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Computer Vision

Syllabus

Mon. 10.4.

Mon. 17.4.
Mon. 24.4.
Mon. 1.5.
Mon. 8.5.
Mon. 15.5.
Mon. 22.5.
Mon. 29.5.
Mon. 5.6.
Mon. 12.6.
Mon. 19.6.
Mon. 26.6.
Mon. 3.7.

0. Introduction

1. Projective Geometry in 2D: a. The Projective Plane

— Easter Monday —

1. Projective Geometry in 2D: b. Projective Transformations
— Labor Day —

2. Projective Geometry in 3D: a. Projective Space

2. Projective Geometry in 3D: b. Quadrics, Transformations

3. Estimating 2D Transformations: a. Direct Linear Transformation
3. Estimating 2D Transformations: b. Iterative Minimization
— Pentecoste Day —

4. Interest Points: a. Edges and Corners

4. Interest Points: b. Image Patches

5. Simulataneous Localization and Mapping: a. Camera Models
5. Simulataneous Localization and Mapping: b. Triangulation
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Computer Vision

Outline

1. Smoothing, Image Derivatives, Convolutions
2. Edges, Corners, and Interest Points

3. Image Patch Descriptors

4. Interest Point Matching

5. A Simple Application: Image Stitching
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions
Qutline

1. Smoothing, Image Derivatives, Convolutions
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Smoothing / Blurring / Averaging

» Smoothing: Replace each pixel by the weighted average of its
surrounding patch:

lsmooth (X, y; w) == Z w(—Ax, —Ay)l(x + Ax,y + Ay)
Ax,Ay

= Z W(X_ley _y/)l(xlvy/)
X/7_yl

» padding with 0 at the image boundaries.
» example: box kernel

1 1111
1 1111
W_2.2 _2.2(Ax,Ay) = % 11111
1 1111
1 1111

» Gaussian smoothing: smoothing with a Gaussian, kernel.
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Gaussian Kernels

» Precomputed weights: (clipped) Gaussian density values

N(V/Ax2 + Ay?;0,0%), if |Ax| < K,|Ay| < K

w(Ax,Ay) =
0, else

w(Ax, Ay)
ZAX’ WNY W(AX Ay)

» clipped: small support, window size K.

w(Ax, Ay) =

> example (K = 2,02 =1):

0.003 0.013 0.022 0.013 0.003
0.013 0.060 0.098 0.060 0.013
w_p2 _22:= | 0.022 0.098 0.162 0.098 0.022
0.013 0.060 0.098 0.060 0.013
0.003 0.013 0.022 0.013 0.003

_x= u)
Note: N(x; i, 02) := —L—e™ 202
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:

blurred by G(K =5,0 = 1):
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:

blurred by G(K = 5,0 = 10)
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:
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Computer Vision

1. Smoothing, Image Derivatives, Convolutions

Blurring / Example

original:

blurred by G(K = 50,0 = 10):
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives

» Image Derivative: How do the intensity values change in x or y
direction?

Ix(x,y) = 1(x,y) = I(x = 1,y)
Iy(x,y) = 1(x,y) = I(x,y = 1)
or symmetric
Ix(x,y):==2l(x,y) = I(x = 1,y) = I(x + 1,y)
Iy(x,y) :=2(x,y) = I(x,y = 1) = (x,y + 1)
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives / Example

[

original (grayscale):

derivative in x-direction

] = =
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Image Derivatives / Example

[

original (grayscale):

derivative in y-direction:

] = =
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions

» Smoothing, Image Derivatives and further operations such as filtering
can be represented by a
» convolution: an image where each pixel (x, y) represents the weighted
sum around (x,y) in image | weighted with w:

(wx1)0xy) =Y wix=xy —y)I(x,y)

» Examples: Xy’

lsmooth =w=xl

Ix(x,y) = 1(x,y) = I(x = 1,y) =(1 —1)=I
1

Iy (x.y) = 1(xy) ~ oy — 1) (1)

or Ix(x,y) :==2l(x,y) = I(x = 1L,y) = I(x+1,y) =(-1 2 =1 )

-1

/Y(Xv)/) ::2I(X,y)—/(X,y—l)—(X,y+1) - 2 *
-1
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Computer Vision 1. Smoothing, Image Derivatives, Convolutions

Convolutions / Associativity

» Convolutions are associative:
I« (JxK)=(xJ)xK

» Example:
First smooth an image with Gaussian w from slide 2,
then compute its x-derivative with ( =1 2 -1 ):
~> just convolve with ( -1 2 -1 ) * W

