f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2 \\ &= e(H)^T e(H), \\ e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (Hx_1)_1/(Hx_1)_3 \\ x'_{1,2}/x'_{1,3} - (Hx_1)_2/(Hx_1)_3 \\ &\vdots \\ x'_{N,1}/x'_{N,3} - (Hx_N)_1/(Hx_N)_3 \\ x'_{N,2}/x'_{N,3} - (Hx_N)_2/(Hx_N)_3 \end{pmatrix} \end{array}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

→ 同 ▶ → 三 ▶ → 三 ⊨ → のへで

Objectives of type
$$f = e^T e (2/3)$$

b) symmetric transfer distance:

minimize
$$f(H) := \sum_{n=1}^{N} d(x'_n, Hx_n)^2 + d(x_n, H^{-1}x'_n)^2 = e(H)^T e(H),$$

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (Hx_1)_1/(Hx_1)_3 \\ x'_{1,2}/x'_{1,3} - (Hx_1)_2/(Hx_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (Hx_N)_1/(Hx_N)_3 \\ x'_{N,2}/x'_{N,3} - (Hx_N)_2/(Hx_N)_3 \\ x_{1,1}/x_{1,3} - (H^{-1}x'_1)_1/(H^{-1}x'_1)_3 \\ \vdots \\ x_{N,1}/x_{N,3} - (H^{-1}x'_N)_1/(H^{-1}x'_N)_3 \\ \vdots \\ x_{N,2}/x_{N,3} - (H^{-1}x'_N)_2/(H^{-1}x'_N)_3 \end{pmatrix}$$

200

Objectives of type
$$f = e^T e (3/3)$$

Universiter Stildeshelf

c) reconstruction loss:

minimize
$$f(H, \hat{x}_{1:N}) := \sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x'_n, H\hat{x}_n)^2 = e(H)^T e(H),$$

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (H\hat{x}_1)_1/(H\hat{x}_1)_3 \\ x'_{1,2}/x'_{1,3} - (H\hat{x}_1)_2/(H\hat{x}_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (H\hat{x}_N)_1/(H\hat{x}_N)_3 \\ x'_{N,2}/x'_{N,3} - (H\hat{x}_N)_2/(H\hat{x}_N)_3 \\ x_{1,1}/x_{1,3} - \hat{x}_{1,1} \\ x_{1,2}/x_{1,3} - \hat{x}_{1,2} \\ \vdots \\ x_{N,1}/x_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x'_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x'_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x'_{N,3} - \hat{x}_{N,2} + \mathcal{O} + \mathcal{O} = \mathbb{R}$$

Minimizing f (I): Gradient Descent To minimize $f : \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

Minimizing f (I): Gradient Descent To minimize $f : \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as descent direction d^(t) at x^(t)
— direction where f decreases —
the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{x^{(t)}} := -(\frac{\partial f}{\partial x_m}(x^{(t)}))_{m=1,\dots,M}$$

・ ロ ト ・ 西 ト ・ 画 ト ・ 日 ト ・ の へ つ ト

Minimizing f (I): Gradient Descent To minimize $f : \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as descent direction d^(t) at x^(t)
— direction where f decreases —
the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{x^{(t)}} := -(\frac{\partial f}{\partial x_m}(x^{(t)}))_{m=1,\dots,M}$$

3. moves into the descent direction:

$$x^{(t+1)} := x^{(t)} + d$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing f (I): Gradient Descent To minimize $f : \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as descent direction d^(t) at x^(t)
— direction where f decreases —
the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{x^{(t)}} := -(\frac{\partial f}{\partial x_m}(x^{(t)}))_{m=1,\dots,M}$$

3. moves into the descent direction:

$$x^{(t+1)} := x^{(t)} + d$$

Beware:

- f decreases only in the neighborhood of $x^{(t)}$
- ► A full gradient step may be too large and **not** leading to a decrease !

