
Computer Vision

Computer Vision
3. Estimating 2D Transformations

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 48

Computer Vision

Syllabus

Mon. 10.4. (1) 0. Introduction
1. Projective Geometry in 2D: a. The Projective Plane

Mon. 17.4. — — Easter Monday —
Mon. 24.4. (2) 1. Projective Geometry in 2D: b. Projective Transformations
Mon. 1.5. — — Labor Day —
Mon. 8.5. (3) 2. Projective Geometry in 3D: a. Projective Space

Mon. 15.5. (4) 2. Projective Geometry in 3D: b. Quadrics, Transformations
Mon. 22.5. (5) 3. Estimating 2D Transformations: a. Direct Linear Transformation
Mon. 29.5. (6) 3. Estimating 2D Transformations: b. Iterative Minimization
Mon. 5.6. — — Pentecoste Day —

Mon. 12.6. (7) 4. Interest Points: a. Edges and Corners
Mon. 19.6. (8) 4. Interest Points: b. Image Patches
Mon. 26.6. (9) 5. Simulataneous Localization and Mapping: a. Camera Models
Mon. 3.7. (10) 5. Simulataneous Localization and Mapping: b. Triangulation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 48

Computer Vision

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 48

Computer Vision

Objects to estimate from data

I a 2D projectivity

I a 3D to 2D projection (camera)

I the Fundamental Matrix

I the Trifocal Tensor

Data:

I N pairs xn,x ′n of corresponding points in two images (n = 1, . . . ,N)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 48

Note: The Trifocal Tensor represents a relation between three images and thus requires N
triples of corresponding points xn,x ′n, x

′′
n in three images (n = 1, . . . ,N).

Computer Vision 1. The Direct Linear Transformation Algorithm

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (1/2)
Inhomogeneous coordinates:

x ′n
!

= x̂ ′n := Hxn, n = 1, . . . ,N

=

 xTn 0T 0T

0T xTn 0T

0T 0T xTn

 h, h := vect(H) :=

H1,1

H1,2

H1,3

H2,1
...

H3,3

Homogeneous coordinates:

x ′n,i : x ′n,j = x̂ ′n,i : x̂ ′n,j , ∀i , j ∈ {1, 2, 3}, i 6= j

x ′n,i x̂
′
n,j − x ′n,j x̂

′
n,i = 0, and one equation is linear dependent

 0
!

=

(
0T −x ′n,3xTn x ′n,2x

T
n

x ′n,3x
T
n 0T −x ′n,1xTn

)
︸ ︷︷ ︸

=:A(xn,x ′n)

h

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (1/2)
Inhomogeneous coordinates:

x ′n
!

= x̂ ′n := Hxn, n = 1, . . . ,N

=

 xTn 0T 0T

0T xTn 0T

0T 0T xTn

 h, h := vect(H) :=

H1,1

H1,2

H1,3

H2,1
...

H3,3

Homogeneous coordinates:

x ′n,i : x ′n,j = x̂ ′n,i : x̂ ′n,j , ∀i , j ∈ {1, 2, 3}, i 6= j

x ′n,i x̂
′
n,j − x ′n,j x̂

′
n,i = 0, and one equation is linear dependent

 0
!

=

(
0T −x ′n,3xTn x ′n,2x

T
n

x ′n,3x
T
n 0T −x ′n,1xTn

)
︸ ︷︷ ︸

=:A(xn,x ′n)

h

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

From Corresponding Points to Linear Equations (2/2)

A(xn, x
′
n)h

!
= 0, n = 1, . . . ,N

A(x1, x
′
1)

A(x2, x
′
2)

...
A(xN , x

′
N)

︸ ︷︷ ︸

=:A(x1:N ,x
′
1:N)

h = 0

I to estimate a general projectivity we need 4 points
(8 equations, 8 dof)

I we are looking for non-trivial solutions h 6= 0.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

More than 4 Points & Noise: Overdetermined
I For N > 4 points and exact coordinates,

the system Ah = 0 still has rank 8 and a non-trivial solution h 6= 0.
I But for N > 4 points and noisy coordinates,

the system Ah = 0 is overdetermined and (in general) has only the
trivial solution h = 0.

Relax the objective Ah = 0 to (constrained least squares)

arg min
h:||h||=1

||Ah|| = arg min
h

||Ah||
||h||

= (normed) eigenvector to smallest eigenvalue

and solve via SVD:

ATA = USUT , S = diag(s1, . . . , s9), si ≥ si+1∀i ,UUT = I

h := U9,1:9

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

Degenerate Configurations: Underdetermined

I If three of the four points are collinear (in both images),
A will have rank < 8 and thus h underdetermined,
and thus there is no unique solution for h.

Degenerate Configuration:
Corresponding points that do not uniquely determine a transformation
(in a particular class of transformations).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 48

Computer Vision 1. The Direct Linear Transformation Algorithm

Direct Linear Transformation Algorithm (DLT)

1: procedure
est-2d-projectivity-dlt(x1, x

′
1, x2, x

′
2, . . . , xN , x

′
N ∈ P2)

2: A :=

A(x1, x

′
1)

A(x2, x
′
2)

...
A(xN , x

′
N)

 =

0T −x ′1,3xT1 x ′1,2x
T
1

x ′1,3x
T
1 0T −x ′1,1xT1

0T −x ′2,3xT2 x ′2,2x
T
2

x ′2,3x
T
2 0T −x ′2,1xT2

...
0T −x ′N,3xTN x ′N,2x

T
N

x ′N,3x
T
N 0T −x ′N,1xTN

3: (U, S) := SVD(ATA)
4: h := U9,1:9

5: return H :=

 hT1:3

hT4:6

hT7:9

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 48

Note: Do not use this unnormalized version of DLT, but the one in section 3.

Computer Vision 2. Error Functions

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 48

Computer Vision 2. Error Functions

Algebraic Distance

I the loss minimized by DLT, represented as distance between
I x ′: point in 2nd image
I x̂ ′ := Hx : estimated position of x ′ by H

`alg(H; x , x ′) := ||A(x ′, x)h||2

= ||
(

0T −x ′3xT x ′2x
T

x ′3x
T 0T −x ′1xT

)
h||2

= ||
(
−x ′3x̂ ′2 + x ′2x̂

′
3

x ′3x̂
′
1 − x ′1x̂

′
3

)
||2

= dalg(x ′, x̂ ′)2

with

dalg(x , y) :=
√

a2
1 + a2

2, (a1, a2, a3)T = x × y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 48

Computer Vision 2. Error Functions

Geometric Distances: Transfer Errors
Transfer Error in One Image (2nd image):

`trans1(H; x , x ′) :=d(x ′,Hx)2 = d(x ′, x̂ ′)2

with Euclidean distance in inhomogeneous coordinates

d(x , y) :=
√

(x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2

=
1

|x3||y3|
dalg(x , y)

I DLT/algebraic error equals geometric error for affine transformations
(x3 = y3 = 1)

Symmetric Transfer Error:

`strans(H; x , x ′) :=d(x ,H−1x ′)2 + d(x ′,Hx)2

=d(x , x̂)2 + d(x ′, x̂ ′)2, x̂ := H−1x ′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 48

Computer Vision 2. Error Functions

Geometric Distances: Transfer Errors
Transfer Error in One Image (2nd image):

`trans1(H; x , x ′) :=d(x ′,Hx)2 = d(x ′, x̂ ′)2

with Euclidean distance in inhomogeneous coordinates

d(x , y) :=
√

(x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2

=
1

|x3||y3|
dalg(x , y)

I DLT/algebraic error equals geometric error for affine transformations
(x3 = y3 = 1)

Symmetric Transfer Error:

`strans(H; x , x ′) :=d(x ,H−1x ′)2 + d(x ′,Hx)2

=d(x , x̂)2 + d(x ′, x̂ ′)2, x̂ := H−1x ′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 48

Computer Vision 2. Error Functions

Geometric Distances: Transfer Errors
Transfer Error in One Image (2nd image):

`trans1(H; x , x ′) :=d(x ′,Hx)2 = d(x ′, x̂ ′)2

with Euclidean distance in inhomogeneous coordinates

d(x , y) :=
√

(x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2

=
1

|x3||y3|
dalg(x , y)

I DLT/algebraic error equals geometric error for affine transformations
(x3 = y3 = 1)

Symmetric Transfer Error:

`strans(H; x , x ′) :=d(x ,H−1x ′)2 + d(x ′,Hx)2

=d(x , x̂)2 + d(x ′, x̂ ′)2, x̂ := H−1x ′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 48

Computer Vision 2. Error Functions

Transfer Errors: Probabilistic Interpretation
Assume
I measurements xn in the 1st image are noise-free,
I measurements x ′n in the 2nd image are distributed Gaussian around

true values Hxn:

p(x ′n | Hxn, σ2) =
1

2πσ2
e−d(x ′n,Hxn)2/(2σ2)

log-likelihood for Transfer Error in One Image:

p(H | x1:N , x
′
1:N) =

p(x1:N , x
′
1:N | H)p(H)

p(x1:N , x
′
1:N)

Bayes

∝p(x1:N , x
′
1:N | H)p(H) ∝ p(x ′1:N | H, x1:N)p(H)

=p(H)
N∏

n=1

p(x ′n | H, xn) ∝
N∏

n=1

p(x ′n | H, xn)

log p(H | x1:N , x
′
1:N) ∝−

N∑
n=1

d(x ′n,Hxn)2 = transfer error

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 48

Computer Vision 2. Error Functions

Reprojection Error
I additionally to projectivity H, also find noise-free / perfectly matching

pairs x̂ , x̂ ′:

minimize `rep(H, x̂1, x̂
′
1, . . . , x̂N , x̂

′
N) :=

N∑
n=1

d(xn, x̂n)2 + d(x ′n, x̂
′
n)2

w.r.t.

x̂ ′n =Hx̂n, n = 1, . . . ,N

over

H, x̂1, x̂
′
1, . . . , x̂N , x̂

′
N

Reprojection Error:

`rep(H, x̂ , x̂ ′; x , x ′) :=d(x , x̂)2 + d(x ′, x̂ ′)2, with x̂ ′ = Hx̂

I analogue probabilistic interpretation:
I measurements x , x ′ are Gaussian around true values x̂ , x̂ ′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 48

Computer Vision 3. Transformation Invariance and Normalization

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 48

Computer Vision 3. Transformation Invariance and Normalization

Are Solutions Invariant under Transformations?

I Given corresponding points xn, x
′
n,

a method such as DLT will find a projectivity H.

I Now assume
I the first image is transformed by projectivity T ,
I the second image is transformed by projectivity T ′

before we apply the estimation method.
I Corresponding points now will be x̃n := Txn, x̃

′
n := T ′x ′n

I Let H̃ be the projectivity estimated by the method applied to x̃n, x̃
′
n.

I Is it guaranteed that H and H̃ are “the same” (equivalent) ?

H̃
?
= T ′HT−1

I This may depend on the class of projectivities allowed for T ,T ′.
I at least invariance under similarities would be useful !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 48

Computer Vision 3. Transformation Invariance and Normalization

Are Solutions Invariant under Transformations?

I Given corresponding points xn, x
′
n,

a method such as DLT will find a projectivity H.
I Now assume

I the first image is transformed by projectivity T ,
I the second image is transformed by projectivity T ′

before we apply the estimation method.
I Corresponding points now will be x̃n := Txn, x̃

′
n := T ′x ′n

I Let H̃ be the projectivity estimated by the method applied to x̃n, x̃
′
n.

I Is it guaranteed that H and H̃ are “the same” (equivalent) ?

H̃
?
= T ′HT−1

I This may depend on the class of projectivities allowed for T ,T ′.
I at least invariance under similarities would be useful !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 48

Computer Vision 3. Transformation Invariance and Normalization

Are Solutions Invariant under Transformations?

I Given corresponding points xn, x
′
n,

a method such as DLT will find a projectivity H.
I Now assume

I the first image is transformed by projectivity T ,
I the second image is transformed by projectivity T ′

before we apply the estimation method.
I Corresponding points now will be x̃n := Txn, x̃

′
n := T ′x ′n

I Let H̃ be the projectivity estimated by the method applied to x̃n, x̃
′
n.

I Is it guaranteed that H and H̃ are “the same” (equivalent) ?

H̃
?
= T ′HT−1

I This may depend on the class of projectivities allowed for T ,T ′.
I at least invariance under similarities would be useful !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 48

Computer Vision 3. Transformation Invariance and Normalization

DLT is not Invariant under Similarities

I If T ′ is a similarity transformation with scale factor s
and T any projectivity, then one can show

||Ãh̃|| = s||Ah||

I But solutions H and H̃ will not be equivalent nevertheless,
as DLT minimizes under constraint ||h|| = 1
and this constraint is not scaled with s !

I So DLT is not invariant under similarity transforms.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 48

Note: Ã := A(x̃., x̃ ′.), h̃ := vect(H̃)

Computer Vision 3. Transformation Invariance and Normalization

DLT is not Invariant under Similarities

I If T ′ is a similarity transformation with scale factor s
and T any projectivity, then one can show

||Ãh̃|| = s||Ah||

I But solutions H and H̃ will not be equivalent nevertheless,
as DLT minimizes under constraint ||h|| = 1
and this constraint is not scaled with s !