—0.007 0.002 0.017 0.002 —0.007
—0.033 0.008 0.077 0.008 —0.033
(-1 2 -1)xw=|[ —0.054 0.077 0.128 0.077 —0.054
—0.033 0.008 0.077 0.008 —0.033
—0.007 0.002 0.017 0.002 —0.007

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

2. Edges, Corners, and Interest Points
Qutline

2. Edges, Corners, and Interest Points
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Computer Vision 2. Edges, Corners, and Interest Points

Edges, Corners, and Interest Points

» good candidates for points that are easy to recognize and match in
two images are
» points on edges
» corners

i.e., points with sudden intensity changes.

» two stage approach: given an image | € RVXM,

1. compute an interestingness measure i € RV*M for points,
2. select a useful set of points py,. .., pk € [N] x [M]

» with high interestingness measure
» not too close to each other.

» many names: corners, interest points, keypoints, salient points, ...

Note: [N] :={1,...,N}.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude (Canny Edge Detector)

» Simply use the magnitude of the gradient as interestingness
measure:

i(x.y) = /(Dx * )(x.y) + (Dy * 1)(x. )2

» Dy, Dy: differentiation kernels, e.g.,

DX::(—l 2 —1), Dy = 2
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Computer Vision 2. Edges, Corners, and Interest Points

Gradient Magnitude / Example

original (grayscale): gradient magnitude:

4 x
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Computer Vision 2. Edges, Corners, and Interest Points

B
Gradient Magnitude / Example i

original (grayscale): overlay with 500 interest points:
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Computer Vision 2. Edges, Corners, and Interest Points

Laplacian of Gaussian and Difference of Gaussian
Further simple interestingness measures:
» Laplacian of Gaussian (LoG):

i(x,¥) = ((Dx * Dx + Dy % Dy) x G) * 1)(x, y)

» uses second order information

» Difference of two Gaussians (DoG):

i(X7y):((G01_GU2)*/)(Xay)v o1 # 02

» uses variations at different scales
» often interpreted as limit of Laplacian of Gaussians

((Dx % Dx + Dy * Dy)  G,) % | ~ &((GHA(, — Gy_po) % 1)
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

» Represent a corner by its patch surrounding it,
represent such a patch by a weight function

w: [N] x [M] = R,
1, if[x —x| <3and |y —y| <3
w(x,y) =
0, else

for a rectangular patch of size 5 centered around (xo, yo)-

» A point is easy to identify, if its minimum in the autocorrelation
surface is pronounced:

E(Ax,Ay;w) = Z w(x,y)(I(x + Ax,y + Ay) — I(x,y))?
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Computer Vision 2. Edges, Corners, and Interest Points
Harris Corner Detector / Autocorrelation Surface
\ 1 S

Note: left to right: flower bed, roof edge, cloud.

[m]
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[Sz§11, p. 18
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

E(Ax, Ay;w) =Y w(x,y)(I(x + Bx,y + Ay) = I(x, y))
X7.y
with Hessian at minimum:

5?1
H(0,0;w) ~ 2 w(x,y)VI|xy)VII{,,y for 0y = 0
X,y ’
_ (Ix)? Ixly
_2W>k< Incly (/y)2 ,
ol
Ix(x,y) =1l(x+1y)—I(x,y) = afx(xay)

ol
/Y(X,)/) = I(Xa.y+1) - I(Xay) ~ @(va)

Note: [ J(x,y) =32,/ I(x = x',y —y")J(x', y") convolution of two images.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Harris Corner Detector

use SVD to assess steepness
o1 0
H:U( . )UT, 01> 0, >0,UUT =1
0 oo
and define interestingness measure:
iShi-Tomasi(Xv}/) =02

iHarris (X, y) := 0102 — a(o1 + 02)% = det H — a trace(H)?,
iTriggs(Xv}/) =02 —Qoy,
(X y) : 0102/(01 + 02) = det H/trace(H)

IBrown X,

» the larger o1.0, the steeper the autocorrelation surface E.
» Harris and Brown avoid computing o1, 02 explicitly
(which requires computing a square root).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

B
Harris Corner Detector / Algorithm i

1. procedure INTERESTPOINTS-HARRIS(/ € RVXM: w € R-K:K*-LL o ¢ R)
2: Ix ;= Dx * |