Minimizing f (I): Gradient Descent w. Steplength Control To minimize $f : \mathbb{R}^M \to \mathbb{R}$ over $x \in \mathbb{R}^M$ Gradient Descent

1. starts at a random starting point $x_0 \in \mathbb{R}^M$

$$t := 0, \quad x^{(t)} := x_0$$

2. computes as descent direction d^(t) at x^(t)
— direction where f decreases —
the gradient of f:

$$d^{(t)} := -g^{(t)} := -\nabla_x f|_{x^{(t)}} := -(\frac{\partial f}{\partial x_m}(x^{(t)}))_{m=1,\dots,M}$$

3. finds a steplength $\alpha \in \mathbb{R}^+$ so that f actually decreases:

$$\alpha := \max\{\alpha := 2^{-k} \mid k = 0, 1, 2, \dots, f(x + \alpha d) < f(x)\}$$

4. moves a step into the descent direction:

$$x^{(t+1)} := x^{(t)} + \alpha d$$

《日》《聞》《臣》《臣》 通言 めへの

Minimizing f (I): Gradient Descent / Algorithm

- 1: procedure MIN-GD($f : \mathbb{R}^M \to \mathbb{R}, x_0 \in \mathbb{R}^M, \nabla_x f : \mathbb{R}^M \to \mathbb{R}^M, \epsilon \in \mathbb{R}^+$)
- 2: $x := x_0$
- 3: **do**
- 4: $d := -\nabla_x f|_x$
- 5: $\alpha := 1$
- 6: while $f(x + \alpha d) \ge f(x)$ do
- 7: $\alpha := \alpha/2$
- 8: $x := x + \alpha d$
- 9: while $||d|| > \epsilon$
- 10: **return** *x*

もつて 正則 ふぼうふば そう

Minimizing f (II): Newton

The Newton algorithm computes a better descent direction:

• approximate f by the quadratic Taylor expansion at $x^{(t)}$:

$$f(x+d) \approx \tilde{f}(d) := f(x^{(t)}) + \nabla_x f|_{x^{(t)}}^T d + \frac{1}{2} d^T \nabla_x^2 f|_{x^{(t)}}^T d$$
$$= f(x^{(t)}) + g_{x^{(t)}}^T d + \frac{1}{2} d^T H_{x^{(t)}} d$$

where

$$\nabla_x^2 f|_x := H_x := (\frac{\partial^2 f}{\partial x_m \partial x_k})_{m,k=1,\dots,M}$$
 Hessian of f

the approximation attains its minimum at

$$\begin{split} 0 \stackrel{!}{=} \nabla_d \tilde{f}(d) &= g_{x^{(t)}} + H_{x^{(t)}} d \\ H_{x^{(t)}} d &= -g_{x^{(t)}} \end{split} \qquad \text{normal equations} \end{split}$$

► solve this linear system of equations to find descent direction

Minimizing f (II): Newton / Algorithm

- 1: procedure MIN-NEWTON $(f : \mathbb{R}^M \to \mathbb{R}, x_0 \in \mathbb{R}^M, \nabla_x f : \mathbb{R}^M \to \mathbb{R}^M, \nabla_x^2 f : \mathbb{R}^M \to \mathbb{R}^{M \times M}, \epsilon \in \mathbb{R}^+)$
- 2: $x := x_0$
- 3: **do**
- 4: $g := \nabla_x f|_x$ 5: $H := \nabla_x^2 f|_x$
- 6: $d := \operatorname{solve}_d(Hd = -g)$
- 7: $\alpha := 1$
- 8: while $f(x + \alpha d) \ge f(x)$ do
- 9: $\alpha := \alpha/2$
- 10: $x := x + \alpha d$
- 11: while $||d|| > \epsilon$
- 12: **return** *x*

シック 単則 エルマ・エリ・ (型・エロ・

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- ► that approximates the Hessian:

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- that approximates the Hessian:

$$\nabla_x f|_x = 2\nabla_x e|_x^T e(x)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- that approximates the Hessian:

$$\nabla_{x} f|_{x} = 2\nabla_{x} e|_{x}^{T} e(x)$$

$$\nabla_{x}^{2} f|_{x} = 2\nabla_{x} e|_{x}^{T} \nabla_{x} e|_{x} + 2\nabla_{x}^{2} e|_{x}^{T} e(x)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- that approximates the Hessian:

$$\nabla_{x} f|_{x} = 2\nabla_{x} e|_{x}^{T} e(x)$$

$$\nabla_{x}^{2} f|_{x} = 2\nabla_{x} e|_{x}^{T} \nabla_{x} e|_{x} + 2\nabla_{x}^{2} e|_{x}^{T} e(x)$$

Now approximate e by a linear Taylor expansion, i.e.

$$\nabla_x^2 e|_x \approx 0$$

$$\rightsquigarrow \quad \nabla_x^2 f|_x \approx 2\nabla_x e|_x^T \nabla_x e|_x$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing $f = e^T e$ (I): Gauss-Newton

Gauss-Newton is

- ► a specialization of the Newton algorithm
- for objectives of type $f(x) = e(x)^T e(x)$
- that approximates the Hessian:

$$\nabla_{x} f|_{x} = 2\nabla_{x} e|_{x}^{T} e(x)$$

$$\nabla_{x}^{2} f|_{x} = 2\nabla_{x} e|_{x}^{T} \nabla_{x} e|_{x} + 2\nabla_{x}^{2} e|_{x}^{T} e(x)$$

Now approximate e by a linear Taylor expansion, i.e.

$$\nabla_x^2 e|_x \approx 0$$

$$\rightsquigarrow \quad \nabla_x^2 f|_x \approx 2\nabla_x e|_x^T \nabla_x e|_x$$

• all we need is the gradient of e !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Minimizing $f = e^{T} e$ (I): Gauss-Newton / Algorithm

1: procedure MIN-GAUSS-NEWTON($e : \mathbb{R}^M \to \mathbb{R}^N, x_0 \in \mathbb{R}^M, \nabla_x e : \mathbb{R}^M \to \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^+$) 2: $x := x_0$ 3. do 4: $J := \nabla_x e|_x$ $g := J^T e(x)$ 5: $H := I^T I$ 6: $d := \text{solve}_d(Hd = -g)$ 7: $\alpha := 1$ 8: while $e(x + \alpha d)^T e(x + \alpha d) > e(x)^T e(x)$ do 9: $\alpha := \alpha/2$ 10: 11: $x := x + \alpha d$ while $||d|| > \epsilon$ 12: 13: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Junivers/tot

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

slight variation of the Gauss-Newton method

$$J^T J d = -g$$
 Gauss-Newton Normal Eq.
 $(J^T J + \lambda I) d = -g$ Levenberg-Marquardt Normal Eq.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Universiter · · · · ·

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

slight variation of the Gauss-Newton method

$$J^T J d = -g$$
 Gauss-Newton Normal Eq.
 $(J^T J + \lambda I) d = -g$ Levenberg-Marquardt Normal Eq.

- \blacktriangleright if new objective value is worse, try again with larger λ
 - for large λ : equivalent to Gradient descent with small stepsize $1/\lambda$

$$(J^T J + \lambda I) \approx \lambda I, \qquad (J^T J + \lambda I) d = -g \qquad \rightsquigarrow d = -\frac{1}{\lambda}g$$

Shiversiter Hildeshein

Minimizing $f = e^T e$ (II): Levenberg-Marquardt

slight variation of the Gauss-Newton method

$$J^T J d = -g$$
 Gauss-Newton Normal Eq.
 $(J^T J + \lambda I) d = -g$ Levenberg-Marquardt Normal Eq.

- \blacktriangleright if new objective value is worse, try again with larger λ
 - \blacktriangleright for large $\lambda:$ equivalent to Gradient descent with small stepsize $1/\lambda$

$$(J^T J + \lambda I) \approx \lambda I, \qquad (J^T J + \lambda I) d = -g \qquad \rightsquigarrow d = -\frac{1}{\lambda}g$$

- once new objective value is smaller, accept and decrease λ
 - ▶ for small λ : equivalent to Gauss-Newton with (large) stepsize 1