I So DLT is not invariant under similarity transforms.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 48

Note: Ã := A(x̃., x̃ ′.), h̃ := vect(H̃)

Computer Vision 3. Transformation Invariance and Normalization

Transfer/Reprojection Errors are Invariant under
Similarities

I If T ′ is Euclidean:

d(x̃ ′n, H̃x̃n)2 =d(T ′x ′n,T
′HT−1Txn)2

=x ′n
TT ′TT ′HT−1Txn = x ′nHxn = d(x ′n,Hxn)2

I If T ′ is a similarity with scale factor s:

d(x̃ ′n, H̃x̃n)2 =d(T ′x ′n,T
′HT−1Txn)2

=x ′nT
′TT ′HT−1Txn = x ′ns

2Hxn = s2d(x ′n,Hxn)2

I Error is just scaled, so attains minimum at same position.
 Transfer/Reprojection Errors are invariant under similarities.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 48

Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization

I Image coordinates of corresponding points are usually finite:
x = (x1, x2, 1)T ,
thus have different scale (100, 100, 1) when measured in pixels.

I Therefore, entries in A(x , x ′) will have largely different scale:

A(x , x ′) =

(
0T −x ′3xT x ′2x

T

x ′3x
T 0T −x ′1xT

)
=

(
0T −xT x ′2x

T

xT 0T −x ′1xT
)

I some in 100s (xT), some in 10.000s (x ′2x
T ,−x ′1xT)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 48

Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization
I normalize x1:N :

x̃1:N :=normalize(x1:N) := (
xn − µ(x1:N)

τ(x1:N)/
√

2
)n=1,...,N ,

with

µ(x1:N) :=
1

N

N∑
n=1

xn centroid/mean

τ(x1:N) :=
1

N

N∑
n=1

d(xn, µ(x1:N)) avg. distance to centroid

I afterwards:

µ(x̃1:N) =0, τ(x̃1:N) =
√

2

I Normalization is a similarity transform:

T := Tnorm(x1:N) :=

(√
2/τ(x1:N)I −µ(x1:N)

√
2/τ(x1:N)

0 1

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 48

Computer Vision 3. Transformation Invariance and Normalization

DLT with Normalization / Algorithm

1: procedure
est-2d-projectivity-dltn(x1, x

′
1, x2, x

′
2, . . . , xN , x

′
N ∈ P2)

2: T := Tnorm(x1:N) :=

(√
2/τ(x1:N)I −µ(x1:N)

√
2/τ(x1:N)

0 1

)
3: T ′ := Tnorm(x ′1:N) :=

(√
2/τ(x ′1:N)I −µ(x ′1:N)

√
2/τ(x ′1:N)

0 1

)
4: x̃n := Txn ∀n = 1, . . . ,N . normalize xn
5: x̃ ′n := T ′x ′n ∀n = 1, . . . ,N . normalize x ′n
6: H̃ := est-2d-projectivity-dlt(x̃1, x̃

′
1, x̃2, x̃

′
2, . . . , x̃N , x̃

′
N)

7: H := T ′–1H̃T . unnormalize H̃
8: return H

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 48

Computer Vision 4. Iterative Minimization Methods

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 48

Computer Vision 4. Iterative Minimization Methods

Types of Problems

I The transformation estimation problem for the
I algebraic distance/loss can be cast into a single
I linear system of equations (DLTn).

I The transformation estimation problem for the
I transfer distance/loss as well as for the
I reconstruction loss is more complicated and has to be handled by an

explicit
I iterative minimization procedure.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 48

Computer Vision 4. Iterative Minimization Methods

Minimization Objectives f : RM → R
a) transfer distance in one image:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2

b) symmetric transfer distance:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2 + d(xn,H
−1x ′n)2

c) reconstruction loss:

minimize f (H, x̂1:N) :=
N∑

n=1

d(xn, x̂n)2 + d(x ′n,Hx̂n)2

I xn, x
′
n are constants, H, x̂1:N variables

I a), b) have M := 9 parameters / variables
I as H as only 8 dof, the objective is slightly overparametrized

I c) has M := 2N + 9 parameters / variables
I allowing only finite points for x̂n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 48

Computer Vision 4. Iterative Minimization Methods

Objectives of type f = eTe (1/3)
All three objectives f are L2 norms of (parametrized) vectors, i.e. can be
written as

f (x) = e(x)T e(x), h : RM → RN

a) transfer distance in one image:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2

= e(H)T e(H),

e(H) :=

x ′1,1/x

′
1,3 − (Hx1)1/(Hx1)3

x ′1,2/x
′
1,3 − (Hx1)2/(Hx1)3

...
x ′N,1/x

′
N,3 − (HxN)1/(HxN)3

x ′N,2/x
′
N,3 − (HxN)2/(HxN)3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 48

Computer Vision 4. Iterative Minimization Methods

Objectives of type f = eTe (2/3)

b) symmetric transfer distance:

minimize f (H) :=
N∑

n=1

d(x ′n,Hxn)2 + d(xn,H
−1x ′n)2 = e(H)T e(H),

e(H) :=

x ′1,1/x
′
1,3 − (Hx1)1/(Hx1)3

x ′1,2/x
′
1,3 − (Hx1)2/(Hx1)3

...
x ′N,1/x

′
N,3 − (HxN)1/(HxN)3

x ′N,2/x
′
N,3 − (HxN)2/(HxN)3

x1,1/x1,3 − (H−1x ′1)1/(H−1x ′1)3

x1,2/x1,3 − (H−1x ′1)2/(H−1x ′1)3
...

xN,1/xN,3 − (H−1x ′N)1/(H−1x ′N)3

xN,2/xN,3 − (H−1x ′N)2/(H−1x ′N)3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 48

Computer Vision 4. Iterative Minimization Methods

Objectives of type f = eTe (3/3)

c) reconstruction loss:

minimize f (H, x̂1:N) :=
N∑

n=1

d(xn, x̂n)2 + d(x ′n,Hx̂n)2 = e(H)T e(H),

e(H) :=

x ′1,1/x
′
1,3 − (Hx̂1)1/(Hx̂1)3

x ′1,2/x
′
1,3 − (Hx̂1)2/(Hx̂1)3

...
x ′N,1/x

′
N,3 − (Hx̂N)1/(Hx̂N)3

x ′N,2/x
′
N,3 − (Hx̂N)2/(Hx̂N)3

x1,1/x1,3 − x̂1,1

x1,2/x1,3 − x̂1,2
...

xN,1/xN,3 − x̂N,1
xN,2/xN,3 − x̂N,2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. moves into the descent direction:

x (t+1) := x (t) + d

Beware:
I f decreases only in the neighborhood of x (t)

I A full gradient step may be too large and not leading to a decrease !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. moves into the descent direction:

x (t+1) := x (t) + d

Beware:
I f decreases only in the neighborhood of x (t)

I A full gradient step may be too large and not leading to a decrease !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. moves into the descent direction:

x (t+1) := x (t) + d

Beware:
I f decreases only in the neighborhood of x (t)

I A full gradient step may be too large and not leading to a decrease !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. moves into the descent direction:

x (t+1) := x (t) + d

Beware:
I f decreases only in the neighborhood of x (t)

I A full gradient step may be too large and not leading to a decrease !
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent w. Steplength Control
To minimize f : RM → R over x ∈ RM Gradient Descent

1. starts at a random starting point x0 ∈ RM

t := 0, x (t) := x0

2. computes as descent direction d (t) at x (t)