3: Iy = Dy * [

4: /)2< =Ix - Ix

5: /3/ =1y -ly

6: Ixly .= Ix - Iy

7: A=wxl3 > compute H(x,y) = ( éEX y% CE;( i; )
8: B:=wxl}

9: CZ:W*I)(IY
10: i=A-B-C-C—a(A+B)-(A+B)
11: return |

» Dy, Dy: differentiation kernels, e.g.,
-1

Dx:=(-12 —-1),Dy:={ 2
-1

Note: - denotes the element/pixelwise product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

2. Edges, Corners, and Interest Points

Harris Corner Detector / Example

(a)

(b)
a) original, b) Harris corners, c) DoG interest points

()

[m]

[Sz§11, p. 21
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Computer Vision 2. Edges, Corners, and Interest Points

B
Interest Points at Different Scales (SIFT Detector) i

» Interest points also can be identified at different scales in parallel:

i(p,s) =(Go,y ¥ — Gy x 1)(p), s€[S]
where

01 >0 >--->0§
where S € N is the number of scale levels

» Often scale levels are grouped by octaves:

» each octave is represented by a downsampling by a factor 2
» scales within an octave are g, := 25/%¢
(with S, the number of scale levels within an ocatve)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

B
Interest Points at Different Scales (SIFT Detector) i

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

(a)

[Szell, p. 216]
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Computer Vision 2. Edges, Corners, and Interest Points

NN
Non-Maximum Suppression “

» Often neighbors of interest points have similar high interestingness,
yielding redundant close-by interest points.

» Keep only interest points that are local maxima in their
neighborhood:

) i(p), ifi(p)>i(p)Vp € N(p
i(p) = P T HOY=HEVTRENE) ey
0, else
with neighborhood
Nk(p) ={p" € [N] x [M] | |px — pi| < K, |py — Pl < K,p' # p} rect

Nk(p) :={p" € [N] x [M] | [[p— P'l| < K.p' # p} circu

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

2. Edges, Corners, and Interest Points

Non-Maximum Suppression / Example

(c

ANMS 250, r = 24

v ) . (d) ANMS 500, r = 16
Note: ANMS = adaptive non-maximum suppression; see the booléI for c[iﬁeta

fRzell, p. 214

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

Non-Maximum Suppression / At Different Scale

» Non-Maximum Suppression also can be extended to work on interest
points at different scale:

Ni(p, s) :={(p',s') € [N] x [M] x [S] | |px = PLI < K, [Py — Py < K,
s—=s|<1,(p #pors#s)}

[Szell, p. 216]
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Computer Vision 2. Edges, Corners, and Interest Points

Subpixel Localization

» expand interestingness measure around each candidate point p
(2nd order Taylor expansion):

i(p-+ 8p) ~ i(p) + Vil Ap + 5(2p) PPl
» minimum for offset:
Ap = —(V2il,) Vi, (3 x 3 system)
> if [|Ap||max < 0.5,
Psubpixel := P + Ap

otherwise
» change candidate to grid point closest to p + Ap and
> try again.
» estimate / for subpixel point:

. . 1_ .
’(psubpixel) ~ ’(P) + EVI|;—Ap

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 2. Edges, Corners, and Interest Points

SIFT Interest Points

SIFT refines interest points by all these steps:
» defines interesting points as extrema of DoG
» also minima, not just maxima

» non-extrema suppression at different scale

» localization of interest points at sub-pixel granularity
» suppress candidates with
» low contrast or
> e.g., remove p with |i(p)| < 0.03 (for intensities in [0,1])
» high ratio of principal curvatures (edge responses)
> e.g., remove p with |igrown(p)| > 10

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

2. Edges, Corners, and Interest Points

SIFT Interest Points

(o) 4

b) 832 interest points, c) 729 after low contrast removal, d) 536 after high ratio of principal curvature removal.

ow04, p. 11]
[m] = = =
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Computer Vision

3. Image Patch Descriptors

Outline

3. Image Patch Descriptors
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Computer Vision 3. Image Patch Descriptors

Image Patch Descriptors

» Which properties from a patch to extract?
» grayscale intensities, color intensities, gradient directions

» Which patches to extract?