- 《日》 《日》 《日》 《日》 《日》 《

Minimizing $f = e^T e$ (I): Levenberg-Marquardt / Algorithm

- 1: procedure MIN-LEVENBERG-MARQUARDT ($e : \mathbb{R}^M \to \mathbb{R}^N, x_0 \in \mathbb{R}^M, \nabla_x e : \mathbb{R}^M \to \mathbb{R}^{N \times M}, \epsilon \in \mathbb{R}^+$)
- 2: $x := x_0$
- 3: $\lambda := 1$
- 4: **do**
- 5: $J := \nabla_x e|_x$ 6: $g := J^T e(x)$
- 7: $\lambda := (\lambda/10)/10$
- 8: **do**
- 9: $H := J^T J + \lambda I$
- 10: $d := \operatorname{solve}_d(Hd = -g)$
- 11: $\lambda := 10\lambda$
- 12: while $e(x+d)^T e(x+d) \ge e(x)^T e(x)$
- 13: x := x + d
- 14: while $||d|| > \epsilon$
- 15: **return** *x*

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ → 三 ■ ● ● ● ●

Example: Reconstruction Loss (1/2)

$$e(H) := \begin{pmatrix} x'_{1,1}/x'_{1,3} - (H\hat{x}_1)_1/(H\hat{x}_1)_3 \\ x'_{1,2}/x'_{1,3} - (H\hat{x}_1)_2/(H\hat{x}_1)_3 \\ \vdots \\ x'_{N,1}/x'_{N,3} - (H\hat{x}_N)_1/(H\hat{x}_N)_3 \\ x'_{N,2}/x'_{N,3} - (H\hat{x}_N)_2/(H\hat{x}_N)_3 \\ x_{1,1}/x_{1,3} - \hat{x}_{1,1} \\ x_{1,2}/x_{1,3} - \hat{x}_{1,2} \\ \vdots \\ x_{N,1}/x_{N,3} - \hat{x}_{N,1} \\ x_{N,2}/x_{N,3} - \hat{x}_{N,2} \end{pmatrix} = \operatorname{vect}(\begin{pmatrix} e_{1:N,1:2} \\ e_{1:N,1:2}^2 \\ e_{1:N,1:2}^2 \end{pmatrix})$$

with

$$e_{n,i}^{1} := x_{n,i}'/x_{n,3}' - (H\hat{x}_{n})_{i}/(H\hat{x}_{n})_{3}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

Example: Reconstruction Loss (2/2)

$$e_{n,i}^1 := rac{x'_{n,i}}{x'_{n,3}} - rac{(H\hat{x}_n)_i}{(H\hat{x}_n)_3}$$

 $e_{n,i}^2 := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$

$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{1}$$
$$\nabla_{\hat{x}_{\tilde{n},\tilde{i}}} e_{n,i}^{2}$$

1

1

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2}$$

Note: $(H\hat{x}_n)_i = \sum_{j=1}^3 H_{i,j}\hat{x}_{n,j}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 48

・ロト < 団ト < ヨト < ヨト < ロト

Juniversiter Tildesheim

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x_{n,i}'}{x_{n,3}'} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{n,i}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,i}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}}H_{3,i}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{n,i}} e_{n,i}^{2}$$

$$abla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1}$$
 $abla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2}$

Note: $(H\hat{x}_n)_i = \sum_{j=1}^3 H_{i,j}\hat{x}_{n,j}$.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x_{n,i}'}{x_{n,3}'} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{n,i}^{-}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,i}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}}H_{3,i}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{n,i}^{-}} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{1}$$

$$\nabla_{H_{\tilde{i},\tilde{j}}} e_{n,i}^{2}$$
Note: $(H\hat{x}_{n})_{i} = \sum_{j=1}^{3} H_{i,j}\hat{x}_{n,j}.$

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x_{n,i}'}{x_{n,3}'} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{n,i}} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,i}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}}H_{3,i}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{n,i}} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

$$\nabla_{H_{i,j}} e_{n,i}^{1} = -\delta(\tilde{i} = i)\frac{\hat{x}_{n,j}}{(H\hat{x}_{n})_{3}} + \delta(\tilde{i} = 3)\frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}}\hat{x}_{n,3}$$

$$\nabla_{H_{i,j}} e_{n,i}^{2}$$
Note: $(H\hat{x}_{n})_{i} = \sum_{i=1}^{3} H_{i,j}\hat{x}_{n,j}.$