— direction where f decreases —
the gradient of f :

d (t) := −g (t) := −∇x f |x(t) := −(
∂f

∂xm
(x (t)))m=1,...,M

3. finds a steplength α ∈ R+ so that f actually decreases:

α := max{α := 2−k | k = 0, 1, 2, . . . , f (x + αd) < f (x)}
4. moves a step into the descent direction:

x (t+1) := x (t) + αd

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (I): Gradient Descent / Algorithm

1: procedure min-gd(f : RM → R, x0 ∈ RM ,∇x f : RM → RM , ε ∈ R+)
2: x := x0

3: do
4: d := −∇x f |x
5: α := 1
6: while f (x + αd) ≥ f (x) do
7: α := α/2

8: x := x + αd
9: while ||d || > ε

10: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (II): Newton
The Newton algorithm computes a better descent direction:

I approximate f by the quadratic Taylor expansion at x (t):

f (x + d) ≈ f̃ (d) := f (x (t)) +∇x f |Tx(t)d +
1

2
dT∇2

x f |Tx(t)d

= f (x (t)) + gT
x(t)

d +
1

2
dTHx(t)d

where

∇2
x f |x := Hx := (

∂2f

∂xm∂xk
)m,k=1,...,M Hessian of f

I the approximation attains its minimum at

0
!

=∇d f̃ (d) = gx(t) + Hx(t)d

Hx(t)d =− gx(t) normal equations

I solve this linear system of equations to find descent direction

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f (II): Newton / Algorithm

1: procedure min-newton(f : RM → R, x0 ∈ RM ,
∇x f : RM → RM ,∇2

x f : RM → RM×M , ε ∈ R+)
2: x := x0

3: do
4: g := ∇x f |x
5: H := ∇2

x f |x
6: d := solved(Hd = −g)
7: α := 1
8: while f (x + αd) ≥ f (x) do
9: α := α/2

10: x := x + αd
11: while ||d || > ε
12: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton

Gauss-Newton is

I a specialization of the Newton algorithm

I for objectives of type f (x) = e(x)T e(x)

I that approximates the Hessian:

∇x f |x = 2∇xe|Tx e(x)

∇2
x f |x = 2∇xe|Tx ∇xe|x + 2∇2

xe|Tx e(x)

Now approximate e by a linear Taylor expansion, i.e.

∇2
xe|x ≈ 0

 ∇2
x f |x ≈ 2∇xe|Tx ∇xe|x

I all we need is the gradient of e !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton

Gauss-Newton is

I a specialization of the Newton algorithm

I for objectives of type f (x) = e(x)T e(x)

I that approximates the Hessian:

∇x f |x = 2∇xe|Tx e(x)

∇2
x f |x = 2∇xe|Tx ∇xe|x + 2∇2

xe|Tx e(x)

Now approximate e by a linear Taylor expansion, i.e.

∇2
xe|x ≈ 0

 ∇2
x f |x ≈ 2∇xe|Tx ∇xe|x

I all we need is the gradient of e !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton

Gauss-Newton is

I a specialization of the Newton algorithm

I for objectives of type f (x) = e(x)T e(x)

I that approximates the Hessian:

∇x f |x = 2∇xe|Tx e(x)

∇2
x f |x = 2∇xe|Tx ∇xe|x + 2∇2

xe|Tx e(x)

Now approximate e by a linear Taylor expansion, i.e.

∇2
xe|x ≈ 0

 ∇2
x f |x ≈ 2∇xe|Tx ∇xe|x

I all we need is the gradient of e !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton

Gauss-Newton is

I a specialization of the Newton algorithm

I for objectives of type f (x) = e(x)T e(x)

I that approximates the Hessian:

∇x f |x = 2∇xe|Tx e(x)

∇2
x f |x = 2∇xe|Tx ∇xe|x + 2∇2

xe|Tx e(x)

Now approximate e by a linear Taylor expansion, i.e.

∇2
xe|x ≈ 0

 ∇2
x f |x ≈ 2∇xe|Tx ∇xe|x

I all we need is the gradient of e !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton

Gauss-Newton is

I a specialization of the Newton algorithm

I for objectives of type f (x) = e(x)T e(x)

I that approximates the Hessian:

∇x f |x = 2∇xe|Tx e(x)

∇2
x f |x = 2∇xe|Tx ∇xe|x + 2∇2

xe|Tx e(x)

Now approximate e by a linear Taylor expansion, i.e.

∇2
xe|x ≈ 0

 ∇2
x f |x ≈ 2∇xe|Tx ∇xe|x

I all we need is the gradient of e !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Gauss-Newton / Algorithm

1: procedure min-gauss-
newton(e : RM → RN , x0 ∈ RM ,∇xe : RM → RN×M , ε ∈ R+)

2: x := x0

3: do
4: J := ∇xe|x
5: g := JT e(x)
6: H := JT J
7: d := solved(Hd = −g)
8: α := 1
9: while e(x + αd)T e(x + αd) ≥ e(x)T e(x) do

10: α := α/2

11: x := x + αd
12: while ||d || > ε
13: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (II): Levenberg-Marquardt

I slight variation of the Gauss-Newton method

JT J d = −g Gauss-Newton Normal Eq.

(JT J + λI) d = −g Levenberg-Marquardt Normal Eq.

I if new objective value is worse, try again with larger λ
I for large λ: equivalent to Gradient descent with small stepsize 1/λ

(JT J + λI) ≈ λI , (JT J + λI) d = −g d = − 1

λ
g

I once new objective value is smaller, accept and decrease λ
I for small λ: equivalent to Gauss-Newton with (large) stepsize 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (II): Levenberg-Marquardt

I slight variation of the Gauss-Newton method

JT J d = −g Gauss-Newton Normal Eq.

(JT J + λI) d = −g Levenberg-Marquardt Normal Eq.

I if new objective value is worse, try again with larger λ
I for large λ: equivalent to Gradient descent with small stepsize 1/λ

(JT J + λI) ≈ λI , (JT J + λI) d = −g d = − 1

λ
g

I once new objective value is smaller, accept and decrease λ
I for small λ: equivalent to Gauss-Newton with (large) stepsize 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (II): Levenberg-Marquardt

I slight variation of the Gauss-Newton method

JT J d = −g Gauss-Newton Normal Eq.

(JT J + λI) d = −g Levenberg-Marquardt Normal Eq.