» orientation of the patch w.r.t. the image frame
» offset of the patch w.r.t. the interest point (cells)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

3. Image Patch Descriptors
Histograms
» the most simple patch:

» a square centered on the interest point
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
> as a matrix or a vector

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
» as a matrix or a vector
> is affected by rotations
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
> as a matrix or a vector
> is affected by rotations
» by some scalar properties (mean, standard deviation)
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
» as a matrix or a vector
> is affected by rotations
» by some scalar properties (mean, standard deviation)
> represents only little information
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels

» how to represent?
> as a matrix or a vector
> is affected by rotations
» by some scalar properties (mean, standard deviation)

> represents only little information

» by its histogram
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Computer Vision 3. Image Patch Descriptors

Histograms

» the most simple patch:
» a square centered on the interest point

» properties:
» most simple: grayscale intensities of the pixels
» is affected by global intensity fluctuations
» gradient directions

» how to represent?
» as a matrix or a vector
» is affected by rotations
» by some scalar properties (mean, standard deviation)
> represents only little information
» by its histogram
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Computer Vision 3. Image Patch Descriptors

Histograms / Intensities

» represent interest point (x, y) by its B-dimensional intensity
histogram features ¢(x, y):

d)(X,}/)b ::H(X/ay/) EN(va) ‘ I(X,ay,) € binb}|’ b= Oa---aB -1

) b b+1
binp ::[Elmam T/max[

N(xy) ={(x".y) € IN| x [M] | X' = x| < K, ]y = y| < K}

for intensities /(x, y) in range [0, fmax]-

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Smoothed Counting

» To avoid non-continuous changes if a value crosses bin boundaries,
values can be counted

» in both closest bins,
» antiproportional to their distance from the bin center

. b+ 0.5
blan = Tlmax

[1(x, ") — bincy|
Imax/ B

biny, 1= Z max(0,1 —

(x",y")eEN(x.y)

)

» sometimes called trilinear counting.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Gradient Directions

> represent interest point (x,y) by its B-dimensional gradient
directions histogram features ¢(x, y):

¢(X7y)b ::|{(X/)y/) € N(Xay) | d(Xla.yl) € binb}|7 b= 07 ) B-1

d(x,y) 'Ztanfl((DY #1)(x,¥)/(Dx * 1)(x,))

b+1
biny : [ 2, 2271'[

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

Histograms / Gradient Directions

> represent interest point (x,y) by its B-dimensional gradient
directions histogram features ¢(x, y):

¢(X7y)b ::|{(X/)y/) € N(Xay) | d(Xla.yl) € binb}|7 b= O) ) B-1
d(x,y) 'Ztanfl((DY #1)(x,y)/(Dx * 1)(x,y))
b+1

bing :=[=2
|nb[7rB

27[

» variant: weight gradients by their magnitude:

P(x,¥)p = > (Dx * )(x',y") + (Dy = 1)(x',y')?

(X/7yI)EN(X7y)7d(X/7y/)€binb

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision

3. Image Patch Descriptors

Histograms / Gradients / Example

0

2n

angle histogram

Image gradients

[m]

[Szell, p. 21
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Computer Vision 3. Image Patch Descriptors

Block Descriptors

» Describe an interest point not just by features of the surrounding
patch,

but by the features of several neighboring patches (blocks, cells):

s(xy)= B  JKY)
(x'y)EC(x.y)
C(x,y) :={x+cAX,y +dAY | c,d € {-C,...,C}}

» Often a simple partition of a large
(2C+1)(2K +1) x (2C 4+ 1)(2K + 1) patch is used
(AX =AY =2K + 1).

» Features have dimensions (2C + 1)2B.

Note: (x1,...,xn) ® (Vi,---,¥m) == (X1, -, XN, Y1, .-.,¥YM) cOncatenation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

NN
Block Descriptors v

.l < N
AN 4 713
711
- et
LN\ ]
T— AV T ¥ > oa| o~
=5 o | o P
" o A e v —
A LK z | %
NS NP 4
Image gradients Keypoint descriptor

[Low04, p. 15]
o E E == DAl
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Computer Vision 3. Image Patch Descriptors

NN
Align Patches by the Gradient Direction of the Interest “
Point

» Extract features from the image rotated by

» the negative gradient direction at the interest point
» around the interest point

(afterwards the gradient at the interest point (x, y) points towards
positive x-direction):

( ::_d(Xay)

;o X cosy —siny X X

v = (5 )+ (G e ) (G )-(3))

li(x,y) =1 = (x = [x)) X = (v = ly])) 1([x), L
+(x=xDA-=( =)  Ix] Ly
+ (A== Dy — Lyl (LxJ, T
+ (x = IxDly = y]) I(IxT, T

(bilinear interpolation)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Computer Vision 3. Image Patch Descriptors

NN
SIFT descriptors “

» patches:
» extract from the scaled image the interest point has been detected on
» align patch by the gradient direction of the interest point
» 16 x 16, partitioned into 16 blocks a 4 x 4

block features:

» gradient directions
» weighted by a Gaussian of the distance to the interest point

v

v

block feature aggregation:

» smoothly counted histograms
» 8 bins

» ~ feature vector ¢ € R1%8

» normalization in 3 steps:

¢; =¢i/l14ll2, i :==min(0.2, ¢}), i =i /19" Iz
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Computer Vision 3. Image Patch Descriptors

Image Descriptors

To describe a whole image (not just a patch),
two main approaches are used:

1. Concatenate patch descriptors of equally spaced “interest points”

1.1 e.g., used in Histograms of Oriented Gradients (HoG)

[m]
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Computer Vision 3. Image Patch Descriptors

Image Descriptors

To describe a whole image (not just a patch),
two main approaches are used:
1. Concatenate patch descriptors of equally spaced “interest points”
1.1 e.g., used in Histograms of Oriented Gradients (HoG)

2. Bag of words descriptors:

2.1 compute interest points and their descriptors for a set of images
2.2 discretize the descriptors

» e.g., clustering in K clusters using k-means
2.3 represent each image by the K cluster frequencies of their interest
point descriptors
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Computer Vision 3. Image Patch Descriptors

NS
Histograms of Oriented Gradients (HoG) i

/|y
/ \
|
Lt
/
P
/| -
{1
LI IRN
Figure 13.17 HOG descriptor. a) Original image. b) Gradient orientation,
quantized into nine bins from 0 to 180°. ¢) Gradient magnitude. d) Cell
descriptors are 9D orientation histograms that are computed within 6 x 6
pixel regions. e) Block descriptors are computed by concatenating 3 x 3
blocks of cell descriptors. The block descriptors are normalized. The final
HOG descriptor consists of the concatenated block descriptors.
[Pri12, p. 343

[m]
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Computer Vision

4. Interest Point Matching

Outline

4. Interest Point Matching

[m]

=
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Computer Vision 4. Interest Point Matching

. . . P2
Settings, Assumptions, Distances v
Two settings:

» match interest points in different scenes
» goal: detect similar objects
(object identification)
» coordinates of the points do not matter

a2 ) (32 )= o0t ) = ) o)l

a(( 7). (2 Pmaa( ) (02 )+ 50 0an) o 2)

—all (2 )= (22 )1l + Bl n) - o0l
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Computer Vision 4. Interest Point Matching

Settings, Assumptions, Distances

Two settings:
» match interest points in different scenes
» goal: detect similar objects
(object identification)
» coordinates of the points do not matter

d(( " ) ’ < ) >) = d'(¢(x1, 1), 032, y2)) = llo(x1, y1) — P(x2, y2)lI2

1 y2

» match interest points in two views of the same scene
» goal: detect corresponding points in different views of the same scene
(required for SLAM)
» coordinates of corresponding points also should be close, e.g.,

a(( 7). (2 Pmaa( ) (02 )+ 50 0an) o 2)

=l (32) = (32 ) e+ Bkt ) — sl

Y1 Yy
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Computer Vision 4. Interest Point Matching

Simple methods

To match two sets P and @ of interest points:

» match interest points by distance threshold

p~q:=d(p,q) <dmx, PEP,gEQ

» distance threshold dn.x can be estimated from known matches and
non-matches
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Computer Vision 4. Interest Point Matching

Simple methods

To match two sets P and @ of interest points:

» match interest points by distance threshold

p~q:=d(p,q) <dmx, PEP,gEQ

» distance threshold dn.x can be estimated from known matches and
non-matches

» match interest points by nearest neighbor

p~ q:& q=argmind(p,q)
qeR
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Computer Vision 4. Interest Point Matching

. . . -2
Nearest Neighbor Distance Ratio “
» match interest points by nearest neighbor distance ratio (NNDR)
p~q:<i)q=argmind(p,q) and
geR

. d(p, q) / . /
if) NNDR(p, q) == ———= < NNDRpin, ¢q := argmin d(p,q
: i d(p,q') 7cQ\{q} (p.7)

See - /.’/
De [Szell, p. 228]
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Computer Vision

4. Interest Point Matching

Comparison of Different Descriptors & Matchings
a) fixed threshold:

[m]

[Sz§11, p. 22

9]
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Computer Vision 4. Interest Point Matching

NN
Comparison of Different Descriptors & Matchings “

b) nearest neighbor:

*——= gloh #———x cross correlation
e 1 - 0 sift += = == gradient moments
=2 W L eiese pea -sift @0 complex filters
@———% shape context ——— diffarential invariants
o7l spin +-—+ steerable filters