Example: Reconstruction Loss (2/2)

$$e_{n,i}^{1} := \frac{x_{n,i}'}{x_{n,3}'} - \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}}$$

$$e_{n,i}^{2} := x_{n,i}/x_{n,3} - \hat{x}_{n,i}$$

$$\nabla_{\hat{x}_{n,i}}^{2} e_{n,i}^{1} = \begin{cases} -\frac{H_{i,i}}{(H\hat{x}_{n})_{3}} + \frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}}H_{3,i}, & \text{if } \tilde{n} = n \\ 0, & \text{else} \end{cases}$$

$$\nabla_{\hat{x}_{n,i}}^{2} e_{n,i}^{2} = \begin{cases} -1, & \text{if } \tilde{n} = n, \tilde{i} = i \\ 0, & \text{else} \end{cases}$$

$$\nabla_{H_{\bar{i},j}} e_{n,i}^{1} = -\delta(\tilde{i} = i)\frac{\hat{x}_{n,j}}{(H\hat{x}_{n})_{3}} + \delta(\tilde{i} = 3)\frac{(H\hat{x}_{n})_{i}}{(H\hat{x}_{n})_{3}^{2}}\hat{x}_{n,3}$$

$$\nabla_{H_{\bar{i},j}} e_{n,i}^{2} = 0$$
Note: $(H\hat{x}_{n})_{i} = \sum_{i=1}^{3} H_{i,j}\hat{x}_{n,j}.$

Example: Comparison of Different Methods

	residual error in pixels		
method	pair a,b	pair a,c	
DLT unnormalized	0.4080	26.2056	
DLT normalized	0.4078	0.6602	
Transfer distance in one image	0.4077	0.6602	
Reconstruction loss	0.4078	0.6602	
affine	6.0095	2.8481	

[HZ04, p. 115]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 48

Example: Comparison of Different Methods

Note: solid: DLTn, dashed: reconstruction loss

[HZ04, p. 116]

Universitet.

Example: Comparison of Different Methods

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation
- 6. Estimating a 2D Transformation

Outliers and Robust Estimation

- When estimating a transformation from pairs of corresponding points, having these correspondences estimated from data themselves, we expect noise: wrong correspondences.
- Wrong correspondences could be not just a little bit off, but way off: outliers.
- ► Some losses, esp. least squares, are **sensitive to outliers**:

► **Robust estimation:** estimation that is less sensitive to outliers. [HZ04, p. 117]

Random Sample Consensus (RANSAC)

idea:

- 1. draw iteratively random samples of data points
 - many and small enough so that some will have no outliers with high probability
- 2. estimate the model from such a sample
- 3. grade the samples by the support of their models
 - support: number of well-explained points,
 - i.e., points with a small error under the model (inliers)
- 4. reestimate the model on the support of the best sample

Model Estimation Terminology

- ► RANSAC works like a wrapper around any estimation method.
- ► examples:
 - estimating a transformation from point correspondences
 - estimating a line (a linear model) from 2d points
- model estimation terminology:

 \mathcal{X} data space, e.g. \mathbb{R}^2 $\mathcal{D} \subseteq \mathcal{X}$ dataset, e.g. $\mathcal{D} = \{x_1, \ldots, x_N\}$ $f(\theta \mid D) := \frac{1}{|D|} \sum_{x \in D} \ell(x, \theta)$ objective $\ell: \mathcal{X} \times \Theta \to \mathbb{R}$ loss/error, e.g. $\ell\begin{pmatrix} x \\ y \end{pmatrix}; \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} := (y - (\theta_1 + \theta_2 x))$ Θ (model) parameter space, e.g. \mathbb{R}^2 $a: \mathcal{P}(\mathcal{X}) \to \Theta$ estimation method, e.g. gradient descent aiming at $a(\mathcal{D}) \approx \arg \min f(\theta \mid \mathcal{D})$