I if new objective value is worse, try again with larger λ
I for large λ: equivalent to Gradient descent with small stepsize 1/λ

(JT J + λI) ≈ λI , (JT J + λI) d = −g d = − 1

λ
g

I once new objective value is smaller, accept and decrease λ
I for small λ: equivalent to Gauss-Newton with (large) stepsize 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 48

Computer Vision 4. Iterative Minimization Methods

Minimizing f = eTe (I): Levenberg-Marquardt / Algorithm
1: procedure min-levenberg-

marquardt(e : RM → RN , x0 ∈ RM ,∇xe : RM → RN×M , ε ∈ R+)
2: x := x0

3: λ := 1
4: do
5: J := ∇xe|x
6: g := JT e(x)
7: λ := (λ/10)/10
8: do
9: H := JT J + λI

10: d := solved(Hd = −g)
11: λ := 10λ
12: while e(x + d)T e(x + d) ≥ e(x)T e(x)
13: x := x + d
14: while ||d || > ε
15: return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 48

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (1/2)

e(H) :=

x ′1,1/x
′
1,3 − (Hx̂1)1/(Hx̂1)3

x ′1,2/x
′
1,3 − (Hx̂1)2/(Hx̂1)3

...
x ′N,1/x

′
N,3 − (Hx̂N)1/(Hx̂N)3

x ′N,2/x
′
N,3 − (Hx̂N)2/(Hx̂N)3

x1,1/x1,3 − x̂1,1

x1,2/x1,3 − x̂1,2
...

xN,1/xN,3 − x̂N,1
xN,2/xN,3 − x̂N,2

= vect(

(
e1

1:N,1:2

e2
1:N,1:2

)
)

with

e1
n,i := x ′n,i/x

′
n,3 − (Hx̂n)i/(Hx̂n)3

e2
n,i := xn,i/xn,3 − x̂n,i

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 48

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (2/2)

e1
n,i :=

x ′n,i
x ′n,3
− (Hx̂n)i

(Hx̂n)3

e2
n,i := xn,i/xn,3 − x̂n,i

∇x̂ñ,̃i
e1
n,i

=

{
− Hi ,̃i

(Hx̂n)3
+ (Hx̂n)i

(Hx̂n)2
3
H3,̃i , if ñ = n

0, else

∇x̂ñ,̃i
e2
n,i

=

{
−1, if ñ = n, ĩ = i

0, else

∇Hĩ ,̃j
e1
n,i

= −δ(̃i = i)
x̂n,̃j

(Hx̂n)3
+ δ(̃i = 3)

(Hx̂n)i
(Hx̂n)2

3

x̂n,3

∇Hĩ ,̃j
e2
n,i

= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 48

Note: (Hx̂n)i =
∑3

j=1 Hi,j x̂n,j .

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (2/2)

e1
n,i :=

x ′n,i
x ′n,3
− (Hx̂n)i

(Hx̂n)3

e2
n,i := xn,i/xn,3 − x̂n,i

∇x̂ñ,̃i
e1
n,i =

{
− Hi ,̃i

(Hx̂n)3
+ (Hx̂n)i

(Hx̂n)2
3
H3,̃i , if ñ = n

0, else

∇x̂ñ,̃i
e2
n,i

=

{
−1, if ñ = n, ĩ = i

0, else

∇Hĩ ,̃j
e1
n,i

= −δ(̃i = i)
x̂n,̃j

(Hx̂n)3
+ δ(̃i = 3)

(Hx̂n)i
(Hx̂n)2

3

x̂n,3

∇Hĩ ,̃j
e2
n,i

= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 48

Note: (Hx̂n)i =
∑3

j=1 Hi,j x̂n,j .

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (2/2)

e1
n,i :=

x ′n,i
x ′n,3
− (Hx̂n)i

(Hx̂n)3

e2
n,i := xn,i/xn,3 − x̂n,i

∇x̂ñ,̃i
e1
n,i =

{
− Hi ,̃i

(Hx̂n)3
+ (Hx̂n)i

(Hx̂n)2
3
H3,̃i , if ñ = n

0, else

∇x̂ñ,̃i
e2
n,i =

{
−1, if ñ = n, ĩ = i

0, else

∇Hĩ ,̃j
e1
n,i

= −δ(̃i = i)
x̂n,̃j

(Hx̂n)3
+ δ(̃i = 3)

(Hx̂n)i
(Hx̂n)2

3

x̂n,3

∇Hĩ ,̃j
e2
n,i

= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 48

Note: (Hx̂n)i =
∑3

j=1 Hi,j x̂n,j .

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (2/2)

e1
n,i :=

x ′n,i
x ′n,3
− (Hx̂n)i

(Hx̂n)3

e2
n,i := xn,i/xn,3 − x̂n,i

∇x̂ñ,̃i
e1
n,i =

{
− Hi ,̃i

(Hx̂n)3
+ (Hx̂n)i

(Hx̂n)2
3
H3,̃i , if ñ = n

0, else

∇x̂ñ,̃i
e2
n,i =

{
−1, if ñ = n, ĩ = i

0, else

∇Hĩ ,̃j
e1
n,i = −δ(̃i = i)

x̂n,̃j
(Hx̂n)3

+ δ(̃i = 3)
(Hx̂n)i
(Hx̂n)2

3

x̂n,3

∇Hĩ ,̃j
e2
n,i

= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 48

Note: (Hx̂n)i =
∑3

j=1 Hi,j x̂n,j .

Computer Vision 4. Iterative Minimization Methods

Example: Reconstruction Loss (2/2)

e1
n,i :=

x ′n,i
x ′n,3
− (Hx̂n)i

(Hx̂n)3

e2
n,i := xn,i/xn,3 − x̂n,i

∇x̂ñ,̃i
e1
n,i =

{
− Hi ,̃i

(Hx̂n)3
+ (Hx̂n)i

(Hx̂n)2
3
H3,̃i , if ñ = n

0, else

∇x̂ñ,̃i
e2
n,i =

{
−1, if ñ = n, ĩ = i

0, else

∇Hĩ ,̃j
e1
n,i = −δ(̃i = i)

x̂n,̃j
(Hx̂n)3

+ δ(̃i = 3)
(Hx̂n)i
(Hx̂n)2

3

x̂n,3

∇Hĩ ,̃j
e2
n,i = 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 48

Note: (Hx̂n)i =
∑3

j=1 Hi,j x̂n,j .

Computer Vision 4. Iterative Minimization Methods

Example: Comparison of Different Methods
4.6 Experimental comparison of the algorithms 115

a b c

Fig. 4.5. Three images of a plane which are used to compare methods of computing projective transfor-
mations from corresponding points.

Method Pair 1 Pair 2
figure 4.5 a & b figure 4.5 a & c

Linear normalized 0.4078 0.6602
Gold Standard 0.4078 0.6602
Linear unnormalized 0.4080 26.2056
Homogeneous scaling 0.5708 0.7421
Sampson 0.4077 0.6602
Error in 1 view 0.4077 0.6602
Affine 6.0095 2.8481
Theoretical optimal 0.5477 0.6582

Table 4.1. Residual errors in pixels for the various algorithms.

4.6 Experimental comparison of the algorithms

The algorithms are compared for the images shown in figure 4.5. Table 4.1 shows the
results of testing several of the algorithms described in this chapter. Residual error is
shown for two pairs of images. The methods used are fairly self-explanatory, with a
few exceptions. The method “affine” was an attempt to fit the projective transformation
with an optimal affine mapping. The “optimal” is the ML estimate assuming a noise
level of one pixel.