# - ——# hes-lap glch

e T

[Sz§11, p. 229

[m]
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Computer Vision 4. Interest Point Matching

NN
Comparison of Different Descriptors & Matchings “

c) nearest neighbor distance ratio:

*=——= gloh » ® gross correlation
1] [ We—— 0 sift «= - — = gradient momenis
= 9% pea -sift g0 complex filters

¢——= shape conlext
o3l PP spin
»— - % hes-lap gloh

v 7 differential invariants
+———+ steerable filters

[Sz§11, p. 229

=]
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Computer Vision 4. Interest Point Matching

Mutual Nearest Neighbors
» match interest points if they mutually are nearest neighbors
p~q:<i)q=argmind(p,q) and

qeqQ

ii) p=argmind(p,q)
peP

» also for more than two views P, P2, ..., Py
(called closed chains)

(p1,p2,- .., pv) corresponding tuple

& i) py41 =argmind(py,q), v=1,...,V—1an
qEPy 11

i) p1 = argmind(p1,q)
qePy
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5. A Simple Application: Image Stitching
Qutline

5. A Simple Application: Image Stitching

[m]

=
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Computer Vision

5. A Simple Application: Image Stitching

Image Stitching

» join several images depicting overlapping parts of the same real scene
to one large image

[m]

=
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Computer Vision

Image Stitching

5. A Simple Application: Image Stitching

» join several images depicting overlapping parts of the same real scene
to one large image

» algorithm:

1.

oo~

detect interest points in all images and extract their descriptors
match interest points between every two images

form a tree linking the best matching image pairs

estimate a similarity transform between each two such images
transform all images to joint coordinates

average overlapping image regions
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching

» join several images depicting overlapping parts of the same real scene
to one large image

» algorithm:

1. detect interest points in all images and extract their descriptors
match interest points between every two images
form a tree linking the best matching image pairs
estimate a similarity transform between each two such images
transform all images to joint coordinates
average overlapping image regions

oo~

» also called panography
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Computer Vision

5. A Simple Application: Image Stitching

Image Stitching / Example

[m]

[Sz§11, p. 31
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Different Transforms

(a) translation [2 dof]

(b) affine [6 dof]

(c) perspective [8 dof] (d) 3D rotation [3+ d

[m]

[Szell, p. 42
5 = =

5]
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Computer Vision 5. A Simple Application: Image Stitching

Image Stitching / Example




Computer Vision 5. A Simple Application: Image Stitching

NN
Summary “

» Small intensity fluctuations can be damped by smoothing,

intensity changes can be captured by image derivatives,
both being convolutions.

» Interest points are found as maxima of an interestingness measure,

» gradient magnitude, Laplacian of Gaussian (LoG),
Different of two Gaussians (DoG)
» Harris corners:
> large eigenvalues of the Hessian
» can be approximated efficiently: det H — a(traceH)?
» SIFT:

» detected interest points at different scale
» several further tweaks

» non-maximum suppressions:
ignore large values in the vicinity of a maximum

[m] = = =
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Computer Vision 5. A Simple Application: Image Stitching

P2
Summary (2/3) i
» Interest points are characterized by local image information
(descriptors)
» Descriptors often describe several patches (blocks/cells)
» Patches are described by histograms
» Histograms usually do not count pixel intensities,
but gradient directions
» Descriptors sometimes

» align patches with the orientation of the gradient at the interest point
» weight gradient directions by their

» gradient magnitude and/or

» distance of the location to the interest point

» Common descriptors:
» SIFT descriptors , Histogram of Gradients (HeG)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
48 / 49



Computer Vision 5. A Simple Application: Image Stitching

Summary (3/3) YA

» Whole images can be described two ways:
» by the descriptors on a fixed grid of “interest points”
» by the cluster frequencies of descriptors of variably located interest
points
Both is useful, e.g. for image classification.

» Interest points are matched by their descriptors
» for geometric tasks: also by their positons

» To match interest points, nearest neighbors are used
» with a maximal distance threshold to avoid wrong matches
e.g. of points occluded in one view
» Nearest Neighbor Distance Ratio
» mutual nearest neighbors, closed chains in multiple views.

» Corresponding points can be used for
» image stitching
» SLAM, camera auto-calibration, ...
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Computer Vision

B
Further Readings “

» Interest points and patch descriptors: [Pril2, ch. 13], [Szell, ch. 4].

» SIFT-interest points and features:
» [Low99], [Low04].

» Image stitching: [Szell, ch. 9].
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