Computer Vision 5. Robust Estimation

RANSAC Algorithm

1: procedure

EST-RANSAC($\mathcal{D}, \ell, a; N' \in \mathbb{N}, T \in \mathbb{N}, \ell_{\max} \in \mathbb{R}, \sup_{\min} \in \mathbb{N}$) 2: $S_{\text{hest}} := \emptyset$ for $t = 1, \ldots, T$ or until $|S| \ge \sup_{\min} do$ 3: $\mathcal{D}' \sim \mathcal{D}$ of size N' \triangleright draw a sample 4: $\hat{\theta} := a(\mathcal{D}')$ ▷ estimate the model 5: $\mathcal{S} := \{ x \in \mathcal{D} \mid \ell(x, \hat{\theta}) < \ell_{\max} \}$ 6: ▷ compute support if $|\mathcal{S}| > |\mathcal{S}_{best}|$ then 7: $S_{\mathsf{hest}} := S$ 8: $\hat{\theta} := a(\mathcal{S}_{\text{hest}})$ \triangleright reestimate the model <u>g</u>. return $\hat{\theta}$ 10:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◇∂ → ◇ = > ◇ = > → = → ◇ ◇ ◇

What is a good sample size N'?

- Snivers/tor
- ▶ often the minimum number to get a unique solution is used.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三国■ 釣�?

What is a good maximal support loss ℓ_{max} ?

- ► for squared distance/L2 loss: $\ell(x, x') := (x x')^2$
- assume Gaussian noise: $x_{obs} \sim \mathcal{N}(x_{true}, \Sigma)$,
 - isotrop noise
 - but no noise in some directions
 - e.g., points on a line: noise only orthogonal to the line $\Rightarrow \Sigma = USU^T$, $S = \text{diag}(s_1, s_2)$, $s_i \in \{\sigma^2, 0\}$, $UU^T = I$
- $\rightsquigarrow \ \ell(x_{\rm obs}, x_{\rm true}) \sim \sigma^2 \chi^2_{\it m}, \quad \ m := {\rm rank}(S) \ {\rm degrees} \ {\rm of} \ {\rm freedom}$

► inlier:
$$\ell(x_{obs}, x_{true}) < \ell_{max}$$
 with probability α
 $\ell_{max} := \sigma^2 \text{CDF}_{\chi^2_m}^{-1}(\alpha)$

т	model	$\ell_{\sf max}(lpha={\sf 0.95})$
1	line, fundamtental matrix	$3.84\sigma^2$
2	projectivity, camera matrix	$5.99\sigma^2$
3	trifocal tensor	$7.81\sigma^2$

What is a good **sample frequency** *T*?

- find T s.t. at least one of the samples contains no outliers with high probability $\alpha := 0.99$.
- denote $p(x \text{ is an outlier}) = \epsilon$:

 $p(\mathcal{D}' \text{ contains no outliers}) = (1 - \epsilon)^{N'}$

 $p(\text{at least one } \mathcal{D}' \text{ contains no outliers}) = 1 - (1 - (1 - \epsilon)^{N'})^T \stackrel{!}{=} \alpha$

$$\rightsquigarrow T = \frac{1-\alpha}{1-(1-\epsilon)^{N'}}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

What is a good sample frequency T?

- ► find T s.t. at least one of the samples contains no outliers with high probability $\alpha := 0.99$.
- denote $p(x \text{ is an outlier}) = \epsilon$:

 $p(\mathcal{D}' \text{ contains no outliers}) = (1 - \epsilon)^{N'}$

 $p(\text{at least one } \mathcal{D}' \text{ contains no outliers}) = 1 - (1 - (1 - \epsilon)^{N'})^T \stackrel{!}{=} \alpha$

 $1 - \alpha$

						$\sim I$	$=\frac{1}{1}$
	$\epsilon = p(x \text{ is an outlier})$						$1-(1-\epsilon)^{N'}$
N′	5%	10%	20%	30%	40%	50%	
2	2	3	5	7	11	17	
3	3	4	7	11	19	35	
4	3	5	9	17	34	72	
5	4	6	12	26	57	146	
6	4	7	16	37	97	293	
7	4	8	20	54	163	588	
8	5	9	26	78	272	1177	
							지나가 지만가 지금가 지금가 물기로 찍었어?