The first pair of images are (a) and (b) of figure 4.5, with 55 point correspondences.
It appears that all methods work almost equally well (except the affine method). The
optimal residual is greater than the achieved results, because the noise level (unknown)
is less than one pixel.

Image (c) of figure 4.5 was produced synthetically by resampling (a), and the second
pair consists of (a) and (c) with 20 point correspondences. In this case, almost all
methods perform almost optimally, as shown in the table 4.1. The exception is the
affine method (expected to perform badly, since it is not an affine transformation) and
the unnormalized linear method. The unnormalized method is expected to perform
badly (though maybe not this badly). Just why it performs well in the first pair and
very badly for the second pair is not understood. In any case, it is best to avoid this
method and use a normalized linear or Gold Standard method.

A further evaluation is presented in figure 4.6. The transformation to be estimated is
the one that maps the chessboard image shown here to a square grid aligned with the

residual error in pixels
method pair a,b pair a,c

DLT unnormalized 0.4080 26.2056
DLT normalized 0.4078 0.6602
Transfer distance in one image 0.4077 0.6602
Reconstruction loss 0.4078 0.6602

affine 6.0095 2.8481

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 48

[HZ04, p. 115]

Computer Vision 4. Iterative Minimization Methods

Example: Comparison of Different Methods

116 4 Estimation – 2D Projective Transformations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70
R

es
id

ua
l E

rr
or

Number of Points

a b

0

1

2

3

4

5

6

7

0 2 4 6 8 10

R
es

id
ua

l E
rr

or

Noise Level

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

R
es

id
ua

l e
rr

or

Noise level

c d

Fig. 4.6. Comparison of the DLT and Gold Standard algorithms to the theoretically optimal resid-
ual error. (a) The homography is computed between a chessboard and this image. In all three graphs,
the result for the Gold Standard algorithm overlap and are indistinguishable from the theoretical mini-
mum. (b) Residual error as a function of the number of points. (c) The effect of varying noise level for
10 points, and (d) 50 points.

axes. As may be seen, the image is substantially distorted, with respect to a square grid.
For the experiments, randomly selected points in the image were chosen and matched
with the corresponding point on the square grid. The (normalized) DLT algorithm
and the Gold Standard algorithm are compared to the theoretical minimum or residual
error (see chapter 5). Note that for noise up to 5 pixels, the DLT algorithm performs
adequately. However, for a noise level of 10 pixels it fails. Note however that in a 200-
pixel image, an error of 10 pixels is extremely high. For less severe homographies,
closer to the identity map, the DLT performs almost as well as the Gold Standard
algorithm.

4.7 Robust estimation

Up to this point it has been assumed that we have been presented with a set of corre-
spondences, {xi ↔ x′

i}, where the only source of error is in the measurement of the
point’s position, which follows a Gaussian distribution. In many practical situations
this assumption is not valid because points are mismatched. The mismatched points
are outliers to the Gaussian error distribution. These outliers can severely disturb the

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 48

[HZ04, p. 116]Note: solid: DLTn, dashed: reconstruction loss

Computer Vision 4. Iterative Minimization Methods

Example: Comparison of Different Methods

116 4 Estimation – 2D Projective Transformations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

R
es

id
ua

l E
rr

or

Number of Points

a b

0

1

2

3

4

5

6

7

0 2 4 6 8 10

R
es

id
ua

l E
rr

or

Noise Level

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3
R

es
id

ua
l e

rr
or

Noise level

c d

Fig. 4.6. Comparison of the DLT and Gold Standard algorithms to the theoretically optimal resid-
ual error. (a) The homography is computed between a chessboard and this image. In all three graphs,
the result for the Gold Standard algorithm overlap and are indistinguishable from the theoretical mini-
mum. (b) Residual error as a function of the number of points. (c) The effect of varying noise level for
10 points, and (d) 50 points.

axes. As may be seen, the image is substantially distorted, with respect to a square grid.
For the experiments, randomly selected points in the image were chosen and matched
with the corresponding point on the square grid. The (normalized) DLT algorithm
and the Gold Standard algorithm are compared to the theoretical minimum or residual
error (see chapter 5). Note that for noise up to 5 pixels, the DLT algorithm performs
adequately. However, for a noise level of 10 pixels it fails. Note however that in a 200-
pixel image, an error of 10 pixels is extremely high. For less severe homographies,
closer to the identity map, the DLT performs almost as well as the Gold Standard
algorithm.

4.7 Robust estimation

Up to this point it has been assumed that we have been presented with a set of corre-
spondences, {xi ↔ x′

i}, where the only source of error is in the measurement of the
point’s position, which follows a Gaussian distribution. In many practical situations
this assumption is not valid because points are mismatched. The mismatched points
are outliers to the Gaussian error distribution. These outliers can severely disturb the

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 48

[HZ04, p. 116]Note: solid: DLTn, dashed: reconstruction loss; c) 10 points, d) 50 points

Computer Vision 5. Robust Estimation

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 48

Computer Vision 5. Robust Estimation

Outliers and Robust Estimation

I When estimating a transformation from pairs of corresponding points,
having these correspondences estimated from data themselves,
we expect noise: wrong correspondences.

I Wrong correspondences could be not just a little bit off,
but way off: outliers.

I Some losses, esp. least squares, are sensitive to outliers:4.7 Robust estimation 117

b

d
a

c

a b

Fig. 4.7. Robust line estimation. The solid points are inliers, the open points outliers. (a) A least-
squares (orthogonal regression) fit to the point data is severely affected by the outliers. (b) In the
RANSAC algorithm the support for lines through randomly selected point pairs is measured by the num-
ber of points within a threshold distance of the lines. The dotted lines indicate the threshold distance.
For the lines shown the support is 10 for line 〈a,b〉 (where both of the points a and b are inliers); and
2 for line 〈c,d〉 where the point c is an outlier.

estimated homography, and consequently should be identified. The goal then is to de-
termine a set of inliers from the presented “correspondences” so that the homography
can then be estimated in an optimal manner from these inliers using the algorithms de-
scribed in the previous sections. This is robust estimation since the estimation is robust
(tolerant) to outliers (measurements following a different, and possibly unmodelled,
error distribution).

4.7.1 RANSAC

We start with a simple example that can easily be visualized – estimating a straight
line fit to a set of 2-dimensional points. This can be thought of as estimating a 1-
dimensional affine transformation, x′ = ax+ b, between corresponding points lying on
two lines.

The problem, which is illustrated in figure 4.7a, is the following: given a set of 2D
data points, find the line which minimizes the sum of squared perpendicular distances
(orthogonal regression), subject to the condition that none of the valid points deviates
from this line by more than t units. This is actually two problems: a line fit to the data;
and a classification of the data into inliers (valid points) and outliers. The threshold t is
set according to the measurement noise (for example t = 3σ), and is discussed below.
There are many types of robust algorithms and which one to use depends to some extent
on the proportion of outliers. For example, if it is known that there is only one outlier,
then each point can be deleted in turn and the line estimated from the remainder. Here
we describe in detail a general and very successful robust estimator – the RANdom
SAmple Consensus (RANSAC) algorithm of Fischler and Bolles [Fischler-81]. The
RANSAC algorithm is able to cope with a large proportion of outliers.