Computer Vision 5. Robust Estimation

What is a good sufficient support size sup_{min}?

- ► the sufficient support size is an **early stopping criterion**.
- ▶ stop if we have as many inliers as expected:

 $\sup_{\min} = \textit{N}(1-\epsilon)$

・ロト・四下・《川下・《日下・四下・○○

RANSAC Algorithm / Repeated Reestimation

EST-RANSAC-RERE $(\mathcal{D}, \ell, a; N' \in \mathbb{N}, T \in \mathbb{N}, \ell_{max} \in \mathbb{R}, \sup_{min} \in \mathbb{N})$

- 8: $\mathcal{S} := \mathcal{S}_{\mathsf{best}}$
- 9: **do**
- 10: $\mathcal{S}_{final} := \mathcal{S}$

11:
$$\widehat{ heta} := a(\mathcal{S}_{\mathsf{final}})$$

12:
$$\mathcal{S} := \{x \in \mathcal{D} \mid \ell(x, \hat{\theta}) < \ell_{\mathsf{max}}\}$$

13: while $S_{final} \neq S$

14: return $\hat{\theta}$

reestimate the model
 compute support

▲母 → ▲目 → モ → 目目 ろくで

RANSAC: Repeated Reestimation

a) estimation from initial sample

b) reestimation from sample plus support

Outline

- 1. The Direct Linear Transformation Algorithm
- 2. Error Functions
- 3. Transformation Invariance and Normalization
- 4. Iterative Minimization Methods
- 5. Robust Estimation

6. Estimating a 2D Transformation

- 4 日 > 4 郡 > 4 톤 > 4 톤 > 三目 - 9 4 (2)

1. interest points:

compute interest points in each image.

ペロト 《四ト 《三ト 《三ト 》目上 のへで

1. interest points:

compute interest points in each image.

2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

1. interest points:

compute interest points in each image.

2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):

もしゃ 正明 ふばやえばや ふむやくしゃ

1. interest points:

compute interest points in each image.

2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity *H* from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

1. interest points:

compute interest points in each image.

2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity *H* from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)
 - 3.2 reestimate the projectivity *H* using the best sample and all its support/inliers (using Levenberg-Marquardt; RANSAC final step)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ★□▶ ◆○

1. interest points:

compute interest points in each image.

2. putative matches:

compute matching pairs of interest points from their proximity and intensity neighborhood.

- 3. simultaneously estimate a projectivity (model) and identify outliers (robust estimation):
 - 3.1 estimate a projectivity *H* from several samples of 4 points and keep the one with maximal support/inliers (RANSAC using DLTn)
 - 3.2 reestimate the projectivity ${\cal H}$ using the best sample and all its support/inliers

(using Levenberg-Marquardt; RANSAC final step)

3.3 **Guided Matching**: use projectivity H to identify a search region about the transferred points (with relaxed threshold)

ロト < 団ト < 三ト < 三ト < 三ト < 四ト < 〇への

Left and right image:

а

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

ca. 500+500 interest points ("corners"):

[HZ04, p. 126] 《□▶ 《문▶ 《문▶ 《王》 륀曰 少�?

268 putative matches:

e

Computer Vision 6. Estimating a 2D Transformation

Example

[HZ04, p. 126] < □ ▷ < 셸 ▷ < 重 ▷ < 重 ▷ = 등 = 등 = ♡ < (~

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

262 final matches (after guided matching):

Computer Vision 6. Estimating a 2D Transformation

Summary

. . .

<ロト < 個ト < 目ト < 目ト 三日 のへで</p>

Further Readings

- ▶ [HZ04, ch. 4].
- ► For iterative estimation methods in CV see [HZ04, appendix 6].
- ➤ You may also read [HZ04, ch. 5] which will not be covered in the lecture explicitly.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision. Cambridge university press, 2004.

####