The idea is very simple: two of the points are selected randomly; these points define
a line. The support for this line is measured by the number of points that lie within a
distance threshold. This random selection is repeated a number of times and the line
with most support is deemed the robust fit. The points within the threshold distance are
the inliers (and constitute the eponymous consensus set). The intuition is that if one of
the points is an outlier then the line will not gain much support, see figure 4.7b.

I Robust estimation: estimation that is less sensitive to outliers.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 48

[HZ04, p. 117]

Computer Vision 5. Robust Estimation

Random Sample Consensus (RANSAC)
idea:

1. draw iteratively random samples of data points
I many and small enough so that some will have no outliers

with high probability

2. estimate the model from such a sample
3. grade the samples by the support of their models

I support: number of well-explained points,
i.e., points with a small error under the model (inliers)

4. reestimate the model on the support of the best sample
4.7 Robust estimation 117

b

d
a

c

a b

Fig. 4.7. Robust line estimation. The solid points are inliers, the open points outliers. (a) A least-
squares (orthogonal regression) fit to the point data is severely affected by the outliers. (b) In the
RANSAC algorithm the support for lines through randomly selected point pairs is measured by the num-
ber of points within a threshold distance of the lines. The dotted lines indicate the threshold distance.
For the lines shown the support is 10 for line 〈a,b〉 (where both of the points a and b are inliers); and
2 for line 〈c,d〉 where the point c is an outlier.

estimated homography, and consequently should be identified. The goal then is to de-
termine a set of inliers from the presented “correspondences” so that the homography
can then be estimated in an optimal manner from these inliers using the algorithms de-
scribed in the previous sections. This is robust estimation since the estimation is robust
(tolerant) to outliers (measurements following a different, and possibly unmodelled,
error distribution).

4.7.1 RANSAC

We start with a simple example that can easily be visualized – estimating a straight
line fit to a set of 2-dimensional points. This can be thought of as estimating a 1-
dimensional affine transformation, x′ = ax+ b, between corresponding points lying on
two lines.

The problem, which is illustrated in figure 4.7a, is the following: given a set of 2D
data points, find the line which minimizes the sum of squared perpendicular distances
(orthogonal regression), subject to the condition that none of the valid points deviates
from this line by more than t units. This is actually two problems: a line fit to the data;
and a classification of the data into inliers (valid points) and outliers. The threshold t is
set according to the measurement noise (for example t = 3σ), and is discussed below.
There are many types of robust algorithms and which one to use depends to some extent
on the proportion of outliers. For example, if it is known that there is only one outlier,
then each point can be deleted in turn and the line estimated from the remainder. Here
we describe in detail a general and very successful robust estimator – the RANdom
SAmple Consensus (RANSAC) algorithm of Fischler and Bolles [Fischler-81]. The
RANSAC algorithm is able to cope with a large proportion of outliers.

The idea is very simple: two of the points are selected randomly; these points define
a line. The support for this line is measured by the number of points that lie within a
distance threshold. This random selection is repeated a number of times and the line
with most support is deemed the robust fit. The points within the threshold distance are
the inliers (and constitute the eponymous consensus set). The intuition is that if one of
the points is an outlier then the line will not gain much support, see figure 4.7b.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

37 / 48

[HZ04, p. 117]

Computer Vision 5. Robust Estimation

Model Estimation Terminology
I RANSAC works like a wrapper around any estimation method.
I examples:

I estimating a transformation from point correspondences
I estimating a line (a linear model) from 2d points

I model estimation terminology:

X data space, e.g. R2

D ⊆ X dataset, e.g. D = {x1, . . . , xN}

f (θ | D) :=
1

|D|
∑
x∈D

`(x , θ) objective

` : X ×Θ→ R loss/error, e.g. `(

(
x
y

)
;

(
θ1

θ2

)
) := (y − (θ1 + θ2x))2

Θ (model) parameter space, e.g. R2

a : P(X)→ Θ estimation method, e.g. gradient descent

aiming at a(D) ≈ arg min
θ∈Θ

f (θ | D)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 48

Computer Vision 5. Robust Estimation

RANSAC Algorithm

1: procedure
est-ransac(D, `, a; N ′ ∈ N,T ∈ N, `max ∈ R, supmin ∈ N)

2: Sbest := ∅
3: for t = 1, . . . ,T or until |S| ≥ supmin do
4: D′ ∼ D of size N ′ . draw a sample
5: θ̂ := a(D′) . estimate the model
6: S := {x ∈ D | `(x , θ̂) < `max} . compute support
7: if |S| > |Sbest| then
8: Sbest := S
9: θ̂ := a(Sbest) . reestimate the model

10: return θ̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 48

Computer Vision 5. Robust Estimation

What is a good sample size N ′?

I often the minimum number to get a unique solution is used.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

40 / 48

Computer Vision 5. Robust Estimation

What is a good maximal support loss `max?

I for squared distance/L2 loss: `(x , x ′) := (x − x ′)2

I assume Gaussian noise: xobs ∼ N (xtrue,Σ),
I isotrop noise
I but no noise in some directions

I e.g., points on a line: noise only orthogonal to the line

 Σ = USUT , S = diag(s1, s2), si ∈ {σ2, 0},UUT = I

 `(xobs, xtrue) ∼ σ2χ2
m, m := rank(S) degrees of freedom

I inlier: `(xobs, xtrue) < `max with probability α
`max := σ2CDF−1

χ2
m

(α)

m model `max(α = 0.95)

1 line, fundamtental matrix 3.84σ2

2 projectivity, camera matrix 5.99σ2

3 trifocal tensor 7.81σ2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

41 / 48

Computer Vision 5. Robust Estimation

What is a good sample frequency T?
I find T s.t. at least one of the samples contains no outliers

with high probability α := 0.99.
I denote p(x is an outlier) = ε:

p(D′ contains no outliers) = (1− ε)N′

p(at least one D′ contains no outliers) = 1− (1− (1− ε)N′
)T

!
= α

 T =
1− α

1− (1− ε)N′

ε = p(x is an outlier)
N ′ 5% 10% 20% 30% 40% 50%

2 2 3 5 7 11 17
3 3 4 7 11 19 35
4 3 5 9 17 34 72
5 4 6 12 26 57 146
6 4 7 16 37 97 293
7 4 8 20 54 163 588
8 5 9 26 78 272 1177

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

42 / 48

Computer Vision 5. Robust Estimation

What is a good sample frequency T?
I find T s.t. at least one of the samples contains no outliers

with high probability α := 0.99.
I denote p(x is an outlier) = ε:

p(D′ contains no outliers) = (1− ε)N′

p(at least one D′ contains no outliers) = 1− (1− (1− ε)N′
)T

!
= α

 T =
1− α

1− (1− ε)N′
ε = p(x is an outlier)

N ′ 5% 10% 20% 30% 40% 50%
2 2 3 5 7 11 17
3 3 4 7 11 19 35
4 3 5 9 17 34 72
5 4 6 12 26 57 146
6 4 7 16 37 97 293
7 4 8 20 54 163 588
8 5 9 26 78 272 1177

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

42 / 48

Computer Vision 5. Robust Estimation

What is a good sufficient support size supmin?

I the sufficient support size is an early stopping criterion.

I stop if we have as many inliers as expected:

supmin = N(1− ε)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

43 / 48

Computer Vision 5. Robust Estimation

RANSAC Algorithm / Repeated Reestimation

1: procedure
est-ransac-rere(D, `, a; N ′ ∈ N,T ∈ N, `max ∈ R, supmin ∈ N)
...

8: S := Sbest

9: do
10: Sfinal := S
11: θ̂ := a(Sfinal) . reestimate the model
12: S := {x ∈ D | `(x , θ̂) < `max} . compute support
13: while Sfinal 6= S
14: return θ̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

44 / 48

Computer Vision 5. Robust Estimation

RANSAC: Repeated Reestimation

4.7 Robust estimation 121

• N =∞, sample count= 0.
• While N > sample count Repeat

– Choose a sample and count the number of inliers.
– Set ε = 1− (number of inliers)/(total number of points)
– Set N from ε and (4.18) with p = 0.99.
– Increment the sample count by 1.

• Terminate.

Algorithm 4.5. Adaptive algorithm for determining the number of RANSAC samples.

C D
B

A

C D
B

A

a b

Fig. 4.8. Robust ML estimation. The grey points are classified as inliers to the line. (a) A line defined
by points 〈A,B〉 has a support of four (from points {A,B,C,D}). (b) The ML line fit (orthogonal
least-squares) to the four points. This is a much improved fit over that defined by 〈A,B〉. 10 points are
classified as inliers.

the number of samples and terminating the algorithm. The initial ε can be chosen
as 1.0, in which case the initial N will be infinite. It is wise to use a conservative
probability p such as 0.99 in (4.18). Table 4.4 on page 127 gives example ε’s and N ’s
when computing a homography.

4.7.2 Robust Maximum Likelihood estimation

The RANSAC algorithm partitions the data set into inliers (the largest consensus set)
and outliers (the rest of the data set), and also delivers an estimate of the model, M0,
computed from the minimal set with greatest support. The final step of the RANSAC
algorithm is to re-estimate the model using all the inliers. This re-estimation should be
optimal and will involve minimizing a ML cost function, as described in section 4.3.
In the case of a line, ML estimation is equivalent to orthogonal regression, and a closed
form solution is available. In general, though, the ML estimation involves iterative
minimization, and the minimal set estimate, M0, provides the starting point.

The only drawback with this procedure, which is often the one adopted, is that the
inlier–outlier classification is irrevocable. After the model has been optimally fitted to
the consensus set, there may well be additional points which would now be classified
as inliers if the distance threshold was applied to the new model. For example, suppose
the line 〈A,B〉 in figure 4.8 was selected by RANSAC. This line has a support of
four points, all inliers. After the optimal fit to these four points, there are now 10 points
which would correctly be classified as inliers. These two steps: optimal fit to inliers; re-
classify inliers using (4.17); can then be iterated until the number of inliers converges.

a) estimation from initial sample
b) reestimation from sample plus
support

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

45 / 48

[HZ04, p. 121]

Computer Vision 6. Estimating a 2D Transformation

Outline

1. The Direct Linear Transformation Algorithm

2. Error Functions

3. Transformation Invariance and Normalization

4. Iterative Minimization Methods

5. Robust Estimation

6. Estimating a 2D Transformation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify
outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify
outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify
outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify
outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify
outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Putting it All Together

1. interest points:
compute interest points in each image.

2. putative matches:
compute matching pairs of interest points from their proximity and
intensity neighborhood.

3. simultaneously estimate a projectivity (model) and identify
outliers (robust estimation):

3.1 estimate a projectivity H from several samples of 4 points
and keep the one with maximal support/inliers (RANSAC using
DLTn)

3.2 reestimate the projectivity H using the best sample and all its
support/inliers
(using Levenberg-Marquardt; RANSAC final step)

3.3 Guided Matching: use projectivity H to identify a search region about
the transferred points (with relaxed threshold)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

46 / 48

Computer Vision 6. Estimating a 2D Transformation

Example

Left and right image:

126 4 Estimation – 2D Projective Transformations

a b

c d

e f

g h

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 × 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown by the line linking
corners, note the clear mismatches; (f) outliers – 117 of the putative matches; (g) inliers – 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

[HZ04, p. 126]

Computer Vision 6. Estimating a 2D Transformation

Example

ca. 500+500 interest points (“corners”):

126 4 Estimation – 2D Projective Transformations

a b

c d

e f

g h

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 × 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown by the line linking
corners, note the clear mismatches; (f) outliers – 117 of the putative matches; (g) inliers – 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

[HZ04, p. 126]

Computer Vision 6. Estimating a 2D Transformation

Example

268 putative matches:

126 4 Estimation – 2D Projective Transformations

a b

c d

e f

g h

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 × 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown by the line linking
corners, note the clear mismatches; (f) outliers – 117 of the putative matches; (g) inliers – 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

[HZ04, p. 126]

Computer Vision 6. Estimating a 2D Transformation

Example

117 outlier — 151 inlier matches:

126 4 Estimation – 2D Projective Transformations

a b

c d

e f

g h

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 × 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown by the line linking
corners, note the clear mismatches; (f) outliers – 117 of the putative matches; (g) inliers – 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.

126 4 Estimation – 2D Projective Transformations

a b

c d

e f

g h

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 × 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown by the line linking
corners, note the clear mismatches; (f) outliers – 117 of the putative matches; (g) inliers – 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

[HZ04, p. 126]

Computer Vision 6. Estimating a 2D Transformation

Example

262 final matches (after guided matching):

126 4 Estimation – 2D Projective Transformations

a b

c d

e f

g h

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 × 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown by the line linking
corners, note the clear mismatches; (f) outliers – 117 of the putative matches; (g) inliers – 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 48

[HZ04, p. 126]

Computer Vision 6. Estimating a 2D Transformation

Summary

I ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

48 / 48

Computer Vision

Further Readings

I [HZ04, ch. 4].

I For iterative estimation methods in CV see [HZ04, appendix 6].

I You may also read [HZ04, ch. 5] which will not be covered in the
lecture explicitly.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

49 / 48

Computer Vision

References

Richard Hartley and Andrew Zisserman.

Multiple view geometry in computer vision.
Cambridge university press, 2004.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

50 / 48

	1. The Direct Linear Transformation Algorithm
	2. Error Functions
	3. Transformation Invariance and Normalization
	4. Iterative Minimization Methods
	5. Robust Estimation
	6. Estimating a 2D Transformation
	Appendix

